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ABSTRACT This paper investigates an event-triggered adaptive neural tracking control issue for flexible-
joint robot (FJR) systems subject to unknown dynamic and input saturation. To enable the backstepping
design framework to be implemented, the input saturation nonlinearity is replaced by a smooth function.
In the control design, the dynamic surface control (DSC) and adaptive neural techniques are used to
handle the ‘‘explosion of complexity’’ issue and unknown dynamics, respectively. Furthermore, to reduce
the calculated burden caused by the adaptive neural reconstruction technique, three virtual parameters are
updated by using the single-parameter-learning approach. To decrease the frequency of actuator response
to the control command for reducing the mechanical wear of actuator, an event triggering mechanism is
established between the control law and actuator. Finally, an event-triggered adaptive neural tracking control
solution is proposed, which is endowed the advantages as: (1) it does not need any priori knowledge of FJR
systems; 2) it only needs to update three unknown parameters; 3) it can reduce the transmission frequency
of the control commands and the response rate of the actuator. Using the Lyapunov stability theory, the
proposed event-triggered control solution ensures that all signals of the closed-loop tracking control system
are bounded. Finally, the simulation results verify the effectiveness and superiority of the proposed control
scheme.

INDEX TERMS Flexible-joint robot, adaptive neural tracking control, event triggering control, input
saturation, dynamic surface control.

I. INTRODUCTION
For the past few years, intense interests have been paid
close attention to the modeling and control of flexible joint
robot (FJR) systems [1]–[3], [5], [14] due to its important
role in civil and military affairs. To solve the control issue
of FJR systems, many effective control methods have been
reported, such as uncertain observer [6], PID/PD control
[7]–[9], adaptive sliding mode control [10], feedback lin-
earisation control [11], [12], passivity control [13], singu-
lar perturbation control [14], adaptive backstepping control
[15]–[17], etc. In practice, due to the modeling technique and
plant’s nonlinear character, the FJR systems inevitably suffer
from the uncertainties. In this context, the difficulty of control
design derives from the uncertain and nonlinear characteris-
tic. For the control issue of uncertain nonlinear systems, the
adaptive backstepping design framework reveals its unique
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advantage [18]. However, owing to the recursive design
process, the virtual control function needs to be differenti-
ated repeatedly such that there exists a drawback called the
‘‘explosion of complexity’’ in the design framework. To solve
such a problem, Swaroop et al. [19] proposed the dynamic
surface control (DSC) scheme for a class strict-feedback non-
linear systems, in which a first-order filter is introduced into
the each step of the traditional backstepping design. Based
on the DSC method, many significative research results
have also been reported to solve the control issue of FJR
systems [20]–[22].

To compensate the uncertainty of FJR systems, sev-
eral effective approaches, such as extended state observer
(ESO) [23]–[25], time-delay estimation [26], [27], neural
network (NN) [28], [29], fuzzy logic system (FLS) [30], [31],
etc. To avoid the problem of ‘‘explosion of complexity’’ in
the works [29]–[31], Joo et al. [32] and Miao et al. [33]
introduced a first-order filter into the backstepping design
such that the differential operation of virtual control law is
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replaced by the algebraic operation. The other implicit benefit
of such an operation is that the input dimensionality of NN
or FLS is reduced greatly [34]. It should be pointed out that
the works in [29]–[32] surfer from the dimensional curse
issue [35]. To this end, for the control issue of FJR sys-
tems, Ling et al. [36] taken the minimum learning parameter
technique [34] into the DSC design framework to solve the
dimensional curse issue.

In practice, for any physical systems, input saturation is
an inevitable problem, which ascribes the physical prop-
erty of actuator. In the existing works, many effective
methods have been reported to handle the input saturation
issue, such as the domain of attraction [37], gain schedul-
ing [38], model augmentation [39], auxiliary dynamic design
[40], [41], smooth function substitution [42], etc. It should be
pointed out that the method based on the domain of attraction
requires the knowledge of plant; the gain scheduling-based
method requires the mapping between system response per-
formance and control gain, which leads to the closed-loop
system incredibly complex; the model augmentation requires
that the plant needs to be augmented with a first-order
form, which increases the difficulty of control design. Com-
pared with the model augmentation, the auxiliary dynamic
design can simplify the control design, but it may intro-
duce a non-smooth signal into the closed-loop system. For
such an issue, a smooth function is used to replace the
non-smooth saturation nonlinearity in the smooth function
substitution-based method [36]. Nevertheless, the work [36]
required the part model knowledge, which leads to the
control solution difficulty to be implemented. Furthermore,
Ding et al. [43] employed the neural approximation tech-
nique to reconstruct the unknown dynamic of FJR systems
with input saturation.

Although the above methods effectively have solved the
problems of unknown system dynamic, a practical prob-
lem, i.e., the actuator has a working range in the command
response frequency, is not considered. In addition, owing to
the sensor measurement noise, the high-frequency noise may
enter into the closed-loop system, which leads to the high
frequency response of the actuator and mechanical wear of
actuator. Therefore, it is essential how to reduce the mechan-
ical wear of actuator to achieve the purpose of reducing
the frequency of actuator failures. For such an issue, the
event-triggered control (ETC) [44], [45] method has its pre-
ponderance, in which the control commands are transmitted
only if a certain event is triggered [46]–[49]. Based on this
idea, the event-triggered control for FJR systems has attracted
the attention of many scholars [50], [51]. In [52], an event-
triggered adaptive asymptotically tracking control solution
for a single-Link Robot was proposed, in which the trans-
mitting and computation burdens of control commands are
effectively reduced by using the DSC and ETC techniques. It
is should be pointed out that the event triggering mechanisms
proposed in [50]–[52] only taken the measuring error of
control input into account, but the control accuracy was not
considered in the design. However, for the FJR systems, the

control accuracy also needs to be followed in the design of
event triggering mechanism.

Motivated by the previous works, an event-triggered adap-
tive neural tracking control scheme for FJR systems under
unknown dynamics and input saturation is presented. The
main contributions can be summarized as follows.

• This work proposed a DSC-based adaptive neural track-
ing control scheme, in which a single parameter learning
and adaptive neural network techniques are used to han-
dle the unknown dynamics and parameters. Compared
with the work [29], [31], [32], our proposed control
solution does not require any priori knowledge of plant.

• Different from the event triggering mechanism [50]–
[52], the event triggering mechanism proposed in this
work includes the internal and external trigger condition.
As a result, the transmission frequency of the control
commands and the execution rate of the actuator not only
are drastically reduced, but also the control performance
can be ensured.

• Using the single-parameter-learning idea, this work
designs three adaptive laws and each one requires only
one regressor, which avoids the problem of dimensional
curse in [29]–[31], and overcomes the design difficulty
caused by the unknown gains of FJR systems.

The rest of this paper is arranged as follows. In Section 2,
the mathematical model of MSVs and the problem formula-
tion are introduced. In Section 3, the principle of intelligent
approximation using NN is presented. In Section 4, proposes
the details of controller design procedures. In Section 5, the
simulation results are given to show the effectiveness of the
controller. In Section 6, the entire work is summarized.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
According to the Euler-Lagrangian (EL) equation, the
single-link FJR dynamics can be described as follows [36]

ML2q̈+MgL sin(q)+ F(q̇)+Kq = Kqm (1)

J q̈m + Bq̇m +K(q− qm) = u (2)

where q, q̇ and q̈ denote the link position, velocity, and accel-
eration of FJR, respectively. qm, q̇m and q̈m denote the rotor
angular position, velocity, and acceleration, respectively.M,
L and g denote the mass and length of link and the gravity
acceleration, respectively. F(q̇) is the friction. K, J and B
denote the coefficients of joint stiffness, the joint flexibility
and the damping, respectively. u is the actual control input of
plant.

Considering the issue of actuator’s physical constraint, the
control input u is subjected to input saturation, which can be
described by

u =

{
sgn (uc) |um|, |uc| > um
uc, |uc| ≤ um

(3)

43368 VOLUME 10, 2022



X. Xu, S. Xu: ETABTC of FJR Systems With Input Saturation

where uc is the control command generated by control law,
sgn(·) denotes the sign function, and um is themaximumvalue
of actuator control input.

Considering the issue of actuator’s physical constraint, the
control input u is subjected to input saturation, which can be
described by

u =

{
sgn (uc) |um|, |uc| > um
uc, |uc| ≤ um

(4)

where sgn(·) denotes the sign function, and um is the maxi-
mum value of actuator control input.
Remark 1: In practice, due to the modeling technique,

nonlinear characteristic, etc., it is very difficult to obtain
the accurate knowledge of the model parameters of FJR
systems. In addition, the friction F(q̇) is not modelable. For
the tracking control issue, it is common that the reference
trajectory yd and its derivatives ẏd and ÿd are required to
known. Similar requirements are also mentioned in [2], [32],
[33], [36]. Therefore, assumptions 1-2 are reasonable.

According to (4), the u is a non-smooth function with
respect to uc. To facilitate the implementation of backstepping
design framework, a smooth function is used to replace the
non-smooth nonlinear function u, i.e.,

u(uc) = umG
(√

πuc
2um

)
(5)

where G(·) is the Gaussian error function defined as G(ν) =
2
√
π

∫ ν
0 e
−t2dt . Here, u(uc) is written as

u(uc) = δ(uc)+ d(uc) (6)

where d(uc) is the approximate error, which satisfies
|d(uc)| = |u(uc)− δ(uc)| ≤ D with D being a positive
constant.

According to Mean-value theorem, δ(uc) can be written as

δ(uc) = δ(0)+ ετc (7)

where ε = exp
(
−

(√
πιuc
2um

)2)
, 0 < ι < 1, i.e., there exist a

constant ω satisfying 0 < ω < ε. Furthermore, using (5)-(7),
one can get

u(uc) = ετc + d(uc) (8)

Let x1 = q, x2 = q̇, x3 = qm and x4 = q̇m, and using (8),
we have 

ẋ1 = x2
ẋ2 = ψ1x3 + f2(x̄2)
ẋ3 = x4
ẋ4 = ψ2εu+ f4(x̄4)+ d

(9)

where ψ1 = K/ML2, ψ2 = J −1, f2(x̄2) = −Kx1+F (x2)
ML2 −

g sin x1
L , f4(x̄4) = −J −1(Bx4+K(x3− x1)) and d = ψ2d(uc).

From |d(uc)| ≤ D, there exists a constant ψd satisfying |d | ≤
ψd . In addition, according to 0 < ω < ε and ε ∈ (0, 1], there
exists a constant ψε such that ψ2ε ≥ ψε can be held.

Remark 2: FromAssumption 1, we know thatψi, i = 1, 2,
is unknown, and f2(x̄2) and f4(x̄4) are unknown function.
Nonlinear function f2(x̄2) contains F(q̇), which is unmode-
lable. Thus, f2(x̄2) can not be linearly parameterized. In order
to handle the problem, we will utilize RBF NNs to approxi-
mate the unknown nonlinear function f2(x̄2) and f4(x̄4).
The control objective of this paper is to design an

event-triggered adaptive NN control law uc for the single-link
FJR system (1)-(2) under Assumptions 1-2 such that the
actual trajectory y tracks a reference trajectory yd , while
ensuring that all signals in the closed-loop single-link FJR
control system are bounded.

B. PRELIMINARIES
Lemma 1 ([40]): Any nonlinear function β(X) : Rn → R
defined on a compact set �X ∈ Rn can be estimated by the
radial basis function (RBF) NN ξ∗T9(X), and then we have

β(X) = ξ∗T9(X)+ ε (10)

where the approximate error ε satisfies |ε| ≤ ε̄∗ with ε̄∗

being a positive constant. Vector ξ (X) represents the basis
function. The ideal weight vector of NN is expressed as9∗ =
[9∗1 , · · · , 9

∗

` ] ∈ R
l . ` > 1 is the number of node. The basis

function ξ i(X) is the Gaussian error function, that is,

ξ i(X) = exp
[
−(X − ci)T (X − ci)

ω2

]
(11)

where ci = [ci1, · · · , ci`]T represents the center of the recep-
tive area, and ω is the breadth of Gaussian function.
Lemma 2: Let ā and b̄ be scalars as well as [, m and n be

positive constants. ifm > 1, n > 1 and (m−1)(n−1) = 1 are
held, there is

āb̄ ≤
[m

m
|ā|m +

1
[mn
|b̄|n (12)

III. MAIN RESULTS
In this section, we attempt to design an event-triggered adap-
tive neural tracking control (ETABTC) law using DSC design
framework for the single-link FJR system. The design of
ETABTC is based on the following change of coordinates:

z1 = x1 − yd (13)

zi = xi − χi, i = 2, 3, 4 (14)

where χi is the filter version of the virtual control law αi−1,
which is produced by the following filter

τ χ̇i + χi = αi−1 (15)

whereχi ∈ R is the state of filter (15), and τ is the filter design
constant. The filter initial conditions satisfy χi(0) = αi−1(0).

A. ROBUST ADAPTIVE NEURAL TRACKING
CONTROL LAW DESIGN
In this subsection, we present the design procedure of
ETABTC law, and the whole design procedure con-
tains 4 steps. At each step, the virtual/atual control laws
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are designed. At the step 2 and 4, the RBF NNs are
applied to approximate unknown dynamics f2(x̄2) and f4(x̄4),
respectively.

Step 1: Taking the time derivative of z1, and using (9)
and (13), one can get

ż1 = x2 − ẏd
= z2 + χ2 − α1 + α1 − ẏd (16)

Design the virtual control law α1 ∈ R3 as follows

α1 = −k1z1 + ẏd (17)

where κ1 ∈ R is a positive definite design constant.
Let ϑ1 = χ2 − α1. Substituting ϑ1, (17) into (16), one can

get

ż1 = z2 + ϑ1 − k1z1 (18)

Consider the following Lyapunov function candidate

V1 =
1
2
z21 +

1
2
ϑ2
1 (19)

Taking the time derivative of V1, and using ϑ1 = χ2 − α1,
one has

V̇1 = −k1z21 + z1z2 + z1ϑ1 + ϑ1ϑ̇1 (20)

According to ϑ1 = χ2 − α1 and (15), one has

ϑ̇1 = −τ
−1ϑ1 − α̇1 (21)

From (17), α̇1 = −k1(x2 − ẏd ) + ÿd . According to
[19], [34], α̇1 is of the maxima value, i.e., |α̇1| ≤ m̄1.
Furthermore, substituting (21) into (20), one can get

V̇1 = −k1z21 + z1z2 + z1ϑ1 − ϑ1(τ
−1ϑ1 + α̇1)

≤ −(k1 − 1)z21 + 0.5z22 − (τ−1 − 1)ϑ2
1 + 0.5m̄2

1 (22)

Step 2: According to (9) and (14), the time-derivative of z2
is given by

ż2 = ψ1x3 + f2(x̄2)− χ̇2 (23)

In (23), f2(x̄2) is an unknown function, which can be
approximated using the RBF NN ξ∗T2 9(x̄2) according to
lemma 1. Then, f2(x̄2) can be written as

f2(x̄2) = ξ∗T2 9(x̄2)+ ε2 (24)

where ξ∗2 ∈ R
` is the ideal constant weight vector, 9(x̄2) ∈

R` is the base function vector, ε2 ∈ R is the approximation
error satisfying |ε2| ≤ δ2 with δ2 being an unknown positive
constant. Let ϑ2 = χ3 − α2. Invoking (24) and ϑ2 into (23)
and using (13), it yields

ż2 = ψ1x3 + ξ∗T2 9(x̄2)+ ε2 − χ̇2

= ψ1

(
z3 + α2 − ϑ2 + ψ

−1
1 ξ∗T2 9(x̄2)

+ψ−11 ε2 − ψ
−1
1 χ̇2

)
(25)

LetL1 = −ϑ2+ψ
−1
1 ξ∗T2 9(x̄2)+ψ−11 ε2−ψ

−1
1 χ̇2+ψ

−1
1 z22.

According to assumption 1, the term L1 is unknown. Taking
the following operation for L1

|L1| ≤ |ψ
−1
1 ξ∗T2 9(x̄2)| + |ψ−11 ε2| + ψ

−1
1 |χ̇2 − z

2
2 − ϑ2|

≤ %1β1(ς1) (26)

where %1 = max{||ψ−11 ξ∗T2 ||, |ψ
−1
1 ε2|, |ψ

−1
1 |} and β1(ς1) =

||9(x̄2)|| + |χ̇2 − z22 − ϑ2| + 1, with ς1 = [x̄T2 , χ̇2, z2, ϑ2]
T .

Using (26), one can get

ż2 = ψ1

(
z3 + α2 + L1

)
− z22 (27)

Design the virtual control law α2 as

α2 = −k2z2 − σ1%̂1z2β21 (ς1) (28)

with adaptive law

˙̂%1 = σ1z22β
2
1 (ς1)− µ1%̂1 (29)

where k2, σ1 and µ1 are positive design constants.
Remark 3: According to the neural approximation prin-

ciple, as the number of node ` is large enough, the RBF
NN can approximate the unknown nonlinear function f2(x̄2)
with arbitrary precision, i.e., the approximation error ε2 can
be arbitrarily small. In practice, since the unknown nonlin-
ear function f2(x̄2) can not be modeled and may not sat-
isfy the parameterized decomposition conditions. Therefore,
the RBF NN is employed to implement the parameterized
decomposition.
Remark 4: From (25), the unknown constant ψ1 brings

great trouble to the control design. If the conventional design
method is used, an adaptive law needs to be designed to obtain
the estimation value ψ̂1. Otherwise, ψ1 needs to be assumed
to be known. In this work, the single-parameter-learning
method is introduced such that the difficulty in the control
design is overcome dexterously. It should be pointed out that
the design in this work utilizes the sign of ψ1 adequately.
Just because of this, this work does not require any any priori
knowledge of FJR systems.
Consider the following Lyapunov function candidate

V2 = V1 +
1
2
z22 +

1
2ψ1

(%1 − ψ1%̂1)2 +
1
2
ϑ2
2 (30)

Taking the time derivative of V2, and using (28)-(29) and
(27), one can have

V̇2 ≤ V̇1 + z2ψ1(z3 + α2)+ z2L1 − z22 − (%1 − ψ1%̂1) ˙̂%1
+ϑ2ϑ̇2 (31)

From (26), the term z2L1 in (31) can be rewritten as

z2L1 ≤ |z2|%1β1(ς1) ≤ σ1%1z
2
2β

2
1 (ς1)+

%1

4σ1
(32)

Similarly, ϑ̇2 = −τ−1ϑ2 − α̇2. Here, α̇2 is a continuous
function, which is of themaxima value, i.e.,|α̇2| ≤ m̄2 accord-
ing to [19], [34]. Furthermore, one can get

V̇2 ≤ V̇1 + z2ψ1(z3 − k2z2 − %̂1z2β21 (ς1))+ ψ1%1z22β
2
1 (ς1)
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−(%1 − ψ1%̂1)(σ1z22β
2
1 (ς1)− µ1%̂1)− z22

−ϑ2(τ−1ϑ2 + α̇2)+
%1

4ψ1
(33)

Using (32) and Lemma 2, one can get

V̇2 ≤ −(k1 − 1)z21 − (τ−1 − 1)
2∑
i=1

ϑ2
i + z2ψ1z3 − ψ1k2z22

+(%1 − ψ1%̂1)µ1%̂1 +
%1

4σ1
+

2m̄2
1 + m̄

2
2

4
(34)

Furthermore, using Lemma 2, the term (%1 −ψ1%̂1)%̂1 can
be rewritten as

(%1 − ψ1%̂1)%̂1 ≤ −
1

2ψ1
(%1 − ψ1%̂1)2 +

%1

2ψ1
(35)

Substituting (35) into (34) yields

V̇2 ≤ −(k1 − 1)z21 − (τ−1 − 1)
2∑
i=1

ϑ2
i + z2ψ1z3 − ψ1k2z22

−
µ1

2ψ1
(%1 − ψ1%̂1)2 +

%1µ1

2ψ1
+
%1

4σ1
+

2m̄2
1 + m̄

2
2

4
(36)

Step 3: Taking the time derivative of z3, and using (9) and
(14), one can get

ż3 = x4 − χ̇3 = z4 + χ4 − χ̇3 (37)

Let ϑ4 = χ4−α3. Then, consider the following Lyapunov
function candidate

V ∗3 = V2 + z23 (38)

Taking the time-derivative of V3, and using (36) yields

V̇ ∗3 ≤ −(k1 − 1)z21 − (τ−1 − 1)
2∑
i=1

ϑ2
i − ψ1k2z22

−
1

2ψ1
(%1 − ψ1%̂1)2 +

%1

2ψ1
+
%1

4σ1
+ m̄2

1 + m̄
2
2

+z3(ψ1z2 + z4 + α3 − ϑ3 − χ̇3) (39)

Here, let L2 = ψ1z2 − χ̇3 − ϑ3. Furthermore, taking the
following operation for L2

|L2| ≤ %2β2(ς2) (40)

where %2 = max{ψ1, 1} and β2(ς2) = |z2| + |χ̇3 + ϑ3| with
ς2 = [z2, χ̇3, ϑ3]T . Furthermore, one can get

|z3L2| ≤ |z3|%2β2(ς2) ≤ σ2%2z
2
3β

2
2 (ς2)+

%2

4σ2
(41)

where σ2 is a positive constant.
Invoking (41) into (39) yields

V̇ ∗3 ≤ −(k1 − 1)z21 − (τ−1 − 1)
2∑
i=1

ϑ2
i − ψ1k2z22

−
1

2ψ1
(%1 − ψ1%̂1)2 +

%1

2ψ1
+ m̄2

1 + m̄
2
2

+z3(z4 + α3 + σ2%2z3β22 (ς2))+
2∑
i=1

%i

4σi
(42)

Design the virtual control law α3 as

α3 = −k3z3 − σ2%̂2z3β22 (ς2) (43)

with the adaptive law

˙̂%2 = σ2%̂2z23β
2
2 (ς2)− µ2%̂2 (44)

where k3 and µ2 are the design constants.
Consider the following Lyapunov function candidate

V3 = V ∗3 +
1
2
(%2 − %̂2)2 +

1
2
ϑ2
3 (45)

Taking the time-derivative of V3, and substituting (43)-(45)
into (42) yield

V̇3 ≤ −(k1 − 1)z21 − (τ−1 − 1)
3∑
i=1

ϑ2
i − ψ1k2z22

−
µ1

2ψ1
(%1 − ψ1%̂1)2 −

µ2

2
(%2 − %̂2)2 + z3(z4 − k3z3)

+

2∑
i=1

%i

4σi
+
µ1%1

2ψ1
+

2m̄2
1 + m̄

2
2 + m̄

2
3

4
+
µ2%2

2
(46)

Step 4: According to (9) and (14), the time-derivative of z4
is given by

ż4 = ψ2εuc + f4(x̄4)− χ̇4 + d (47)

From the Assumption 2, f4(x̄4) in (47) is an unknown
function, which can not be used in the control law design.
Here, the RBFNN ξ∗T4 9(x̄4) is applied to approximate f4(x̄4).
Then, f4(x̄4) can be written as

f4(x̄4) = ξ∗T4 9(x̄4)+ ε4 (48)

where ε4 is the approximation error satisfying |ε4| ≤ δ4 with
δ4 > 0 being an unknown constant. Invoking (48) into (47),
one obtains

ż4 = ψ2εuc + ξ∗T4 9(x̄4)+ ε4 − χ̇4 + d (49)

Let L3 = ξ
∗T
4 9(x̄4)+ ε4− χ̇4− z3+ d . Since L3 includes

the unknown term ξ∗T4 9(x̄4) + ε4 + d , it can not be used.
Here, taking the following operation for L3 yields

|L3| ≤ |ξ
∗T
4 9(x̄4)| + |ε4 + d | + |χ̇4 + z3|

≤ %3β3(ς3) (50)

where %3 = max{||ξ4||, |ε4+d |, 1} and β3(ς3) = ||9(x̄4)||+
|χ̇4 + z3| + 1 with ς3 = [x̄T4 , χ̇4, z3]

T .
Synthesizing (49) and (50) yields

z4ż4 ≤ z4ψ2εuc + |z4|%3β3(ς3)+ z4z3

≤ z4ψ2εuc + %3σ3z24β
2
3 (ς3)+ z4z3 +

%3

4σ3
(51)

Design the following control input ûc

ûc = −k4z4 − %̂3σ3z4β23 (ς3) (52)
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with the adaptive law

˙̂%3 = σ3z24β
2
3 (ς3)− µ3%̂3 (53)

and the event triggering mechanism

uc(t) = ûc(t), t ∈ [t , t+1);

t+1 = inf
{
t ∈ R | (|s| ≥ εsu0) ∪ (|z1| ≥ εzu0)

}
(54)

where k4, σ3, µ3, εs and εz are design constants, s = uc − ûc
is the measuring error and u0 = a∫ t

t0
|s(τ )|d(τ )+a1

with a and

a1 being positive constants.
Remark 5: From (54), one can get that the control com-

mand generated by the control law (52) is transferred to
the actuator when the event is trigged, and meanwhile the
actuator responses the control command. In this case, within
the the holding phase, i.e., for ∀t ∈ [t , t+1), the actuator
only executes the control command ûc(t) at t = t . There-
fore, compared with the continuous time control scheme, our
proposed ETC scheme can reduce the response frequency of
control command ûc(t) such that the mechanical wear can
also be reduced.

Considering the following Lyapunov function candidate

V4 = V3 +
1
2
z24 +

1
2ψε

(%3 − ψε %̂3)2 (55)

Taking the time derivative of V4 and using (51)-(53) yield

V̇4 ≤ V̇3 + z4ψ2ε(uc − ûc)− ψεk24 + z4z3

+(%3 − ψε %̂3)µ3%̂3 +
%3

4σ3
(56)

According to the event triggering mechanism (54), one can
get uc − ûc is bounded, i.e., |s| ≤ b with b is a constant. And
then, the term z4ψ2ε(uc − ûc) can be rewritten as

z4ψ2ε(uc − ûc) ≤
1
2
ψεz24 +

ψεb2

2
(57)

Using (46) and (57), (55) can be written as

V̇4 ≤ −(k1 − 1)z21 − (τ−1 − 1)
3∑
i=1

ϑ2
i − ψ1k2z22

−
µ1

2ψ1
(%1 − ψ1%̂1)2 −

µ2

2
(%2 − %̂2)2 − k3z23

+

3∑
i=1

%i

4σi
+
µ1%1

2ψ1
+

2m̄2
1 + m̄

2
2 + m̄

2
3

4
+
µ2%2

2

−
1
2
ψεk24 −

µ3

2ψε
(%3 − ψε %̂3)2 +

µ3

2ψε
≤ −ζV4 + ρ (58)

where ζ = min{2(k1−1), 2ψ1k2, 2k3, ψε, 2τ (1−τ ), µ1, µ2,

µ3} and ρ =
3∑
i=1

%i
4σi
+

µ1%1
2ψ1
+

2m̄2
1+m̄

2
2+m̄

2
3

4 +
µ2%2
2 +

µ3
2ψε

B. STABILITY ANALYSIS
The above design and analysis is given by the following
theorem.
Theorem 1: Considering the closed-loop control system

consisting of the mathematical model of single-link FJR
(1)-(2) subject to dynamic uncertainties and input saturation,
if the assumptions 1-2 are satisfied, the adaptive control
law (52) with the virtual control laws (18), (28) and (43), the
adaptive laws (19), (29) and (44) and (53), and the event trig-
gering mechanism (54) can ensure the following statements
to be held.
• All signals in the closed-loop control system are
bounded.

• The Zeno behavior caused by the event triggering mech-
anism can be avoided.
Proof: 1) The boundedness of all signals in the

closed-loop control system. Solving (58) yields

V4 ≤
(
V4(0)+

ρ

ζ

)
exp(−ζ t)+

ρ

ζ
(59)

Here, V4(0) is the initial value of V4. From (59), V4 =
ρ
ζ

as t → ∞, which shows that V4 is bounded. Furthermore,
according to (19), (30), (45) and (55), the boundedness of
zj (j = 1, 2, 3, 4), %̂i (i = 1, 2, 3) and ϑi can be deter-
mined. According to assumption 2 and (13), x1 is bounded,
and meanwhile the boundedness of α1 can be determined.
In addition, from (7) and the boundedness of ϑ1, one can get
that χ2 is boundedness. Similarly, one can obtain that x2, x3,
x4, α2, α3, ϑ2, ϑ3 χ3 and χ4 are also bounded; furthermore,
the boundedness of %̂2 and %̂3 can also be determined. From
(50) and the boundedness of z4, z3, %̂3 and χ4, one can get the
boundedness of ûc. Therefore, all signals in the closed-loop
control system are bounded.

2) Zeno behavior avoidance. According to the event trig-
gering mechanism (54), in the holding phase of ûc, i.e., t ∈
[tj, tj+1), the actual control command uc is a constant, which
implies that there is a variance between uc and ûc, i.e., the
control measurement error s = uc − ûc. Taking the time
derivative of |s| yields

d |s|
dt
= sgn(s)ṡ ≤ |˙̂uc| (60)

According to (13)-(15), (50), (52) and (53), one has

˙̂uc =
∂ ûc
∂z4

ż4 +
∂ ûc
∂%̂3

˙̂%3 +
∂ ûc
∂ς2

∂ς2

x̄4
˙̄x4

+
∂ ûc
∂ς2

∂ς2

z3
ż3 +

∂ ûc
∂ς2

∂ς2

χ̇4
χ̈4 (61)

According to the boundedness of z4, χ̇4, x4 and uc, one
can get that ż4 is bounded from (49). From (53), it can be
found that ˙̂%3 is bounded. In addition, from the boundedness
of z3 and χ̇4, one can get that ż3 and χ̈4 are bounded from
(41), (15) and ϑ4 = χ4 − α3. Therefore, ˙̂uc is bounded by
ū. For t ∈ [t , t+1), taking the fact of uc(t ) = 0 and
lim

t→t+1
min s(t) = s̄ being into account, one can get that the

lower bound t of inter-execution interval ť = t+1− t meets
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ť ≥ t ≥ s̄/ūc, which indicates that the Zeno behavior caused
by the event triggering mechanism is avoided in this work.

IV. SIMULATION RESULTS
In this section, a single-link FJR system is employed to
illuminate the effectiveness of the proposed control scheme.
In the simulation, the dynamic parameters of single-link FJR
are given by M = 0.25 kg, L = 1m, g = 9.8m/s2, K =
2N ·m/rad ,J = 0.001, B = 0.6 andF(q̇) = 0.1 cos(q̇). The
reference trajectory is given by yd = 0.5(sin t + sin(0.5t)).
In the simulation, the design constants of the control law

are set as k1 = 5, k2 = 35, k3 = 20, k4 = 3, τ = 0.25, σ1 =
2, µ1 = 0.2, σ2 = 1, µ2 = 0.5, σ3 = 5,µ3 = 2, εz = εs = 1,
a = 0.35 and a1 = 0.35, t0 = 0.2. The maximum umax of the
control input u is umax = 2.2. The initial conditions are given
by x1(0) = x2(0) = x3(0) = x4(0) = 0 and %i(0) = 0, (i =
1, 2, 3). The RBF NNs for f2(x̄2) and f4(x̄4) contain 20 nodes
with centers evenly spaced in the range [−2, 2]×[−2, 2] with
ωi = 1.
To indicate the effective of the proposed ETABTC scheme,

a simulation comparison with the time-triggering control
scheme is carried out, and the time-triggering control law uc
replaces the event-triggering control law, i.e., uc = ûc.
Simulation results under the proposed control laws uetc and

uc as shown in Figs. 1-5. Fig. 1 shows the tracking control
performance under two control laws, which demonstrates that
both two control laws can force the link position q to track
the reference trajectory yd with satisfying performance. The
result in Fig. 2 demonstrate that the tracking control accuracy
of the continuous time control scheme is slightly better than
the proposed ETABTC scheme, which indicates that the pro-
posed ETABTC scheme has control energy loss due to the
event triggering mechanism (54). Fig. 3 presents the control
inputs under the continuous time control scheme and pro-
posed ETABTC scheme, from which the actual control input
u is bounded and reasonable. In addition, it can be observed
from Fig. 3 that the actual control input u satisfies u ≤ um,

FIGURE 1. Trajectories of the link position q and the reference
trajectory yd .

FIGURE 2. The tracking error z1.

FIGURE 3. The control input u.

FIGURE 4. The estimations of %i , i = 1,2,3.

which indicates the effectiveness of the continuous time con-
trol scheme and proposed ETABTC scheme. Fig. 4 presents
the curve of %̂i (i = 1, 2, 3), which shows that the estimation
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FIGURE 5. Triggering instants and triggering time.

of %i is bounded. Fig. 5 draws the triggering instants and
triggering times, from which it can be clearly found that the
control command uetc is not transmitted indefinitely over a
short period of time. Under the proposed ETABTC scheme,
the actuator responses to the control commands generated by
control law (52) 41 times. These results demonstrate that all
signals in the closed-loop control system of FJR are bounded,
as proven in Theorem 1. Therefore, the proposed ETABTC
scheme is effective.

Furthermore, to clarify the superiority of the proposed
ETABTC scheme, a comparison simulation is carried out
between the proposed ETABTC scheme and the scheme pro-
posed in [30]. All design parameters of the scheme proposed
in [30] are taken the same as the work [30], and the initial
conditions are identical to our control scheme. The simulation
results are shown in Figs. 1-3, from which it can found that
the scheme in [30] can also force the the link position q to
track the reference trajectory yd as the same as our proposed
ETABTC scheme. Although the control accuracy shown in
Fig.3 under the control scheme in [30] is superior to that
one of ETABTC scheme, the control scheme in [30] requires
the norm parts of plant. In contrast, our proposed ETABTC
scheme is more practical since no knowledge of plant is
required in the control design.

V. CONCLUSION
This work develops an event-triggered adaptive neural track-
ing control solution for FJR systems under unknown dynam-
ics and input saturation. A smooth function is introduced to
handle the input saturation nonlinearity, and adaptive neural
reconstruction techniques is used to compensate the unknown
dynamics online. The DSC and single-parameter-learning
techniques are used to handle the ‘‘explosion of complexity’’
and computational burden issues, respectively. In the control
design, an event-triggered mechanism is established between
the control law and actuator. Finally, an event-triggered adap-
tive neural tracking control scheme is proposed. The stability

of the closed-loop system of FJR systems’ tracking was proof
by Lyapunov theory. Simulation results validate the effective-
ness and superiority of the proposed control scheme.

In the future, the work will be extended to a more general
system, such as the time-varying control gain, multiple-input-
multiple-output, non-affine system, etc. In addition, the fur-
ther work is to reduce the response frequency of the actuator
by one step.
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