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ABSTRACT Compressed sensing using color-coded masks has been recently considered for capturing
light fields using a small number of measurements. Such an acquisition scheme is very practical, since
any consumer-level camera can be turned into a light field acquisition camera by simply adding a coded
mask in front of the sensor. We present an efficient and mathematically grounded deep learning model to
reconstruct a light field from a set of measurements obtained using a color-codedmask and a color filter array
(CFA). Following the promising trend of unrolling optimization algorithmswith learned priors, we formulate
our task of light field reconstruction as an inverse problem and derive a principled deep network architecture
from this formulation. We also introduce a closed-form extraction of information from the acquisition, while
similar methods found in the recent literature systematically use an approximation. Compared to similar deep
learning methods, we show that our approach allows for a better reconstruction quality. We further show that
our approach is robust to noise using realistic simulations of the sensing acquisition process.

INDEX TERMS Light field imaging, compressed sensing, deep learning, inverse problems, algorithm
unrolling.

I. INTRODUCTION
Light field imaging is becoming an increasingly popular
subject of interest and research. Indeed, light fields natu-
rally extend the traditional notion of images as they cap-
ture more information about a scene, by recording not
only the radiance on pixels on a two-dimensional plane,
but also discriminating along the direction of the light
rays. Light field acquisition thus makes possible a great
deal of applications, like post-capture image refocusing and
depth-of-field tuning [1], [2], synthetic aperture imaging [3],
microscopy [4], virtual reality, depth estimation [5], [6], etc.
However, light field acquisition remains the main problem,
as the devices that record light fields are generally very
bulky as well as expensive, thus hindering light field cap-
ture in real-world applications. Plenoptic cameras based
on micro-lenses placed between the main lens and the sen-
sor have been designed [7]. Since the sensor resolution is
limited, with plenoptic cameras a dense angular sampling
is obtained at the expense of a reduced spatial sampling
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of the different views. This trade-off between spatial and
angular resolutions needs to be addressed by using light
field super-resolution methods as proposed in [6]. Among
the other possible solutions to tackle the problem of practi-
cal light field acquisition, compressed light field acquisition
using color-coded masks (CCM) and color filter array (CFA)
is especially interesting. Indeed, compressed sensing is a
mathematical framework providing strong guarantees on sig-
nal recovery from incomplete measurements [8]–[10]. Its
application to the compressed acquisition of light fields can
be made effective in several ways. Compressed sensing is
originally meant to reconstruct a signal that is assumed to be
sparse in a given dictionary. While traditional methods using
sparse priors have been to some extent successfully applied
to light field reconstruction [11]–[14], the iterative nature of
the reconstruction algorithm greatly precludes its actual use,
notably in real-time applications. Alternatively, deep learning
methods have been very successful at reconstructing light
fields in a way that is both fast and accurate [15], [16].
These methods are orders of magnitude faster than traditional
iterative methods like the orthogonal matching pursuit [17],
and can outperform sparsity priors for a great number of
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image reconstruction tasks [18]. However, these networks in
general have a very large number of parameters, hence require
a very large amount of training data.
Unrolled optimization algorithms have emerged as effi-

cient solutions to combine the flexibility of deep learning
methods with the mathematical principles underpinning the
more traditional optimization methods. Algorithm unrolling
can be seen as a paradigm to design deep neural architectures
from optimization algorithms while incorporating useful pri-
ors into the models in a principled way. Several optimiza-
tion algorithms have been unrolled in the literature, such as
ISTA and the coordinate descent algorithm [19], the gradient
descent [20], the proximal gradient [21], the ADMM [22],
[23] and the half quadratic splitting (HQS) [24] algorithms.
A learned network is used at each iteration of the optimization
algorithm, as a regularizer (or as its gradient [20]), or as a
proximal operator [23] which can be seen as a denoiser.While
usual optimization methods iterate until convergence using
an ending condition on the reconstruction error, unrolling
an iterative algorithm considers a small number of itera-
tions. This allows training a learned component end-to-end
within the optimization algorithm, in a way that takes into
account the data term, i.e. , the degradation operator. By end-
to-end learning we refer to the learning of the weights of
the regularizers by back-propagation of the gradients from
the last to the first iteration of the unrolled optimization
algorithm.

In this paper, we present an unrolled optimization solution
with a neural network-based prior for light field reconstruc-
tion from a set of 2D measurements. The proposed solu-
tion is based on unrolling the half-quadratic splitting (HQS)
method, where the proximal operator used in the regular-
ization step is defined by a neural network-based denoiser
learned at each iteration of the unrolled optimization. While
most compressed light field acquisition methods assume
RGB measurements, our acquisition scheme does not make
such assumption and relies instead onmeasurements obtained
using a monochromatic sensor equipped with a color filter
array. We show that our approach can be applied to any
number of measurements and give experimental results for
a number of measurements going from 1 to 3. Whereas
the methods in [15], [16] are based on convolutional neural
networks (CNN) that act as regression networks, we derive
instead our architecture from the unrolling of the minimiza-
tion of a regularized mean-squared problem. The proposed
solution is actually based on an unrolled Half Quadratic
Splitting (HQS) optimization method with a learned proxi-
mal operator, leading to a completely different architecture.
We additionally show that, with our acquisition scheme, the
extraction of information from the set of measurements is
made possible in closed-form. This comes from the spe-
cific structure of our sensing matrix which is such that this
matrix can be inverted in a very efficient manner using
the Sherman-Morrison-Woodbury identity. The unrolled opti-
mization method, together with the closed form introduced
to solve the data term minimization, makes the architecture

more mathematically grounded, compared with a learned
CNN acting as a regression network between the input mea-
surements and the reconstructed data. To the best of our
knowledge, a closed-form minimization of the data term has
not been proposed before for light field compressed acqui-
sition, as other unrolled methods usually rely on an approx-
imation instead (often a single gradient descent step). Note
that, while unrolled optimization has been considered in [25],
this was in a context of coded aperture acquisition of each
colour component. Here, we consider an acquisition scheme
with coded masks that is suitable for monochromatic sensors
equipped with CFA.

We have assessed the proposed scheme, considering dif-
ferent acquisition scenarios, i.e. using a coded mask placed
on the sensor in comparison with coded aperture designs. For
the sake of comparisonwith themethods in [14], [15] and [16]
which also consider masks placed on the sensor, we first
consider a mask drawn from a uniform distribution, with a
model assuming the presence of pinholes on the aperture
plane. This corresponds to the case where the real continuous
light field is first discretized and then modulated with the
coded mask and the color filter array. We then derive a
more realistic model without pinholes and show that this new
model does not lead to any drop in quality.We also investigate
the benefit of learning the distribution of a realization of the
mask.

In summary, our contributions are as follows:

• We present a novel architecture for compressed light
field acquisition using a color-coded mask and a CFA,
that can take different numbers of shots at its input. This
architecture is based on an unrolled HQS optimization
method with a learned proximal operator.

• In the 1-shot case, we show that our architecture yields
a 2.5 dB improvement over the deep learning based
method in [16], which is already in average 1.97 dB bet-
ter than the method in [15], using the same acquisition
scheme. We also show that our approach yields a sig-
nificant improvement in PSNR compared to traditional
iterative methods using the same acquisition scheme.

• We present a closed-form data term minimization solu-
tion which not only makes the architecture more math-
ematically grounded, but also consistently gives a
PSNR gain of about 0.6 dB, regardless of the number
of shots.

• We derive a new realistic sensing model with coded
masks placed on the sensor, which, unlike prior work,
does not assume the presence of pinholes on the aperture
plane to discretize the real continuous light field in
the angular dimension before being modulated with the
coded mask and the color filter array.

• We show that, in presence of sensor noise, the joint
learning of the CCM mask distribution and the recon-
struction network yields extra 0.81 dB and 2.12 dB
gains in average, for low and high level of noise
respectively.
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II. RELATED WORK
Many camera designs have been proposed for light field
acquisition. The goal of this section is not to give a complete
overview of the various designs, which can be found in [26],
but rather to recall the designs related to the proposed
approach, i.e. . based on coded masks. While programmable
aperture approaches with non refractive masks placed at the
aperture have been proposed in [27] to sequentially capture
subsets of light rays [27], we focus here on solutions based
on coded masks placed in front of the sensor.

A. COMPRESSIVE LIGHT FIELD ACQUISITION
WITH CODED MASKS
The problem of light field reconstruction from the recorded
set of measurements can be placed in a compressed sensing
framework. Thanks to the use of a coded mask, the photosen-
sor records a set of linear measurements from which a higher
resolution light field can be reconstructed. This problem,
being an ill-posed inverse problem, is solved using a least
squares minimization with some regularization constraint
based on hand-crafted signal priors. Marwah et al. [12] pro-
pose a camera architecture that records optically coded pro-
jections on a single image sensor using a monochrome
mask, while Miandji et al. in [28] and [13] use respectively
a random stationary or a moving color-coded mask to
extract incoherent measurements. Nguyen et al. [14] intro-
duce an Equivalent Multi-Mask Camera (EMMC) model
which allows for a flexible configuration of a variety of
sensing schemes.

Whereas the camera designs in [13], [14], [28] place the
mask close to the sensor, the coded aperture cameras have
the mask placed directly on the aperture plane. This is the
approach followed in [25], [29], [30] and [31], where inco-
herent light field measurements are captured by using a
randomly coded mask placed on the aperture plane. In our
proposed design, the mask is placed close to the sensor, which
actually allows the rays coming from different angles to be
multiplexed in a way that is dependent on the spatial position
of the incident pixel, thereby increasing the possibility for
the various measurements to be mutually incoherent, which
is known to be a crucial property of degradation matrices as
explained by [32].

B. DEEP COMPRESSIVE LIGHT FIELD ACQUISITION
In the above cases, the light field is reconstructed using a
compressive sensing framework and classical sparse recov-
ery methods, assuming the data to be sparse in a domain
defined by an overcomplete dictionary [12], [13]. However,
this problem can also be efficiently solved using deep learn-
ing techniques [15], [30], [33], [34]. The authors in [15],
[33], [34] assume a pre-defined mask pattern and propose
convolutional neural network architectures to reconstruct the
light field from the set of measurements. Inagaki et al. [30]
formulate the coded aperture acquisition and light field recon-
struction as an auto-encoder, whereas we consider instead

an unrolled optimization technique, and optimize the mask
pattern together with the parameters of the reconstruction
algorithm in an end-to-end auto-encoder learning. A learned
convolutional network architecture is used in [25] to compute
the coded sub-aperture images, from which the light field is
reconstructed using an iterative optimization approach with a
deep spatio-angular regularization prior.

C. UNROLLED OPTIMIZATION METHODS
Recent methods have been introduced with the goal of com-
bining the advantages of well understood iterative optimiza-
tion techniques with those of learned regularizers allowing us
to model more complex image priors. These regularizers can
take the form of operators of projection on a learned image
subspace ormanifold [18], [35], of a denoiser [35]–[37], or of
the proximal operator for a regularizer [38].

Unrolling a fixed number of iterations of optimization
algorithms is an efficient way of coupling optimization and
deep learning techniques. Whereas usual iterative methods
iterate until convergence using an ending condition on the
reconstruction error, unrolling an iterative algorithm consid-
ers a small number of iterations. This allows using a learned
regularization step trained end-to-end within the optimization
algorithm, hence in a way that takes into account the data
term, i.e. , the degradation operator. This principle has been
applied to several optimization algorithms in the literature,
e.g. , to ISTA and the coordinate descent algorithm [19],
the gradient descent [20], the proximal gradient [21], the
ADMM [22], [23] and HQS [24] algorithms. The learned
regularization network can take the form of the gradient
of a regularizer [20], or of a proximal operator based on
a denoiser [23]. The number of iterations of unrolled opti-
mization methods is typically quite small due to difficulties
in training networks corresponding to a large number of
iterations. The authors in [39] however propose a solution
for training arbitrarily deep unrolled optimization networks
based on deep equilibrium models [40].

III. MATHEMATICAL FORMULATION OF THE LIGHT
FIELD ACQUISITION PROBLEM
A. LIGHT FIELDS
A light field is in general defined as the radiance at a
given point in space and time, along a given direction and
for a given wavelength. As such, it may be described as
a real-valued function over a 7D space L(x, y, z, θ, φ, λ, t),
where (x, y, z) are the spatial coordinates, and (θ, φ) are the
angular coordinates, λ is the wavelength and t is the time.
In the context of static light field acquisition by a given
camera, assuming free space around the camera, a light field
is more adequately described by a well-known two-plane
parameterization L(x, y, u, v, λ) where (x, y) are the spatial
coordinates, i.e. the coordinates on the sensor plane, and
(u, v) are the angular coordinates, i.e. the coordinates on the
aperture plane. For the sake of notation simplicity, we write
x = (x, y) and u = (u, v). We define X as the range of spatial
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FIGURE 1. Model of compressed light field acquisition. A light beam,
parameterized by (x,u), is first filtered by the color-coded mask at
coordinates ξ on the CCM plane. It is subsequently filtered by the color
filter array on the sensor plane X .

coordinates x, U as the range of angular coordinates u and3
as the range of the spectral coordinate λ.

B. MONOCHROME IMAGE FORMATION MODEL
We consider a general camera model in which a light field L
is first linearly modulated by one or several optical devices,
before being recorded by an ideal 2D photosensor. In practice,
the light field is usually first transformed by a convergent
lens, but this process can be ignored, without loss of gener-
ality, by considering L to be the in-camera conjugate light
field with respect to the lens. For the sake of simplicity we
also ignore the vignetting effect in our model, since it can be
included in L as well. Assuming X is partitioned into P sub-
regions (Xp)1≤p≤P, each corresponding to an actual pixel, the
intensity recorded by the pth pixel is modeled as

Ip =
∫
Xp×U×3

L(x,u, λ)ψ(x,u, λ)dxdudλ (1)

where ψ is a modulation field (or shield field [41]) condi-
tioned by the optical components of the camera. The whole
measurement consists in the combined intensities recorded
by all pixels. We may further extend the model by allowing
multiple-shot captures. In this case, we consider N modu-
lation fields (ψn)1≤n≤N , each corresponding to a shot. The
number of measurements then becomes N × P, and the
intensity recorded by the pth pixel at the nth shot is:

In,p =
∫
Xp×U×3

L(x,u, λ)ψn(x,u, λ)dxdudλ (2)

The whole acquisition process can be formulated as a linear
operator:

Acquisition : RX×U×3
→ RN×P (3)

Note that the domain of the operator, i.e. the space of light
fields, is infinite-dimensional, whereas the co-domain — the
space of measures — is finite.

C. LIGHT FIELD COMPRESSED ACQUISITION USING
CODED MASKS AND COLOR FILTER ARRAYS
The goal of multi-shot light field acquisition is, given a num-
ber of shots N , to recover the light field L. Of course, since
the physical description of light fields is infinite-dimensional,
we first need to discretize the space of parameters, i.e.X , U
and 3 in order to obtain a computable representation. In the
remainder of the article, we use the same notations X , U and
3 for the discretized sets, and assume a uniformly spaced
discrete parametrization for X and U , while 3 is reduced
to the common {R,G,B} set. By a slight abuse of notation,
we will also use X and U to denote the size of those sets,
i.e. the number of discrete spatial and angular coordinates
respectively. The discretized version of Equation 2 is then:

In,p =
∑

Xp×U×3

L(x,u, λ)ψn(x,u, λ) (4)

and the domain of the acquisition operator becomes
finite-dimensional. Furthermore, we assume that the pixels
(Xp)1≤p≤P are squares and correspond to the discretized ver-
sion ofX . That is, we assume that |X | = P, and that the spatial
span of each pixel corresponds to a single discretized element
of x: Xp = {xp} for each p, where (xp)1≤p≤P is an enumeration
of X . Note that one could choose a finer discretization for X ,
in which case the problem would become a joint compressed
sensing and super-resolution task. We can thus drop the now
redundant notation p and use x instead; Equation 4 becomes:

In(x) =
∑
U×3

L(x,u, λ)ψn(x,u, λ) (5)

The goal of light field compressed multi-shot acquisition is,
given a number of shots N � U × 3, to recover the whole
discretized light field L from the set of measurements. The
theory of compressed sensing tells us that the ability to recon-
struct the whole signal from a small number of measurements
greatly depends on the properties of the sensing operator. As a
general principle, the sensing matrix should be as random as
possible, so that the measurements be as mutually incoher-
ent as possible [32]. In our case, the acquisition operator is
entirely determined by the modulation fields ψn.

Our acquisition scheme consists of a color-coded mask
(CCM) placed at a small distance in front of the photosensor
plane, and a color filter array (CFA) placed directly on the
photosensor. These two elements act as linear filters on the
input light field before its projection on the photosensor
plane. Figure 1 represents the optical device used for acqui-
sition, with the color-coded mask and the CFA. The CCM
is a random mask whereas the CFA is usually a periodic
array, traditionally a 2× 2 periodic Bayer pattern [42]. In our
acquisition framework, multi-shot acquisition can be made
possible by allowing the CCM to move on its plane and be
able to be translated by a small amount. Assuming the CCM
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is characterized by m : 4×3→ R, where 4 is the CCM’s
plane, the corresponding modulation field is derived from
elementary geometric considerations:

ψ(x,u, λ) = m((1− γ )x+ γu︸ ︷︷ ︸
ξ ∈ 4

, λ) (6)

where γ = d(4,X)
d(U,X) , d(., .) denoting distance between planes.

Equation 6 shows that the sub-aperture slices of the modula-
tion (i.e. the restriction of the modulation to a fixed u) are all
translated versions of one another.

Whereas we could use fixed values for the pixels of the
color-coded mask, for the sake of comparison, we instead
follow the approach of [15] and [16], in which a different
mask is generated each time, by independently drawing the
transmittance value t ∈ R3 of each of its pixels from a
distribution D. Besides, to be able to compare with [15]
and [16], we depart from physical realizability in our experi-
ments (unless stated otherwise) by directly drawing a value
t ∼ D independently for each element of the modulation
field (i.e. for each spatial-angular coordinate (x,u)), instead
of computing ψ using Equation (6). However, in order to
simulate in a more accurate manner what a real-world set-up
would do, we also assess the acquisition scheme using, at test
time, a modulation field given by Equation (6) corresponding
to a coded mask for which the transmittance of the pixels
are drawn from D. We will see in the experimental section
(Table 3) that the reconstruction does not suffer from any
significant drop in quality when using a modulation field
derived from such a physically realizable mask.

Furthermore, it is worth noting that Equation (5) corre-
sponds to an acquisition device that includes pinholes placed
on the aperture plane, corresponding to the fact that the real
continuous light field is first discretized, and then modulated
by way of coded mask and color filter array. Table 3 shows
experimental results obtained when simulating the acquisi-
tion without pinholes. In that case, a linear interpolation of the
available discrete input views is performed to approximate
the missing views. The analytical expression of the modu-
lation field given a mask m corresponding to this model is
further detailed in Section III-D below.

D. REALISTIC ACQUISITION MODEL WITHOUT PINHOLES
In this section, we derive a more realistic modulation field

ψ̃ from the description of a mask m, assuming a continuous
light field that we linearly approximate using the available
views. Let us first consider the case of a monochromatic
light field for which both the spatial domain and the angular
domain are one-dimensional. We assume that the angular
domain is discretized into regularly spaced points, so that the
angular coordinates where data is available are uj = (j−j0)1u
for each j ∈ [0, . . . ,Nu − 1], with j0 such that those coordi-
nates are centered around zero and 1u > 0 corresponding
to the angular resolution. Similarly, the spatial domain is
discretized into points located at coordinates xi = (i− i0)1x
where i0 is such that the points are centered around zero and

1x > 0 is the dimension of a sensor pixel. Let L(x, u) denote
the continuous light field. We only have access to the discrete
data Li,j := L(xi, uj). Let m be composed of Nm regularly
spaced pixels, such that

m(ξ ) =
Nm−1∑
k=0

mk1Mk (ξ ) (7)

where mk is the transmittance value on mask pixel Mk :=

[ξk , ξk+1] with ξk = (k − k0)1ξ and 1ξ > 0 denoting the
dimension of a mask pixel, and 1M denoting the indicator
function of a any subsetM ⊂ 4.

Since the light fields in our dataset are densely sampled,
we assume that L varies smoothly along the coordinates
(x, u). Based on this assumption, we approximate the contin-
uous light field at coordinates that are not on the grid by linear
interpolation in the angular domain and nearest neighbour
interpolation in the spatial domain. That is, L(., .) ' L̃(., .)
where:

L̃(x, u) =
uj+1 − u
1u

Li,j +
u− uj
1u

Li,j+1 (8)

whenever (x, u) ∈ [xi, xi+1] × [uj, uj+1]. The intensity
recorded in pixel Xj = [xi, xi+1] is then given by:

Ii =
∫
Xi×U

m(ξ (x, u))̃L(x, u)dxdu (9)

where ξ (x, u) = (1 − γ )x + γ u. Partitioning the angular
domain into pixels Uj = [uj, uj+1], this equation is rewritten:

Ii =
∑
j

∫
Xi×Uj

m(ξ (x, u))̃L(x, u)dxdu (10)

Injecting Equations (7) and (8) into (10) and rewriting the
resulting equation yields

Ii =
∑
j

∑
k

mk · (α`i,j,kLi,j + α
r
i,j,kLi,j+1) (11)

where

α`i,j,k =

∫
Xi×Uj

1Mk (ξ (x, u))
uj+1 − u
1u

dxdu (12)

and

αri,j,k =

∫
Xi×Uj

1Mk (ξ (x, u))
u− uj
1u

dxdu (13)

Further rewriting gives us:

Ii =
∑
j

(∑
k

βi,j,kmk

)
Li,j (14)

where βi,j,k = α`i,j,k + αri,j−1,k , corresponding to a light
throughput. Note that the values α`i,j,k can be rewritten as

α`i,j,k =

∫
Ci,j,k

uj+1 − u
1u

dxdu (15)

where Ci,j,k = (Xi × Uj) ∩ ξ−1(Mk ) (in which ξ−1(Mk )
denotes the pre-image of Mk by ξ ), a convex polygon in the
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spatio-angular domain corresponding to the set of rays inter-
secting simultaneously the spatial pixel Xi, the mask pixelMk
and the angular pixel Uj. Applying the same rewriting to αr ,
one can analytically compute the values for β as a sum of
integrals of affine functions over convex polygons.

We now consider light fields that are non-monochromatic
and two dimensional in each of the spatial and angular
domains and assume that the real continuous light field can
be approximated by a bilinear interpolation of the available
views. We also resume our notations x, u, ξ to denote the
discrete coordinates corresponding to i, j and k respectively.
Equation (14) can be readily extended to obtain the intensity
at position x on the sensor for the wavelength λ, before
the different wavelengths are modulated by the CFA and
integrated over by the sensor, as:

I (x, λ) =
∑
u

∑
ξ

β(x,u, ξ )m(ξ , λ)

L(x,u, λ) (16)

From Equation (16) it is clear that we can define:

ψ̃(x,u, λ) =
∑
ξ

β(x,u, ξ )m(ξ , λ) (17)

as the modulation field corresponding to our color-coded
mask in this discretized view-interpolated framework. Equa-
tion (17) is conveniently rewritten as a matrix product:

ψ̃ = BM (18)

where B is a R(X ·U )×4 matrix and M is a R4×3 matrix.
Since the mask, the sensor and the aperture are all discretized
along a separable grid of pixels, i.e. all three are the Cartesian
product of their respective single-dimensional counterpart
with itself, the 2D light throughput β is simply computed
from its one-dimensional version by:

β(x,u, ξ ) = β(x, u, ξ1)β(y, v, ξ2) (19)

where ξ = (ξ1, ξ2). Note that β(x,u, ξ ) equals zero for
most combinations of x, u and ξ , and consequently the corre-
sponding matrix B is sparse. The modulation field ψ̃ is there-
fore efficiently computed as a sparse-dense matrix product.
Experimental results using this framework are provided in
section V-C.
Please note that Marwah et al [12] successfully built a pro-

totype using a monochromatic coded mask. Manufacturing a
color-codedmaskmay bemore challenging than amonochro-
matic one, nevertheless feasible thanks to recent advances
in photolithograpy [43], [44]. In addition, in practice, the
modulation ψ cannot be known exactly by analytic means
due to imperfections in the manufacturing process. However
this problem could be tackled by using a calibration protocol
akin to the ones used by [45] and [12].
IV. ACQUISITION/RECONSTRUCTION ARCHITECTURE
Let 9 be the sensing matrix corresponding to the acquisition
operator defined in the previous section. We have 9 ∈

RXN×XU3.

FIGURE 2. Representation of the unrolled half-quadratic splitting
algorithm as a two-layer block. The first layer corresponds to a
(non-trainable) data-term minimization step: it solves a quadratic
problem and takes as input an intermediate reconstruction Vk , as well as
the measures I , the degradation matrix 9 and the weight µk . The second
layer (trainable) projects an intermediate reconstruction onto a
sub-manifold of more likely — or natural — light fields and is
parameterized by θk . The block consisting of these two steps is iterated
K times.

Assuming L is the input discretized light field reshaped
as a XU3-dimensional vector, the available information is
I = C(9L) ∈ RXN , where C is a pixel-wise stochastic
corruption process accounting for imperfections in the sensor.
A detailed model of C is given in section VI-A. As a sim-
plification, we can assume C to be the addition of centered
Gaussian noise. In that case, we have:

I = 9L + n (20)

where n is a XN -dimensional centered Gaussian random
variable with variance σ 2.

A. OPTIMIZATION UNROLLING
The problem of reconstructing the light field L from the
measurements I may be formulated in a Bayesian frame-
work, by considering the reconstruction task as a maximum
a posteriori problem. In its equivalent negative logarithmic
formulation, the problem can be expressed as finding L∗ such
that:

L∗ = argminL (− log P(I |L)− log P(L)) (21)

Since the sensing noise is assumed to be centered Gaussian
noise, we have:

− log P(I |L) =
1

2σ 2 ‖I −9L‖
2
2 + constant (22)

The reconstruction problem can then be formulated as a
regularized least squares problem:

L∗ = argminL

(
1
2
‖I −9L‖22 + J (L)

)
(23)

where J = −σ 2 log P.
A popular way to solve this problem is to use the ADMM

optimization algorithm [46]. A simpler but effective alterna-
tive, especially in the context of algorithm unrolling, is to use
the half-quadratic splitting (HQS) method [25], [47], [48].
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This approach is very similar to ADMM. Just like ADMM,
HQS aims at solving unconstrained problems of the form:

argminzf (z)+ g(z). (24)

The problem is first reformulated as a constrained problem,
introducing another variable w:

argminz,wf (z)+ g(w) subject to z = w. (25)

The values of z and w are then iteratively and alternately
optimized in an unconstrained framework by relaxing the
equality constraint into a half-quadratic penalty term: zk+1 = argminzf (z)+

µk

2
‖z− wk‖22

wk+1 = argminwg(w)+
µk

2
‖w− zk+1‖22

(26)

where the (µk )k≥0 weight the penalty terms. Casting these
equations into our regularized least squares problem, and
introducing the variables Vk we obtain: Lk+1 = argminL

1
2
‖I −9L‖22 +

µk

2
‖L − Vk‖22

Vk+1 = argminV J (V )+
µk

2
‖V − Lk+1‖22

(27)

The update rule for L clearly corresponds to the resolution
of a quadratic problem, whereas the update rule for V can be
interpreted as applying a proximal operator Prox. We further
rewrite in a more synthetic form:{

Lk+1 = argminLQµk ,I ,9,Vk (L)
Vk+1 = Proxk (Lk+1)

(28)

Now, while it is clear that the update rule for L can be
easily applied, at least theoretically, given I , 9 and V , the
proximal operator actually depends on the underlying proba-
bility distribution P on light fields. Traditional methods have
been somewhat successful at recovering signals from com-
pressed measurements using hand-crafted choices of P, yet
recent achievements in low-level image processing suggest
that it is immensely beneficial to learn these priors from data.
Algorithm unrolling in deep learning consists in using Equa-
tion 28 to design a deep learning architecture. Specifically,
one usually fixes a number of iterations K and then, instead
of considering the Proxk as fixed functions, one replaces them
by K trainable parameterized functions Prox(_, θk ), typically
neural networks. The general architecture for the unrolled
half-quadratic splitting algorithm is depicted in Figure 2.

To our knowledge, the minimization of the quadratic terms
is not solved in an exact manner in methods of the literature
using unrolled HQS. Instead, some authors, for instance [25],
replace the exact resolution by a single step of gradient
descent on the quadratic function. The authors in [47] argue
that the problem cannot be resolved in closed form, due to
the complexity and size of the sensing matrix 9. While this
may be true for some inverse problems, we show that in our
compressed sensing framework the quadratic problem can
actually be solved in closed form efficiently.

FIGURE 3. Network representation of the data-projection layer by
efficient closed-form resolution of the quadratic problem. Multiplication
nodes represent either matrix-matrix multiplication or matrix-vector
multiplications. Thick lines indicate matrices, normal lines indicate
vectors and dotted lines indicate scalars. Note that µk is applied
element-wise in the division node, but only on the diagonal in the
matrix-scalar addition node. The nodes neg, inv and > indicate
multiplication by −1, matrix inversion and matrix transposition
respectively.

B. CLOSED-FORM SOLUTION OF THE DATA-FIDELITY
TERM MINIMIZATION
A single step gradient descent is often used in the literature,
as in [25], to minimize the data term of unrolled optimization
methods, since the inversion of the corresponding degrada-
tion matrices is in general computationally untractable. How-
ever, this only gives an approximation of the optimal solution
to the minimization of the data term. In our proposed scheme,
we show that the structure of our sensing matrix is such that
this matrix can be inverted in a very efficient manner using
the Sherman-Morrison-Woodbury identity.

Taking the gradient of the quadratic form in the L-update
of Equation 27 (with respect to L), we get:

∇LQ = 9>(9L − I )+ µk (L − Vk ) (29)

The single-step gradient descent update rule for L would be:

LSSk+1 = Lk − δk∇LQ(Lk )

= ((1− δkµk )I− δk9>9)Lk
+δk9

>I + δkµkVk (30)

where δk > 0 is the gradient descent rate.
The closed-form solution of the equation∇LQ = 0 is given

by:

LCFk+1 = L∗ = (9>9 + µkI)
−1

(9>I + µkVk ) (31)

Therefore we see that, a priori, in order to compute the
closed-form solution L∗, one has to invert the XU3×XU3
regularized covariance matrix 9>9 + µkI. However, recall
from section III-C that our sensing matrix 9 is defined by
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Equation 5. This equation shows that the multiplexing of
information acquired by the sensor is actually performed
‘‘spatial pixel-wise’’. This means that our compressed acqui-
sition sensing matrix is actually block-diagonal. We can
write:

I1(x1)
I2(x1)
...

IN (x1)
...

I1(x|X |)
I2(x|X |)
...

IN (x|X |)


=


91 0 . . . 0

0 92
...

...
. . . 0

0 . . . 0 9|X |





L(x1,u1, λ1)
L(x1,u1, λ2)

...

L(x1,u|U|, λ|3|)
...

L(x|X |,u1, λ1)
L(x|X |,u1, λ2)

...

L(x|X |,u|U|, λ|3|)


(32)

where each 9x is a N × U3 matrix characterizing the mul-
tiplexing happening on pixel x. Thus the inversion of the
matrix can be performed efficiently block-wise — i.e. pixel-
wise — by computing, possibly in parallel, the matrices
(9x
>9x + µkI)

−1
. As a notational aside, we drop the sub-

script x in the remainder, and regard the block-diagonal
matrix9 as a X×N ×U3 tensor; all operations on matrices
are regarded as being performed pixel-wise.

Nonetheless, these matrices are still of sizeU3, so a direct
computation, though tractable, remains somewhat costly
(as U3 is usually in the order of 102). This cost can be
further alleviated by using the Sherman-Morrison-Woodbury
identity [49]:

(9>9 + µkI)
−1
= µ−1k (I−9>(G+ µkI)−19) (33)

where G is the Gram matrix 99>. Note how the matrices to
invert (G+ µkI)−1 are now of size N � U3.

By denoting Zk = µ
−1
k 9>I + Vk , we have:

Lk+1 = Zk −9>(G+ µkI)−19Zk (34)

and the product on the right-hand side is efficiently computed
by matrix-vector multiplications, once the G + µkI have
been inverted. All these multiplications can be carried out
pixel-wise in parallel efficiently. Figure 3 gives a network
representation of the L-update step. It is worth noticing that
this architecture makes it straightforward and inexpensive
to learn not only the parameter µk , but also the sensing
matrix 9. This point is further studied in section VI-B.

C. LEARNED PROXIMAL OPERATOR
While the structure of the function corresponding to the
proximal operator is the same for each unrolled iteration,
the weights between them are not shared. This is custom-
ary practice and allows for a greater expressive power of
the overall architecture. We use a residual structure for our
proximal operator, with a single skip-connection (see [50]),
i.e.we have

Proxk (L) = L + Res(L, θk ) (35)

FIGURE 4. Convolutional network corresponding to one learned proximal
operator. The residual branch consists in 4 stacked convolutions and
element-wise non-linear activation functions. Each convolution in the
residual branch has 128 filters, except the last one which has U3 to
recover the full dimension of the signal.

where Res is a function chosen to be a simple 2-dimensional
convolutional neural network (CNN) with ELU non-linear
activation [51]. The input light field L of shape (X,U,3) is
first reshaped into a (X,U3) = (X ,Y ,U3) tensor, which is
processed as a 2D image withU3 channels by the CNN. The
output of the CNN is then reshaped back to its original shape.
Each convolution except the last one in the residual branch
consists in a 3×3 kernel with 128 filters. The last convolution
uses a 3×3 kernel withU3 filters to match the dimensions of
the light field. The last convolution block does not have any
subsequent non-linear activation, in order to maintain a full
range of values for the residual. In our experiments we use
a stack of 4 convolutions. The architecture of the proximal
network is depicted in Figure 4.

D. OVERALL ARCHITECTURE
The overall reconstruction architecture is composed of the
elements described in IV-A, IV-B and IV-C. The initial
reconstruction V0 is set to 0. We also add a final clipping
layer, so that the output of the reconstruction architecture
is L̂ := max(0,min(1,VK )), to ensure that the intensities
of the reconstructed light field lie between 0 and 1. In our
experiments we use a number of unrolled iterations K =
12. For each iteration, the trainable proximal operator has
4.7 · 105 parameters, in addition to the learned µk parameter.
Because the weights are not shared between the different lay-
ers, the reconstruction network has a total of 5.6 · 106 param-
eters. In addition to the reconstruction system which is purely
computational, some physical parameters, namely the pattern
of the CFA and the CCM, are learnable in our framework,
since it is possible to physically produce an optical device
with an arbitrary CFA and CCM. While [16] reported the
benefits of learning the CFA and the distribution of the CCM,
we found no improvement over using a fixed CFA and fixed
CCM distribution in the noiseless case, with the proposed
architecture. We instead used randomly generated CCMs in
which the transmittance values of the pixels are drawn from a
distributionD = U(0, 1), and a fixed 2×2 Bayer CFA (green-
blue-red-green). The end-to-end acquisition-reconstruction
process is summarized in Figure 5. We hypothesise that the
inductive bias towards inverse problem solving in the archi-
tecture, enforced by the closed-form data-term minimization
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layer, makes the network less sensitive to the specifics of the
degradation matrix, at least in the absence of noise.

Nonetheless, learning the CFA and distribution of the CCM
proved to be greatly beneficial in the noisy case, as detailed
in section VI-C.

V. EXPERIMENTS
A. TRAINING DETAILS
We defined and trained our model using TensorFlow 2.1 We
used the Stanford Lytro light field archive [52] as our training
dataset, and used the Linköping University Lytro dataset2 as a
validation set (14 light fields).We performed our experiments
using light fields with an angular resolution of 5 × 5 views.
For practical purpose, and since the overall architecture is
convolutional, we can train themodel using light field patches
of a smaller resolution, and use full-size light fields at test
time. We chose a patch resolution of 64× 64 pixels; patches
are extracted from the full-size light fields using a stride
of 32 pixels. No data augmentation is applied. We used the
`1 norm for our regression as usual for this kind of task. The
whole network was trained using the ADAM [53] optimizer,
using hyper-parameters (β1, β2, ε) := (0.9, 0.98, 10−5) and
gradient clipping to maintain the values within the range
[−1, 1]. We empirically found that these values prevented
explosion of the loss that could happen otherwise during
training, especially as the number of unrolled iterations in the
model increases. The learning rate was set to 10−3 for the
first 5 · 105 steps, and then decreased to 10−4 until the end
of training. Each model was trained for 8 · 105 steps using
a batch size of 16. This corresponds to 180 epochs, each
epoch containing about 7 ·104 sample patches extracted from
476 light fields. For stability purposes, we additionally clip
the values of the µks at each optimization step so that they
remain greater than 10−2.

B. RESULTS
We first trained and evaluated our architecture with a number
of shotsN ∈ {1, 2, 3} in a noiseless framework (that is, where
the corruption operation C is the identity). In this first exper-
iment, we use a modulation field in which the transmittance
of each of its elements is independently drawn according to
a uniform distribution. Each model for a given number of
shots was trained separately, and all follow the same training
schedule as detailed in section V-A.

Table 1 provides a quantitative comparison of different
models, in terms of peak signal-to-noise ratio (PSNR), for a
set of light fields used in all the methods referenced in the
table. In the sequel, we refer this set of light fields as the
‘‘base test set’’. Table 1 also compares the proposed algorithm
with the closed-form solution of the data term minimization
against the single-step unrolled HQS architecture, which uses
the same architecture for the learned proximal operator, but

1The code is accessible at github.com/gleguludec/deepulf
cam or here through ftp.

2computergraphics.on.liu.se/hdrlf

performs a single gradient descent step of data-term mini-
mization as prescribed by Equation 30 instead of solving it
in closed form. These models have an additional trainable
parameter δk for each layer, which we all initialize to 0.05,
a hyper-parameter that was tuned to perform reasonably
well for all three numbers of shots. We see that using the
closed-form solution improves the reconstruction quality by
about 0.6 dB, regardless of the number of shots used, and
systematically outperform the single-step approach except in
one case (see Table 2). We also include in our comparison
models from [15], [16] and [14], for which the acquisition
scheme is identical to ours.

We additionally compare with [25], which uses a differ-
ent compressed acquisition scheme based on coded aper-
tures. Since their method reconstructs a light field from a
set of RGB measurements (instead of monochrome ones
in our method), for a fair comparison we compare their
method using a single RGB measurement to our method
using 3 monochrome measurements. Note that we used the
multiple-channel version of [25] where all three color chan-
nels are reconstructed jointly from the RGB measurements,
thus allowing the exploitation of cross-channel correlations.
The model was retrained using the code provided by the
authors. A more extended comparative analysis with the
model of [25] is given in the next sections which studies
different aspects of our camera design. Tables 3 gives a
comparison of the various methods both in terms of average
PSNR and average EPI-SSIM (an angular consistency metric
that averages the SSIM of all epipolar images) for several
datasets.

Figures 6 and 7 visually compare the reconstruction of
the central view with different methods, and also show
the reconstruction error. Figure 8 shows epipolar plane
images (EPI) of the reconstructed views. We can see that
our method reconstructs the parallax correctly, an essen-
tial aspect of light fields. More material assessing the
visual quality of the different methods can be found
at clim.inria.fr/research/DeepUnrolling-C
SLF.

C. COMPARISON OF DIFFERENT ACQUISITION SCHEMES
We compare our main acquisition scheme that uses a mod-

ulation field in which each element is independently drawn
from a uniform distribution (thus not physically correspond-
ing to a real coded mask) to a scheme that uses a modulation
field corresponding to a real coded mask in the presence
of pinholes on the aperture, as given by Equation (6). For
this comparison, we did not retrain the whole model, but
merely changed the structure of the modulation field at test
time. The modulation field for each sub-aperture view was
obtained by translating the 2D mask by 8 pixels per view,
which corresponds to a parameter γ ' 0.1 if we make the
reasonable assumptions that the sensor is about 400 pixels
wide and that the 5× 5 pinholes span an aperture which has
approximately the same size as the sensor. Table 3 shows no
perceptible drop in performance when using such physically
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FIGURE 5. End-to-end architecture. The left-hand part models the physical operations, comprising the modulation by CCM and CFA and photo-sensing
(multiplication by the sensing matrix) and the stochastic corruption process C — this part is only present in the noisy framework. The right-hand part
represents the deep unrolled algorithm: the reconstruction is first initialized with value 0, and then the following are applied: data-term minimization
step, or data-fidelity layer (DF) — whose architecture is detailed in Figure 3, intertwined with the application of proximal operators (Prox) — whose
architecture is detailed in Figure 4. A final clipping operation is applied to ensure that the values of the reconstructed intensities lie in a valid range.

TABLE 1. PSNR comparison of the different methods (in dB), with a modulation field in which the transmittance of each element is independently drawn
according to a uniform distribution. CF-HQS stands for our ‘‘closed-form HQS’’ architecture in which the data-term minimization is performed using
Equation (34), SS-HQS stands for the ‘‘single-step HQS’’ architecture which uses Equation (30) to perform the data-term minimization step. [14] is an
iterative dictionary-based approach, while [15], [16] and [25] are based on deep neural networks. Note that [15] and [16] work only with a single-shot
acquisition, while on the contrary [25] uses RGB measurements, thus being comparable only to our monochromatic 3-shot acquisition scheme.

accurate modulation field instead of the one used for training.
We hypothesize that this is because themodulation fields used
during training are general enough to allow the network to
perform well in the specific case in which the modulation
field derives from a coded mask. In addition, even though
the sub-aperture views of the CCM are translated versions
of each other, the norm of the translation is in practice larger
than the receptive field of the reconstruction algorithm which
may have the effect that the sub-aperture views of the CCM
locally look like they have been drawn independently from
one another.

In addition to these pinholes-based schemes, we give
experimental results when using the scheme without pin-
holes with bilinear interpolation of the views described in
section III-D. For this scheme, we provide the results for
one experiment using a new mask randomly generating by
drawing the transmittance value of each pixel of the mask
from U(0, 1). We performed our experiments with a relative
distance parameter γ = 0.1, so as to compare with the
pinhole-based model. We show in Table 3 that this model

performs well, even outperforms the pinhole-based model on
half of the test datasets.

Finally, we compare our coded mask acquisition scheme
to a monochromatic coded aperture scheme, which is the one
used in [25], [31] and [30]. In these designs, the mask is
placed at the aperture plane, whereas in our design it is placed
close to the sensor. Furthermore, note that all the experiments
presented in Table 3 use a Bayer color filter array in addition
to the mask, thereby recording only monochromatic mea-
surements but allowing multiplexing in the spectral domain,
while [25] and [30] use true RGB sensors, thereby having
three times more channels for each shot.

Following the scheme used in our other experiments, each
pixel of the coded aperture is randomly drawn from a uniform
distribution for each light field sample. Table 3 shows that
using a monochromatic coded aperture yields worse results
comparing to using a color-coded mask. We hypothesise
that its placing close to the sensor actually allows the rays
coming from different angles to be multiplexed in a way that
is dependent on the spatial position of the incident pixel,
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FIGURE 6. Reconstruction error for the central view of the light field Rock, with a single-shot acquisition. For a better visual readability, we amplified
the error by a factor 10. Lighter means lower error, darker means higher error. Figure (a) is cropped in the bottom-right corner (reconstruction
provided by the authors).

FIGURE 7. Reconstruction and reconstruction error for the central view of the light field Rock, with a 3-shot acquisition. For a better visual
readability, we amplified the error by a factor 10. Lighter means lower error, darker means higher error.

thereby increasing the randomness, hence the possibility for
the various measurements to be mutually incoherent, which
is known to be a crucial property of degradation matrices as
explained by [32].

It is also worth noting that in all of our experiments,
we do not learn a fixed degradation operator, but instead
sample a new degradation operator each time a light field
sample is processed. As a consequence, for a given acqui-
sition scheme, our network is not tied to a particular realisa-
tion of the degradation operator, which makes our approach
more robust to the specifics of the degradation operator (for
the purpose of physically realizing our acquisition device,
it suffices to fix the degradation to one particular sample
from the distribution). This sets us apart from the frame-
work of [25], [31] and [30]. By learning the degradation
operator (instead of sampling a new one each time a light
field is processed), [25] and [31] were able to relax the
constraint that the weights of the degradation operator should
be shared between the various layers, so as to increase the
expressive power of their network, thus learning different
virtual degradation matrices at each step of the unrolled

algorithm. Note that in the case of [25], [31] and [30], the
degradation is obtained by angular multiplexing of the light
field and is thus spatially invariant, allowing the authors
of [25] and [31] to implement their relaxed degradation oper-
ators at each unrolled iteration as angular convolutions and
deconvolutions. In contrast, the degradation operator result-
ing from a coded mask acquisition scheme is not invariant
to translation in the spatial domain and therefore cannot be
implemented using angular convolution and deconvolution
layers. Besides, the stochasticity of the degradation prevents
us from directly learning additional weights corresponding
to the relaxed degradation operators. However, relaxing the
sharing condition comes at the cost of interpretability. Indeed,
this departs from the original unrolled optimization algorithm
and prevents us from considering the output of these lay-
ers as a projection on the space of measurement-consistent
signals.

D. IMPACT OF THE STRUCTURE OF THE REGULARIZER
Table 2 gives averaged PSNR and EPI-SSIM results
on several datasets obtained with a regularizer using
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FIGURE 8. Reconstructed EPI (right-hand side) and reconstruction error of EPI (left-hand side) of the light field Rock. Figures (a) to (c) are comparable
as they correspond to single-shot acquisition methods, while figures (d) to (f) correspond to multi-shot acquisition schemes. For a better visual
readability, we amplified the error by a factor 10. Lighter means lower error, darker means higher error.

2D convolutions in comparison with an architecture using
a regularizer consisting of a stack of spatio-angular sepa-
rable 4D convolutions (as used in [25] and [31]), and also
compares with [25] and [31]. Using 4D convolution-based
regularizers instead of the 2D ones generally yield slightly
better results, however at the cost of a greatly increased
computation time.More precisely, 4D separable convolutions
have sensibly fewer parameters than traditional 2D convo-
lutions performing operations on flattened light fields. The
time needed (during training) to process one sample is one
order of magnitude longer than that of 2D convolutions, but
the learning converges faster, which leaves the overall time
required for training approximately unchanged. However,
the extra computational time for each sample remains an
issue at test time: when tested on an Nvidia Quadro RTX
8000, the reconstruction of a single light field takes about
0.3 seconds with the 2D convolutional regularizer, whereas
it takes approximately 4 seconds with the 4D separable
approach.

E. IMPACT OF THE NUMBER OF UNROLLED ITERATIONS
We studied the impact of increasing the number of unrolled
iterations K . While increasing the number of iterations could
in theory improve the final reconstruction quality, we observe
a quick saturation. Figure 9 shows the effect of the number of
unrolled iterations on the quality of reconstruction. Increasing
K from 8 to 12 improves the PSNR by 0.78 dB, while further
increasing K from 12 to 16 yields an average improvement
of only 0.02 dB.

VI. EXPERIMENTS IN A NOISY SETTING
A. CORRUPTION MODEL
While the results presented in V-B were all conducted in a
noiseless framework, we additionally evaluated the robust-
ness of our approach in a noisy framework. To that end,
we applied a corruption process to the monochromatic
images captured by the photosensor. Following [14] and [16],
we include in our noise model three sources of corruption:
shot noise, caused by the quantized nature of the light reach-
ing the sensor; readout noise, which originates from the spon-
taneous emission of electrons by the photoelectric device and
quantization noise arising during the analog-digital conver-
sion of electrons into digital units. The corrupted pixel-wise
intensity recorded on the photo-sensor is given by:

C(I ) =
1
gB

int
(
B
c
clip[0,c](p(gcI )+ nrd)

)
(36)

where int(.) denotes rounding, clip[0,c](.)=max(min(., c), 0),
B = 2b − 1, with b the number of bits used to code the
digital-converted measure, c is the full-well capacity of the
pixel (in number of electrons), g is an intensity gain factor
proportional to the ISO gain of the pixel and the exposure
time; p(α) is a random variable following a Poisson distribu-
tion P(α) and nrd ∼ N (0, σ 2

rd). However, the discrete nature
of some of the sources of randomness makes it difficult to
integrate them into a differentiable gradient-based learning
approach. For this reason, we approximate the corruption
process using continuous distributions. We thus substitute
the Poisson distribution P(α) modeling shot noise with a
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TABLE 2. Averaged PSNR and EPI-SSIM measures obtained with different schemes: our unrolled HQS method using single step gradient descent (SS-HQS)
or the closed-form expression (CF-HQS), with a regularizer using 2D or 4D convolutions. We compare the results with 1 and 3 shots against the methods
in [25] and [31]. Note that 1 shot with the acquisition in RGB (as in [25] and [31]) is equivalent to 3 shots with our acquisition scheme, in terms of number
of input measurements. The base test set corresponds to the light fields used in Table 1.

TABLE 3. Averaged PSNR and EPI-SSIM measures obtained with different acquisition models, with one shot, and different datasets. CCM-independent is
our base model, for which the modulation field is generated by randomly drawing the transmittance value of each of its elements from a uniform
distribution. CCM-pinhole corresponds to the case where the modulation field is related to a uniformly generated coded mask by Equation (6).
CCM-views-interpolation corresponds to the case where the modulation field is related to a uniformly generated coded mask by Equation (18). Finally,
MCA stands for monochromatic coded aperture.

FIGURE 9. Impact of the number of unrolled iterations on the
reconstruction quality. Average reconstruction quality in PSNR (dB) on the
test set, for a number of shots N = 1.

Gaussian distribution N (α, α), and the rounding int(.) with
an additive uniform noise u ∼ U(− 1

2 ,
1
2 ). Since the shot and

readout noises are independent from each other, their sum
follows the Gaussian distribution N (gcI , gcI + σ 2

rd).
Our actual model for the corruptedmeasurements therefore

becomes:

C(I ) =
1
gc

clip[0,c]

(
gcI +

√
gcI + σ 2

rdn
)
+

1
gN

u (37)

where n follows the standard normal distribution N (0, 1).

B. LEARNING THE CCM AND CFA
While using a Bayer CFA and uniform CCM may be an
efficient way to multiplex spectral information in a noiseless
framework, their low transmittance ( 13 and 1

2 respectively,
yielding an even lower transmittance of 1

6 for the global
device) make them ill-suited in a noisy framework, as the
signal-to-noise ratio is greatly damaged. This makes it desir-
able to actually learn the CFA and CCM, along with the
weights of the reconstruction network. For the CFA we sim-
ply learn a periodic 4× 4 pattern, which yields 48 additional
parameters to the overall model. These weights are initialized
following a uniform distribution between 0 and 1. Following
the considerations in section III-C and the approach of [16],
we learn a distribution of the CCM by learning a distri-
bution D of the transmittance on the pixels of the CCM.
This 3-dimensional distribution is learned using a simple
multi-layer perceptron with output dimension 3 that we feed
with random noise. More precisely, we sample a XU × d-
dimensional standard Gaussian random variable s, and set
ψ(x,u, .) := MLP2(s) — i.e.D is the direct image of
N (0, I) under MLP2. The parameters2 of the MLP are then
learned using standard back-propagation. In our experiments,
we use a stack of three dense layers (i.e. affine transforma-
tions) with 32 hidden layers, interleaved with ReLU non-
linearities, and with a final logistic non-linearity to ensure
that the output transmittance lie in the range (0, 1). This yields
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TABLE 4. PSNR comparison (dB) in the noisy framework for different levels of noise and numbers of acquisitions. The first four columns correspond to a
level of noise given by g = 1.0 and the last four columns to g = 0.33. The symbol * indicates a fixed CCM and CFA.

FIGURE 10. Reconstruction error of the central view of the light field
Seahorse from the Kalantari test dataset [57], for different levels of noise.
The number of shots is N = 3.

1443 additional parameters, a negligible amount compared to
the number of parameters of the whole network.

In addition, we use an entropy-based regularization scheme
on the pixels transmittance values distribution, as it was
shown in [16] to be an effective way to prevent the learned
distribution from falling into a poor local minimum.

Please note also that, even though it might be difficult to
create a pixel on the mask with any arbitrary transmittance,
the constraints imposed on the pixel’s distribution D can be
addressed using the framework developed in [56] in which the
authors expose a method to incorporate physical realizability
constraints at training time into additional regularizers.

C. RESULTS IN THE NOISY FRAMEWORK
We set the characteristics of our noisy photosensor to
(b, c, σrd) := (14, 2 · 104, 40) which are typical values for
a medium-quality photosensor. We experimented with two
values for the gain factor: g = 1.0 (low-level noise), and
g = 0.33 (high-level noise). These are the values used in [16].
Like our experiments in the noiseless case, we trained and

TABLE 5. Learned color filter arrays and color-coded masks. ‘Low-level’
corresponds to g = 1.0 while ‘High-level’ corresponds to g = 0.33. The
CCM displayed are random samples.

evaluated the architecture for a number of shotsN ∈ {1, 2, 3}.
To speed up training, we initialized the weights of the prox-
imal operators to those learned in the noiseless case, and
reset the learned values for µk to 1. This allowed us to halve
the time needed for training. All hyper-parameters remain
the same. We found it useful to apply on-the-fly random
γ -correction on the light fields patches in the training set,
by randomly drawing γ from U(0.6, 1.0).This allows us to
avoid having training data with the same intensity levels as
the validation and test sets. While discrepancy in average
intensity does not seem to impede the ability of the network
to generalize to brighter light fields in the noiseless case,
it becomes a problem in the noisy case, most likely because
the noise depends on the intensity levels. When using train-
ing data with low intensity levels, the trained model is not
sufficiently exposed to high levels of noise.

Table 4 gives a quantitative comparison of the performance
in the noisy case depending on the level of noise and the
number of shots used for reconstruction. Table 4 also includes
results in the single-shot case, using the same architecture,
but without learning the CFA and CCM. It is worth noticing
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that learning the CFA and CCM along with the weights of
the reconstruction network yields significant improvement,
especially when the noise level is high. Table 5 shows exam-
ples of learned CCM and CFA for different levels of noise
and different numbers of shots. We can see that the trans-
mittance of the pixels of both the CFA and CCM tends to
increase as the gain factor g decreases. Figure 10 shows the
reconstruction error on the central view for the different levels
of noise.

VII. LIMITATIONS
Whereas our approach performs well when the amount of
noise is moderate, a significant reduction of the signal-to-
noise ratio can greatly degrade the quality of the reconstruc-
tion. This makes our setup less efficient when the amount
of light is very low. In addition, due to the convolutional
nature of the network, light fields with large disparities
(i.e. exceeding the size of the receptive field of the CNN) are
usually not well recovered.

VIII. CONCLUSION
In this paper, we have presented a new deep architecture,
based on unrolled optimization with learned priors, for the
reconstruction of compressively acquired light fields via
color-coded masks in the presence of color filter arrays. This
architecture leverages the power of the algorithm unrolling
paradigm, and works with an arbitrary number of shots.
We have shown that this method improves the state-of-the-
art for this acquisition framework by several dBs, comparing
favorably to both traditional and deep methods [14]–[16].
We have presented an efficient closed-form data-term min-
imization layer that is shown to substantially improve the
reconstruction quality, while allowing the joint learning of the
coded mask and color filter array, along with the weights of
the network. In addition, we have presented a new realistic
acquisitionmodel together with amethod to compute its mod-
ulation field. Finally, we have shown that our approach was
robust to realistic levels of noise, an important consideration
in regard to practical applications. [5], [54], [55]
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