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ABSTRACT The importance of the distributed generations cannot be overemphasized. This ranges from the
contribution to resilience down to the energy cost efficiency advantage at the consumers’ end. The distributed
generations in some localities, however, lack connection to the utility grid due to the remoteness of the gen-
eration site. Certain benefits are, however, threatened. Thus, where there is no energy price regulation policy,
fluctuations in energy prices could be the order of the day. This paper, thus, focuses on the transaction price
optimization of the standalone distributed generations using the game theory approach. First, blockchain
technology is incorporated in the energy transaction arena to bind prosumers and their energy transactions to
a common platform. Next, for electricity price prediction, the linear regression algorithm is used to obtain the
fitting equation from the current transaction data stored by the blockchain network. Using the fitting equation
as the objective function, the particle swarm optimization (PSO) algorithm is used to achieve the proposed
energy transaction price minimization and profit maximization. Finally, the individual hourly optimization
results are fitted by a decision tree algorithm for instant referencing purposes in making energy best price
transaction decisions. The individual results show that it is capable of constantly updating the optimized
energy price in real-time based on the subsequent transaction records updated by the blockchain network.

INDEX TERMS Blockchain transaction, decision tree regression, linear regression, particle swarm opti-
mization, standalone distributed energy generations, transaction price optimization.

I. INTRODUCTION
The optimal distribution and sale of generated electric energy
is an important factor to both the prosumers and consumers.
The consumers on the other hand primarily focus on receiving
the generated energy at the most favorable cost while meet-
ing the dynamic demands of the loads. Conventionally, the
localized generations, ranging from the distributed genera-
tions to the coordinatedmicrogrid system are connected to the
main grid [1]. This allows seamless and bidirectional energy
exchange between the utility grid and the localized genera-
tions. It, thus, enables a symbiotic relationship between the
two generation entities. The localized generations help in sup-
porting the resiliency and reliability of the utility grid during
sudden supply disruption and supply shortfall, respectively
[2], [3]. Also, it focuses on meeting the energy needs of
consumers’ loads as well as at their desired costs [4]. Thus,
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to achieve this, local operators design consumers’ schedule
which is intelligently managed by the electronic manage-
ment system. Hence, time-varying energy tariffs in the con-
ventional grid are consistently monitored and energies are
mainly purchased and stored by the generation-deficient local
operators at the off-peak tariffs. This is subsequently sold to
the local consumers at lower costs during the peak demand
intervals thereby meeting their price preferences. Purchases
are alsomade by the local operators when the local generation
cost exceeds the buying cost from the utility. This buying
and selling of energy prompt diminished cost of local gener-
ations. The collective symbiotic benefits are tailored towards
adequately meeting consumers’ load demands [5]–[7] and
friendly price preferences [8], [9].

The aforementioned benefits emanate from the symbiotic
relationship between the local operators and the utility oper-
ators. This is due to the successful transactive nexus between
the two entities. However, there are events leading to the
possibilities of finding the standalone operation of localized
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generations in which case some of such benefits would con-
sequently cease to apply.

A. LOCALIZED STANDALONE GENERATIONS
The standalone operation of the local generating sources
could be ignited by two major factors. An unforeseen disrup-
tion could be experienced in the utility supply leading to an
unforeseen blackout in the power supply task. The duration
of such a blackout depends on the weight of the cause of the
disruption, the affected power component, and the severity
of the damage. For example, the Hurricane Maria disaster in
Puerto Rico, inOctober 2017, threwAmericans in shock leav-
ing a collapsed energy grid and communication system [9],
[10]. This led to unforeseen extensive darkness which lasted
for an extended period. A connected local generation in such
circumstance would be disconnected from the affected grid
thereby operating in islanded mode to guarantee resilience
to its local loads. Another factor that results in a standalone
operation of localized generation is when its generation site
is remote and thus too far away to accommodate the long
distance to the utility site [11]. To evade extreme transmission
costs and losses, local generations independently serve the
residing loads in a coordinated fashion. In such a situation,
such lost benefits due to standalone operation pose the local
energy producers as apparent monopolists. It exposes pro-
sumers to sole dependence on the local energy policy of the
microgrids as well as individual policies among the individu-
ally owned and managed distributed generations. This affects
the local consumers as they are mainly left with anxieties
about energy transaction price control.

B. TRANSACTION PRICE CONTROL IN LOCALIZED
STANDALONE GENERATIONS
The standalone operation mode of local generations intro-
duces unshared energy transaction attention from the local
prosumers. Consequently, in a locality with little or no
energy-transaction-and-cost policy, prosumers and con-
sumers would be susceptible to energy purchases at prices
that are solely dependent on the individual producers’ policy
relative to other colleagues. Sometimes, where producers
are quite limited, they could engage in group monopolistic
practices which peg energy purchases at a common undesired
price. Also, the time-varying energy prices as a result of peak
and off-peak demands could remain largely unequal amongst
producers. Similarly, season-varying generation costs could
amount to undulating energy prices as a result of inconsis-
tencies in individual producers’ price decisions. Furthermore,
due to uncertainties in the generation volume of renewable
sources [12], different energy sources are combined, as well
as energy storage systems, to boost supply reliability [13].
Each source, however, has a different generation cost, hence,
arriving at a unified energy selling cost could be difficult due
to lack of regulation policy. The collective resultant effect
is that energy price fluctuations could be the order of the
day. It requires bargaining expertise and experience in con-
sumers to be able to achieve their load demand purchases at

a fair price. Such a price would always be controlled by the
real-time changes in the energy market price. Hence, a game
theory approach is strongly required. This is to ensure that
changes and irregularities in the real-time and future energy
prices amongst sellers are constantly accommodated in the
buyers’ subsequent pricing decisions. This would require a
chronological track record of the time-varying and season-
varying energy prices in order tomake accurate price-friendly
decisions in the current and future energy purchases. There-
fore, it becomes a huge task for individuals and needs to be
addressed.

C. CONTRIBUTIONS OF THIS PAPER
Various researchers have contributed largely to the improve-
ment and optimization of the supportive grids lead-
ing to the resiliency contributions to the main grid.
Haider Jouma Touma et al [14] introduced the use of pric-
ing techniques in the microgrid as an alternative to improve
the grid resiliency using the demand side management. Its
purpose however focused on improving the resilience of the
microgrid. Hence, it instead considered the microgrid as con-
nected to the main grid rather than standalone. Bishwajit Dey
et al [15] proposed the use of electricity market pricing for
optimal scheduling of distributed generations. Several hybrid
optimization algorithms were employed, namely, The Grey
Wolf Optimizer (GWO), population-based Sine Cosine Algo-
rithm (SCA), etc. The work, however, is based on a reference
with a connected parent grid. The standalone operation sce-
nario was not covered. The improvement in the operation of
islandedmicrogrid was considered in [16] but instead focused
on the energy management system (EMS) optimization. The
pricing system optimization was not considered. The method
of making electricity price decisions in shore-side electricity
price variations on an all-electric ship (AES) is given in [17].
A different method was rather proposed which entails the
use of deep learning technic for electricity price prediction
and a hybrid multiobjective algorithm for selecting the lowest
prices. Various previous researchers have not given satis-
factory attention to the price optimization in the standalone
distributed electric energy generation.

This paper proposes an optimal electricity pricing system
in the standalone operation of distributed energy generations
for consumers’ best price-making decisions. Taking advan-
tage of the characteristic transaction data records offered
by blockchain technology, this paper proposes blockchain
technology as the energy transaction platform in the dis-
tributed generation arena. This presents the required energy
transaction data with which the transaction model simula-
tion and subsequent optimizations are performed. Blockchain
technology was used to capture the transaction data (electric-
ity buying and selling prices) among the participants in the
transaction platform. Using this data, the electricity prices are
modeled in hourly intervals for the 24 hours of the day. This
is achieved using the linear regression algorithm, thus, the
fitting equation is obtained for each of the 24 intervals of the
day. The particle swarm optimization (PSO) is thereafter used
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FIGURE 1. Blockchain transaction platform (a) Centralized platform, (b) Decentralized platform.

to optimize each of the fitting equations to obtain the least
buying price andmaximum selling price. Finally, the decision
tree algorithm is used to fit the best electricity prices for
references. Hence, Section II comprises a brief introduction
of blockchain technology and its purpose in the electricity
trading platform. The three simulations of the three algo-
rithms are performed in section III. Section IV contains the
discussion of the results obtained in section III, while the
conclusion is presented in section V.

II. BLOCKCHAIN AND THE DISTRIBUTED GENERATIONS
A. BLOCKCHAIN TECHNOLOGY AND THE
TRANSACTION FEATURES
Blockchain technology, which is initially applied in the finan-
cial sector, offers users a transactive platform under which
decentralized communication takes place [18]. This is one of
the promising features of the technology that accounts for the
greater percentage of its admissibility in various sectors of
the economy. It typically annuls the use of intermediaries in
transactive communications amongst participants [19]–[21]
such as those found in the centralized platform. This is as
shown in Fig. 1. Fig. 1(a) represents the traditional transac-
tion network in the centralized platform and Fig. 1(b) rep-
resents the decentralized transaction platform proposed by
the blockchain technology. Here, each participant has direct
communication access with everyone as shown in the green
communication lines.

With Fig. 1(b), several bottlenecks associated with the
use of intermediaries are evaded. For instance, the inherent
transaction latency in the centralized transaction platform,
as a result of the presence of an intermediary, is eliminated.
Hence, transaction time amongst blockchain participants
becomes shortened. Also, the gross security threat associated
with gaining unauthorized access to the middleman is elimi-
nated since there is no middleman.

First introduced in the year 2009 in the cryptocurrency
domain for financial transactions, blockchain application has
currently gained vast attention in several other fields of the
economy. This ranges from the health sector [22], aviation
industry [23], power sector [24], manufacturing industry [25],

down to the private peer-to-peer transaction platform [26].
Several other benefits are tied to the wide admissibility of
blockchain. The high level of security, transparency, and trust
offered by the technology [27], [28] is quite promising. Vari-
ous residing features account for such a remarkable achieve-
ment. For instance, an alphanumeric string, commonly known
as a hash, is used to chain blocks of transactive data to one
another [29]. Here, each block contains two hash keys in
which one is shared with the immediately preceding block
while the other is shared with the immediately subsequent
block. This is as shown in Fig. 2(a). An unsuccessful attempt
was made by an adversary to change the hash key of block 2
from 6BQ1 to H62Y in Fig. 2(b). It was consequently resisted
by block 3 due to the hash mismatch in its block. Hence,
to gain unauthorized access into each block means to gain
access to the entire blocks since they are all chained together.
This is almost impossible, hence, security is guaranteed in
this manner. The transparency characteristic is achieved by
the use of a consensus mechanism for transaction approvals.
This generally entails the use of elected members to validate
every transaction before they are stored in the blocks [30],
[31]. Hence, every initiated transaction is treated equally.
Furthermore, every completed transaction in the block is
stored by every member of the consortium. This implies that
each member possesses a copy of each completed transaction
block as shown in Fig. 3. The transaction details of every
transaction are also contained in each block. This accounts
for the increased popularity and acceptability of blockchain
technology in various sectors as its data cannot be tampered
with even by its participants. This increases the trust amongst
each participant knowing that every participant has the same
transaction detail which cannot be altered.

B. ENERGY TRANSACTION IN DISTRIBUTED
GENERATION ARENA
In this paper, the introduction of blockchain technology
in the distributed generation arena is motivated by the
inherent transaction data records feature of blockchain tech-
nology. This is to capture the stored data which would
be used as simulation data in modeling the distributed
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FIGURE 2. Blockchain security feature (a) hash key’s chain, (b) tamper-proof hash key.

FIGURE 3. Each member’s copy of blockchain transaction blocks.

generation environment. The kind of detail recorded in each
block depends on the type of transaction and the purpose of
use [32], [33]. In the distributed energy generation arena, the
generated electric energy is transacted amongst the individ-
uals. Hence, the transaction data would contain details such
as the cost and quantity of energy purchased, its seller and
buyer, as well as the date and time of transaction. This is as
shown in Fig. 4. In our paper, the buying and selling data
of transacted electric energies are collated and subsequently
used to perform simulations in section 3.

III. TRANSACTION DATA AND SIMULATIONS IN THE
DISTRIBUTED GENERATIONS
We consider the peer-to-peer energy transactions amongst
participants of the blockchain network in the standalone

distributed generation platform. We consider nonintegrated
distributed generations. Since the facilities are individually
owned and managed, and there is no local control policy,
price regulations are almost nonexistent. Also, since there is
no supply from the utility grid to regulate electricity prices
amongst local producers, producers would sell according to
the cost of generation and the preferred profit margin. Hence,
different producers would transact at different prices at dif-
ferent time intervals. Consequently, fluctuations in electricity
prices would rather be the order of the day. Hence, we propose
amodel to achieve aminimumbuying price among themarket
prices and maximize profit. This is achieved by the use of a
game theory approach whereby the outcome of the price min-
imization depends on the varying transaction prices. Because
energy prices vary depending on the time interval of the day,
we perform the modeling in each hourly interval of the day.
Thus, this amounts to 24 different simulations representing
24 hours of a day. Therefore, energy demands and the corre-
sponding trading prices recorded by the blockchain network
are used to simulate the transaction model of the platform.

A. TRANSACTION DATA PROFILING
To demonstrate our method, an hourly sample data of
24-interval energy demand and the corresponding trading
prices in South Korea as contained in [34] is used to perform

FIGURE 4. Blockchain transaction data format in the distributed generation platform.
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TABLE 1. Electric energy selling prices and quantities sold in korea.

our simulation. This represents data in each of the 24 hours
of the day as shown in Table 1.

This has 3 fields made up of hourly time intervals, t;
electric energy selling prices, Psell ; and quantities sold,
Q′sell . To generate different instances of transactions, say
15 instances for each of the 24-time intervals, random num-
bers are used to generate each of Psell andQsell . The instances
are made up to 15 so as to generate adequate transaction data
with which regression analyses would be performed. This
is to obtain the underlying relationships among the trans-
action data. The random numbers are introduced to model
the following: (i) the stochasticity in producers’ price varia-
tions in energy prices and (ii) the stochasticity of consumers’
decisions in making energy purchase demands. For Psell , the
selected lower and upper range of its random values are
Psell − 1 and Psell + 1, respectively. This is as shown in
Table 2(a), column 3. Similarly, for Q′sell , since 15 instances
of transactions are considered (rather than 1), each of the
values is divided into 15 (Q′sell /15). These represent 15 energy
transactions. It is denoted asQsell in Table 2(b), column 3. The
price of energywould conversely remain unaffected nomatter
the number of times it is purchased, i.e., it is not cumulative.
To generate different random values of Q for each of the
24-time intervals, the lower and upper ranges are selected as
Qsell −1 and Qsell +1, respectively. Its generated values thus
lie within these bounds as shown in Table 2(b), column 4.

Furthermore, random values of the buying price and quantity
bought are generated in a similar suite. The same values as in
Table 1 are used. The values are however distinguished from
the selling price values using the random number seed. Thus,
for each of the 24-time intervals, different seed values of
same-range random numbers are used to generate the buying
and selling values of energy. This is done at 15 instances of
transactions.

For each of the 24 intervals, the random number generation
seed values for the electric energy buying and selling prices
and their corresponding quantities bought and sold are given
in Table 3. For example, to generate the energy selling prices
at interval-1 (1:00 hr) in 15 instances (in 2-decimal values),
the simulation codes in Fig. 5 are used in Python. Line 2
seeds the generated random values with 10 (see table 3,
interval-1). Line 3 generates the random values of selling
prices at 15 instances. Since the range of the selling price
values for interval-1 is 129 Won/kWh – 131 Won/kWh (see
table 2(a), interval 1), line 4 generates the result within this
range and limits the decimal places of the generated values
to 2. Thus, this implies that, at time 1:00 hrs, 15 different
quantities of energy were sold at 15 different prices rang-
ing from 129Won/kWh to 131Won/kWh. Similarly, at the
time of 14:00 hrs, 15 different quantities of energy were
bought at 15 different prices ranging from 138Won/kWh to
140Won/kWh (see table 2(a), interval 14). The correspond-
ing simulation codes are given in Fig. 6. Line 2 seeds the
generated random values with 37 (see Table 3, interval-14).
Line 3 generates the different random values of buying prices
at 15 instances. Line 4 generates the result in 2 decimal place
values.

Similarly, at time 24:00 hrs, 15 different quantities of
energy were sold ranging from 13.87 kWh to 15.87 kWh (see
Table 2(b), interval 24). The simulation codes are shown in
Fig. 7. Line 2 seeds the generated random values with 56 (see
Table 3, interval-24).

The random seed values were arbitrarily selected and
used to obtain the transaction data. These include the buy-
ing prices, selling prices, and the corresponding quantities
bought and sold. This aids reproducibility of this paper. The
modeling and simulation of the profiled transaction data are
thereafter performed.

B. TRANSACTION MODEL SIMULATION
The transaction model is simulated using the available trans-
action data. Simulations are performed in 3 steps. First, the
transaction data are simulated for pattern recognition. This is
to obtain the equation of the relationship between the input
and output data. Secondly, the obtained relationship equation
is used to optimize the model. Finally, the optimized model is
fitted using the decision tree algorithm for instant referencing
during best-price-decisions.

1) PATTERN RECOGNITION SIMULATION
In our simulation, the buying and selling prices represent
the output data while the corresponding energy quantities
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TABLE 2. (A) Energy selling prices. (B) Quantities of energy sold. TABLE 3. Random number generation seed values for 24 hourly energy
trading data.

FIGURE 5. Python code for generating energy selling prices of
15 quantities of energy at 1:00 hrs.

FIGURE 6. Python code for generating buying prices of 15 quantities of
energy at 14:00 hrs.

represent the input data. Since the input and output data are
two folds, these are segmented into two-phase simulations.
The first phase contains the buying prices and the correspond-
ing energy quantities bought. The second phase comprises the
selling prices and the corresponding energy quantities sold.
Considering the first phase, the plot of the graph of the buying
prices and corresponding energy quantities is shown in Fig. 8.
This comprises a 2-head (first two intervals – intervals 1 and
2) and 2-tail (last two intervals – intervals 23 and 24) data
visualization.

From Fig. 8, since the input and output data maintained
a linear relationship, the linear regression algorithm is used
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FIGURE 7. Python code for generating 15 quantities of energy sold at
24:00 hrs.

to model the transaction data to obtain the fitting equation.
The buying prices (Pbuy) were thus modeled with the corre-
sponding energy quantities (Qbuy) using the linear regression
algorithm. Because the energy prices vary based on time of
use (TOU) [35], [36], each of the 24 hourly intervals has
different price values. Therefore, the modeling is performed
individually for each of the 24 hourly intervals, thus 24 times.
The general equation of the obtained fitting formula is of the
form presented in (1).

Ptbuy = m1Qtbuy + k1 (1)

where m1 is the rate of change of Ptbuy in the first phase
with respect to Qtbuy, k1 is the graphical intercept on the
Ptbuy axis in the first phase, and t = hourly interval under
consideration (ranging from 1 to 24). Hence, the equations
range from P1buy = m1Q1

buy + k1 to P
24
buy = m1Q24

buy + k1.
Similarly, for the second phase of the simulation, the plot of

the graph of the selling prices (Psell) and the corresponding
energy quantities (Qsell) is shown in Fig. 9. This comprises
a 2-head and 2-tail data visualization. Likewise, its general
equation is of the form given in (2), and ranging from P1sell =
m2Q1

sell + k2 to P
24
sell = m2Q24

sell + k2.

Ptsell = m2Qtsell + k2 (2)

where m2 is the rate of change of Ptsell in the second phase
with respect to Qtsell , k2 is the graphical intercept on the
Ptsell axis in the second phase. It is necessary to mention
that the modeling algorithm, linear regression, selected was
based on the kind of relationship (linear) discovered among
the trading data. Other algorithms could be selected depend-
ing on the input-output relationship in the modeling data.
For instance, if the input-output data had rather maintained
exponential, polynomial, logarithm, etc relationships, their
respective model equations would be selected instead.
Considering (1) and (2), from 1,

Qtbuy =
Ptbuy − k1

m1
(3)

By multiplying through (1) by Qtbuy, (4) is obtained.

PtbuyQ
t
buy = m1Q2t

buy + k1Q
t
buy (4)

By putting (3) in (4), (5) is obtained.

PtbuyQ
t
buy =

P2tbuy − k1P
t
buy

m1
(5)

From 2,

Qtsell =
Ptsell − k2

m2
(6)

By multiplying through (2) by Qtsell , (7) is obtained.

PtsellQ
t
sell = m2Q2t

sell + Q
t
sellk2 (7)

By putting (6) in (7), (8) is obtained.

PtsellQ
t
sell =

P2tsell − k2P
t
sell

m2
(8)

FIGURE 8. 2-head and 2-tail data visualization of energy buying prices and the corresponding quantities bought
(a) interval 1, (b) interval 2, (c) interval 23, (d) interval 24.
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FIGURE 9. 2-head and 2-tail data visualization of energy selling prices and the corresponding quantities sold
(a) interval 1, (b) interval 2, (c) interval 23, (d) interval 24.

Considering (5) and (8),PtbuyQ
t
buy andP

t
sellQ

t
sell represent cost

component and profit component, respectively. Therefore,
both are combined and optimized by minimizing the cost
component and maximizing the profit component. This is
achieved by minimizing the positive component of the cost
and minimizing the negative component of the profit. The
emerging expression and function equations are given in
(9.1) and (9.2), respectively with associated constraints given
in (10).

PtbuyQ
t
buy − P

t
sellQ

t
sell =

P2tbuy − k1P
t
buy

m1
−
P2tsell − k2P

t
sell

m2
(9.1)

Min

[
P2tbuy − k1P

t
buy

m1
−
P2tsell − k2P

t
sell

m2

]
(9.2)

Considering (1) and (2), the respective corresponding values
of their parameters;m1, k1 and m2, k2; are obtained. From the
obtained values, m1 = m2 = 1 and k1 = k2 = k . Thus,
the individual values of k in each of the 24 hourly intervals
are given in Table 4. Hence, the corresponding values of the
parameters in (9.2);m1, k1,m2, and k2; are thereafter replaced
as shown in (11) – (34) for each of the 24 intervals.{

Pmin
buy ≤ Pbuy ≤ P

max
buy

Pmin
sell ≤ Psell ≤ P

max
sell

}
(10)

Taking PtbuyQ
t
buy − PtsellQ

t
sell = Mt , where M = objective

function = f (Pbuy, Psell),

M1 = P2buy − 117.8Pbuy − P2sell + 117.8Psell (11)

M2 = P2buy − 118.77Pbuy − P2sell + 118.77Psell (12)

TABLE 4. K Values for 24 hourly energy trading data.

M3 = P2buy − 121.33Pbuy − P2sell + 121.33Psell (13)

M4 = P2buy − 125.2Pbuy − P2sell + 125.2Psell (14)
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FIGURE 10. Flowchart representation of three sequential simulation.

M5 = P2buy − 124.13Pbuy − P2sell + 124.13Psell (15)

M6 = P2buy − 123.33Pbuy − P2sell + 23.33Psell (16)

M7 = P2buy − 125.67Pbuy − P2sell + 125.67Psel (17)

M8 = P2buy − 127.67Pbuy − P2sell + 127.67Psel (18)

M9 = P2buy − 129.17Pbuy − P2sell + 129.17Psell (19)

M10 = P2buy − 122.67Pbuy − P2sell + 122.67Psell (20)

M11 = P2buy − 121.87Pbuy − P2sell + 121.87Psell (21)

M12 = P2buy − 122.67Pbuy − P2sell + 122.67Psell (22)

M13 = P2buy − 122.8Pbuy − P2sell + 122.8Psell (23)

M14 = P2buy − 123.47Pbuy − P2sell + 123.47Psell (24)

M15 = P2buy − 124.67Pbuy − P2sell + 124.67Psell (25)

M16 = P2buy − 125.2Pbuy − P2sell + 125.2Psell (26)

M17 = P2buy − 128.07Pbuy − P2sell + 128.07Psell (27)

M18 = P2buy − 128.6Pbuy − P2sell + 128.6Psell (28)

M19 = P2buy − 132.93Pbuy − P2sell + 132.93Psell (29)

M20 = P2buy − 130Pbuy − P2sell + 130Psell (30)

M21 = P2buy − 129.67Pbuy − P2sell + 129.67Psell (31)

M22 = P2buy − 126.2Pbuy − P2sell + 126.2Psell (32)

FIGURE 11. Data visualization of the optimized energy transaction prices
(a)–(c) particles’ sequential swarm in the 1st hour interval.

M23 = P2buy − 120.67Pbuy − P2sell + 120.67Psell (33)

M24 = P2buy − 121.13Pbuy − P2sell + 121.13Psell (34)

The functions M1–M24 are subsequently optimized in the
following section to obtain the optimal trading prices in each
interval at which minimum costs and maximum profits are
achieved.

2) OPTIMIZATION OF ENERGY PRICES
The optimal trading prices are achieved via optimizations
of the objective functions, M1–M24. Following the heuristic
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FIGURE 12. Data visualization of the optimized energy transaction prices
(a)–(c) particles’ sequential swarm in the 2nd hour interval.

characteristic price variations in the energy trading platform,
the PSO algorithm is used for the optimal trading price deter-
mination. It is used to achieve optimizations in each of the
hourly intervals. Several particles are consequently deployed
to locate the optimal points in the individual functions. Given
each particle’s initial position as Xi, the new position, Xi+1,
is given in (35).

Xi+1 = Xi + Vi+1 (35)

FIGURE 13. Data visualization of the optimized energy transaction prices
(a)–(c) particles’ sequential swarm in the 23rd hour interval.

where Vi+1 is the new velocity with the expression given
in (36).

Vi+1 = wVi + c1r1(Pb − Xi)+ c2r2(Pg − Xi) (36)

where w = particle’s weight inertia, Vi = particle’s initial
velocity, c1 and c2 = particle’s acceleration coefficients,
Pb = particle’s local best position, Pg = particle’s global
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FIGURE 14. Data visualization of the optimized energy transaction prices (a)–(c) particles’ sequential swarm in
the 24th hour interval.

TABLE 5. Tuning parameters and results of the PSO Swarm in Fig. 11–14.

best position, r1 and r2 = random numbers [0,1] (ranging
from 0 to 1), wVi = particle’s inertia component, (Pb−Xi) =
particle’s cognitive component, and Pg − Xi = particle’s
social component. The tuning parameters include c1, c2, w, n,
and I, where n= number of particles selected and I= number

of simulation iterations. During optimization simulations,
the values of the tuning parameters were adjusted until the
particles, which were previously at their individual local best
positions, Pb, eventually converge to a single position in the
search space. This position is referred to as the global best
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FIGURE 15. Decision tree data fitting for (a) Real-time peak selling prices in the 24 hourly intervals, (b) Optimal buying prices in the 24 hourly
intervals.
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position, Pg. This represents the point of optimal result and
was recorded for each interval.

3) DATA FITTING OF OPTIMIZED PRICES
For convenient reference, the optimal results of the trading
prices obtained in each of the 24 hourly intervals are sub-
sequently fitted. Because energy prices vary based on TOU,
the various optimized results vary in each of the 24 intervals
leading to a non-linear relationship. Hence, the data is mod-
eled and fitted using the decision tree algorithm in section IV.
Its goal is to predict the target variable, hourly optimized
price, and represent the results in tree form. Fig. 10 shows
a flowchart representation of the three simulation sequences
as implemented.

IV. ANALYSIS OF RESULTS
Having performed the three sequential simulations, the
results of the PSO-optimizations are presented in Fig. 11,
Fig. 12, Fig. 13, and Fig. 14, and Table 5. The data fitting
of the optimized result is thereafter presented in Fig. 15(a)
and Fig. 15(b).

Fig. 11 – Fig. 14 sequentially show particles’ swarm in
2-head and 2-tail graphical visualization leading to the opti-
mized results. The tuning parameters, the respective resulting
global best particle positions (optimized prices), and their
corresponding values of the objective function are shown in
Table 5.

From Fig. 11, it is seen how 10 deployed particles that
were originally at their initial positions in Fig 11(a) con-
verged more to the new positions in Fig. 11(b) during the
search process. They eventually converged fully in Fig. 11(c)
leading to a global optimum position. This took place in the
1st-hour interval. Similarly, in Fig. 12, 10 deployed particles
that were originally at their initial positions in Fig 12(a)
converged gradually to the new positions in Fig. 12(b) in the
search space. They eventually converged fully in Fig. 12(c)
leading to a global optimum position. This took place in
the 2nd-hour interval. A similar particles swarm optimization
was recorded in Fig. 13 and Fig. 14 for the 23rd and 24th-hour
intervals, respectively. The values of the tuning parameters in
table 5 (c1, c2, w, and I) were gradually increased, ranging
from (a) to (c), in each step of the simulation process. This
is to be able to graphically visualize the particles’ sequen-
tial swarm positions before reaching full convergence. The
selected values of the tuning parameters are noticeably quite
small. This is because of the little search space within the
upper and lower limits of the variables to be optimized.
Selection of larger values would result in particles jump-
ing over (ahead and behind) the global optimum during the
swarm (search) process. This, it would continue to do without
reaching convergence.

The resulting optimal trading price for each hourly interval
is summarized in 2-decimal values in Table 6. FromTable 6, it
can be observed that the values are nonlinear across the hourly
intervals. Therefore, to accurately fit the trading data to the
hourly intervals, a nonlinear model, DecisionTreeRegressor

TABLE 6. Optimal energy trading prices.

(DTR) algorithm, is used. This is as shown in Fig. 15(a) and
15(b) for the 24 hours selling and buying prices, respectively.
Focusing on the price range control, the selling prices (Fig
15(a)) are only used for a reference purpose to be informed
of the current market peak selling price in each time interval.
The focus lies on the minimum buying price (Fig 15(b))
with which the maximum cost (per unit kWh of energy)
is saved. This would also serve as a price control strategy
which replaces the pricing control function of the nonexisting
traditional grid. Regarding the tree, four parameters could be
seen in each block. The first is the time interval. Next is the
mean square error (mse) obtained from fitting each of its two
branches. Following is the number of samples fitted by the
block. This is equivalent to the summation of the samples
in its two branches. Final is the value of the resulting fitted
outcome (optimal buying price). As an alternative to the trees,
their underlying models can be used to make a prediction of
the optimal buying price and/or selling price in any of the time
intervals ranging from 1 to 24. The time intervals represent
the explanatory variable while the buying and selling prices
denote the response variable.

V. CONCLUSION
Controlled trading of standalone remote energy generations
enables the local consumers to adequately and conveniently
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meet the energy demands of their load system. Since there is
no better-of cost-effective alternative to regulate the energy
purchase prices, sole consumers are restrained to frequently
venturing into buying energies at the existing cost. The enter-
prising activities of prosumers and middle traders however
result in energy price fluctuations. Our contribution profers
a method of achieving cost-effective market prices for both
buyers and sellers. This updates a consumer on the best price
choice given fluctuating market prices. This is to make the
best price decision. Sellers would also be informed of the
real-time upper and lower price ranges per kWh which helps
in deciding a suitable selling price. The entire practice would
aid greater penetration of the generated energy via the price
convenience achieved among buyers. Furthermore, it would
ensure price stability. Thus, the inherent price regulation
feature of the nonexisting conventional grid is recovered.
Consequently, themonopolistic tendency in the energy sellers
would plummet resulting in greater competition, instead. The
blockchain-offered transaction platform would also assist
producers to suitably adapt to users’ load profiles in the gen-
eration schedule following the purchase history of individuals
recorded by the blockchain network.
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