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ABSTRACT Network-on-Chip (NoC) has emerged as the most promising on-chip interconnection frame-
work in Multi-Processor System-on-Chips (MPSoCs) due to its efficiency and scalability. In the deep sub-
micron level, NoCs are vulnerable to faults, which leads to the failure of network components such as links
and routers. Failures in NoC components diminish system efficiency and reliability. This paper proposes
a Reinforcement Learning based Fault-Tolerant Routing (RL-FTR) algorithm to tackle the routing issues
caused by link and router faults in the mesh-based NoC architecture. The efficiency of the proposed RL-FTR
algorithm is examined using System-C based cycle-accurate NoC simulator. Simulations are carried out by
increasing the number of links and router faults in various sizes of mesh. Followed by simulations, real-time
functioning of the proposed RL-FTR algorithm is observed using the FPGA implementation. Results of the
simulation and hardware shows that the proposed RL-FTR algorithm provides an optimal routing path from

the source router to the destination router.

INDEX TERMS Fault-tolerance, FPGA, network-on-chip, reinforcement learning, routing.

I. INTRODUCTION

Nowadays Network-on-Chip (NoC) became popular on-chip
communication paradigm for many core systems. NoCs facil-
itate parallel processing by providing high bandwidth and low
latency, which helps to deliver high computational power for
real-time as well as safety-critical applications [1]. NoCs are
designed using regular or irregular topologies. Mesh is a basic
regular topology formed by interconnecting the neighboring
routers in a grid manner. The structure of mesh topology is
simple and easy to explore.

In NoC, routers route the packets received from the source
cores towards the destination cores via links. The routing
algorithm embedded inside the router is responsible for for-
warding the packets towards destination, which plays a vital
role in successful delivery of packets [2]. Miniaturization
of transistor and technology scaling help to integrate more
number of transistors in a small chip area. NoC serves the
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requirements of more processing elements (PE) or cores,
resulting in high switching activity, and heat dissipation.
As a consequence, network components are likely to mal-
function [3]. Failure of the network components adversely
affects the performance and reliability of the system. So,
to improve reliability and efficiency, NoCs require fault-
tolerant approaches to tackle faults.

In general, conventional fault-tolerant routing algo-
rithms (or) shortest path routing algorithms make decisions
based on the predefined rules. Also, the packets always
go through the same node in the path to the destination
because of lack of intelligence, which creates congestion
and queuing problems. The rules are user-defined based on
frequently occurred routing problems observed by the pro-
grammer, and on every new scenario, human intervention
is required to update the rules [4]. However, as the number
of routing problems increases, demand to define new rules
increases to accurately address all routing problems, result-
ing in loss of efficiency or accuracy. In Machine Learning
(ML), algorithms are programmed to learn to perform the
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task [5]. During the learning process, the ML algorithm
acquires knowledge of different routing scenarios, which
helps to handle complex situations efficiently and accurately.
This motivated us to work on ML to propose a fault-tolerant
routing algorithm for mesh-based NoC.

Machine Learning (ML) is one of the most demanding
techniques in the current market. It has the ability to perform
intelligent tasks such as classify, recognize, advise, optimize,
and predict. RL is one of the ML algorithms, it is a goal-
oriented learning based on the interaction with the environ-
ment. The environment is a set of states or tasks. In RL, the
agent takes the actions in order to minimize or maximize
the cumulative reward depending on the reward policy [6].
The cumulative reward helps to find the solution. In this
paper, Reinforcement Learning based Fault-Tolerant Routing
(RL-FTR) algorithm is proposed to address the link as well
as router faults present in mesh topology based NoC. The
proposed RL-FTR algorithm uses multi-agent reinforcement
learning (MARL) algorithm to find the optimal routing path
between the source router and destination router. MARL is
the area that focuses on the implementation of autonomous,
self-learning systems with multiple agents. Conceptually,
MARL is a deep learning discipline that focuses on models,
which include multiple agents that learn by dynamically inter-
acting with their environment.

The proposed RL-FTR algorithm is tested on software and
hardware platforms to observe its functionality and efficiency
in-terms of latency and packet delivery. As part of software
platform testing, the proposed RL-FTR algorithm function-
ality is tested by implementing in System-C based cycle-
accurate NoC simulator. As a part of hardware testing, the
real-time functionality of the proposed RL-FTR algorithm
is observed using the FPGA-based NoC prototype. FPGA
implementation helps to identify and solve the timing and
functional issues and also, reduces the pre-silicon design
verification time. Significant contribution of this paper are
listed below:

1) RL based fault-tolerant routing algorithm is proposed
to tackle the links and routers faults in mesh based NoC.

2) The proposed RL-FTR algorithm is implemented in a
System-C based NoC simulator, and a detailed analysis
of average network latency and packet loss is reported.

3) Real-time behavior of the proposed RL-FTR algorithm
is observed using the case studies by implementing it
on FPGA.

4) Resource utilization and power analysis are reported
for the proposed RL-FTR algorithm and compared it
with the algorithms proposed in [7], [8] and [9].

The structure of the paper is as follows: A brief literature
review on related works is reported in Section II. Outline of
the mesh topology and reinforcement learning are described
in Section III. In Section IV, formulations for the fault-
tolerant routing algorithm are discussed. Simulation results
analysis and FPGA implementation with case studies of
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the proposed RL-FTR algorithm are discussed in Section V.
Section VI concludes the paper.

Il. RELATED WORK

Many researchers proposed fault-free and fault-tolerant rout-
ing algorithms for mesh topology based NoCs. In [10],
authors proposed a fault-tolerant routing algorithm using
virtual channels (VCs). The algorithm requires a knowl-
edge base to get fault-related information, which increases
processing overhead. The authors in [11], developed a
reconfigurable router architecture called DSPIN (Distributed
Scalable Predictable Interconnect Network) and a reconfig-
urable routing algorithm for the developed architecture. The
DSPIN router architecture has VCs as well as turn around
model, which increases the area overhead. The authors
in [12], proposed a MinFT routing algorithm for mesh topol-
ogy, which is partially fault-tolerant. In [13], the authors pro-
posed Improved-Fault-Tolerant-Algorithm (i-FTR), it uses
VCs to pass the faulty region and provides dead-lock free
routing. A fault-tolerant NoC architecture is proposed [14]
by adding spare links and control units to mesh topology.
The proposed architecture has a new routing algorithm that
accesses the required information from control units to pro-
vide routing paths and works only for faulty routers. The
authors in [9], developed a dynamic fault-tolerant XY-YX
routing algorithm. In fault-free situations, it serves as a tradi-
tional XY routing algorithm, but it switches from XY to YX
routing in the event of failure. Further in [15], the authors
added extra switches and links to the router architecture.
Switches at the failed node transfer the data to spare links.
Additional switches and links improve the latency while
increasing hardware overhead. The authors in [16], intro-
duced a new concept un-routing in the proposed Dn-FTR
routing algorithm. Un-routing allows the packet to traverse
back to the previous node whenever the forward-path is not
available. The authors in [8], proposed a routing algorithm to
address link faults and modified the packet header to include
fault related information. The packet header has a 2-bit field
to define the fault direction. Based on the fault information,
the packet is routed towards the destination.

Q-routing based self-regulated routing algorithm for NoC
is proposed in [17]. Based on the congestion, the proposed
algorithm dynamically changes the NoC routing scheme to
improve the packet latency. In [18], authors proposed RL
based routing for adaptive traffic optimization to improve
the performance of NoC. In [19], the authors proposed a
control policy using RL to enhance the performance of NoC.
The proposed policy optimally operates the error detection,
error correction and re-transmission of the packet to reduce
power consumption and latency. RL based control policy is
proposed in [20] to improve the energy efficiency of NoC by
observing and optimizing the usage of different components
such as cache and buffers. The authors in [21], proposed an
Intelligent NoC design framework (IntelliNoC) using RL.
It manages the complexity of the design while optimizing
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energy efficiency, performance, and reliability. In [22], the
authors proposed a learning-based NoC design CURE. It has
a reversible multi-function adaptive channel, enhanced fault-
tolerant router circuitry, ten unique operation modes, and a
Deep Reinforcement Learning (DRL) based dynamic con-
trol policy. DRL-based control policy acquires NoC behav-
ior knowledge and operates it in optimal mode to improve
energy efficiency, performance, and reliability. A Q-learning
based fault-tolerant routing algorithm is proposed in [7].
The Q-learning has Q-table, which helps to take the routing
path related decision. In practical, for the systems with high
number of routers, requires more memory to accommodate
Q-table and also the learning agent require more iterations to
explore the network.

In the literature, most of the works are addressing a limited
number of faulty routers and links in NoC. In some of the
literature works, RL-based techniques have been used to
improve the NoC design, to enhance the energy efficiency,
performance, and reliability of the NoC. Previous research
works show that RL has the potential to tackle the routing
problems in NoC. This motivated us to use RL techniques to
propose an efficient fault-tolerant routing algorithm for mesh
topology based NoC. The proposed Reinforcement Learning
based Fault-Tolerant Routing (RL-FTR) uses decentralized
MARL [23] with networked agents. In decentralized MARL,
each agent makes its own decision, based on only local obser-
vations and information transmitted from its neighbors, and
without coordination by a central controller. This helps multi-
ple agents perform sequential decision-making in a common
environment and improves the scalability of Q-table. The pro-
posed Reinforcement Learning based Fault-Tolerant Routing
(RL-FTR) algorithm addresses link and router faults present
in mesh topology based NoC.

Ill. OVERVIEW OF MESH TOPOLOGY AND
REINFORCEMENT LEARNING

A. MESH TOPOLOGY

NoC designs have regular and irregular (application-specific)
topologies. Mesh is considered as one of the regular topolo-
gies in NoC. In general, the size of mesh topology is rep-
resented as m x n, where m and n indicate the number of
rows and columns respectively. Figure. 1 shows the mesh
topology of size 4 x 4 along with the link directions of the
router. Each router in the mesh topology can facilitate one
core. Parameters of m x n mesh topology are as follows:

o Number of routers required: (mn)

e Number of links: (m (n — 1) +n(m — 1))

o Diameter: (m+n— 2)

o Average distance: (m +n)/3

« Bisection width: min(m, n)

o Node degree: 3 (corner), 4 (boundary), 5 (center)

Mesh topology can be divided into two parts by discon-
necting a minimum of m or n links. The routers in the
corner of mesh topology are connected with two neighbour
routers and one core, boundary routers are connected with
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three neighbour routers and one core, and center routers are
connected with four neighbour routers and one core.

B. REINFORCEMENT LEARNING

RL is a sub-area in ML, where an agent learns to perform
a task in an environment by taking sequential actions and
observing the rewards received for actions [6]. Depending
on the reward policy, every action gets a reward. RL agent
learning is an iterative process, which updates the reward of
every state-action pair. As a result of the learning process, the
cumulative reward provides the optimal solution. The proce-
dure of RL agent and environment interaction is presented in
Figure. 2.

In general, RL is considered as a Markov Decision Process
(MDP) [24]. MDP is a tuple denoted by (S, A, T, R, v ), where
’S’ is the set of states, ’A’ is the set of actions available
at each state, 7" is the state transition function 7 : S X
A x § — [0,1], 'R’ is the reward function provides the reward
for the actions R : § x A x S— R, and y is the discount factor
decides the significance of future rewards respectively. In RL,
the environment is entirely observable, which means that the
agent interacts with the environment at every action. Based
on the current state and the action taken, the agent receives a
reward as feedback for the action and moves to the next state.

IV. PROPOSED ROUTING ALGORITHM

Routing in mesh topology is modeled as a Markov Decision
Process (MDP) [25]. In general, the RL agent learns using
updating policies to find the optimal solution. Similarly, the
RL agent explores the NoC environment and finds the optimal
routing path between the source and destination routers. MDP
for the routing in mesh topology is as follows:

« State (S): Routers in the mesh topology are assumed as
the states. In the routing path, source router, destination
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router, and current router are considered as the initial
state, target state, and current state, respectively.

e Action (A): Links connected to the routers in mesh
topology are assumed as the actions. Based on the posi-
tion, each router have a different number of adjacent
routers. Correspondingly, every state has a different
number of actions.

o Transition (7): Since the routers modeled as states, the
movement from one router to its neighbour router is
treated as state transition from current state to next state.

« Reward (R): Based on the reward policy, the RL agent
receives a positive or negative reward for each action
performed at every state. The cumulative reward of state-
action pairs (s;,a;) help to obtain the solution.

o Learning rate («): Learning rate determines the amount
of newly learned value which is used to update the old
value. It varies between 0 and 1. If the learning rate
is 0, the agent will not acquire any new knowledge. If the
learning rate is 1, the agent will discard the old learned
value and acquires only the new learned value.

o Discount factor (y): The discount factor shows the
importance of past, present and future rewards received
by the agent at the current state. It is a real value ranges
from O to 1. If the value of discount factor is ’0’, the
agent takes care of the achieved reward. The discount
factor value ’1° will enable the agent to aim for a high
long-term reward.

In the deep learning ecosystem, multi-agent reinforcement
learning (MARL) is the area that focuses on the implemen-
tation of autonomous, self-learning systems with multiple
agents [23]. Conceptually, MARL is the deep learning dis-
cipline that focuses on models that include multiple agents
that learn by dynamically interacting with their environment.
While in single-agent reinforcement learning scenarios the
state of the environment changes solely as a result of the
actions of an agent, in MARL scenarios the environment
is subjected to the actions of all agents. Routing on large-
scale interconnect networks is by nature a MARL problem
because routers in the system can be considered as indepen-
dent agents. In this work, we consider mesh routing problem
as a cooperative independent MARL process that routers
behave as independent learners for a common objective, that
is, to deliver messages in the shortest path. The proposed
RL-FTR has three major components: (1) two-level Q-table,
(2) Q-table update, and (3) routing with Q-table.

A. TWO-LEVEL Q-TABLE

In general, Q-routing adopts table based RL for decision mak-
ing. Table-based RL methods are computationally efficient as
compared to deep neural network based methods, hence being
more realistic for practical use. However, Q-table mitigates
outdated Q-value issue commonly experienced in large-scale
systems and also requires large memory to store the table.
To overcome the challenges in Q-table the proposed RL-FTR
utilizes a two-level Q-table. The two-level Q-table provides
more learning information while using half the amount of
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FIGURE 3. Two level Q-table in mesh topology (4 x 4).

memory as the Q-table used in Q-routing. New techniques
are adopted for RL-FTR to ensure timely update of values in
the two level Q-table, hence guarantee a fast and stable model
convergence.

Figure 3 shows the structure of two level Q-table in mesh
of size 4 x 4. The routers in the mesh topology are grouped
based on the row. The first level of the table contains the group
information. The second level is the Q-values of the ports that
are associated with the router.

B. Q-TABLE UPDATE

In RL, many methods are available to obtain the optimal
solution. Q-learning is one of the model-free approaches in
RL [26]. Itis a value-based learning algorithm, which updates
values based on actions of learning agent in the environ-
ment. The proposed RL-FTR algorithm used Q-learning to
obtain the shortest routing path from the source to destination
router in mesh topology. Q-learning has a Q-table to hold
the Q-value of every state-action pair V(s;,a;) in the environ-
ment. Q-value update policy equation for the Q-learning is as
follows:

V(si,a;) < V(si, a;) +a [ ri+y max V(siz1,a) — V(si, a;)]
(D

In the proposed RL-FTR algorithm, the mesh topology
is modeled as the environment, routers as states, and the
links associated with the routers as the actions. As shown
in Figure. 1, every router in mesh topology has a differ-
ent number of active links depending on the location, such
as corner routers have two active links, edge routers have
three active links and middle routers have four active links.
Similarly, each state in the Q-table has four actions. Out
of four actions, few are allowed actions depending on the
position of the router. Figure. 4 shows the Q-value table of
RL in NoC prospect for mesh topology of size 4 x 4. In the
proposed RL-FTR, every router has an individual learning
agent. During the learning process of the agent begins from
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FIGURE 4. Q-values table for mesh of size 4 x 4.

the source router as an initial state (sg). At every state (s;),
the agent performs an action, accordingly receives a reward,
and makes a transition to the next state (s;;+1). Based on the
received reward and state transition, Q-value for the current
state-action pair V(s;,a;) is updated using equation (1). The
whole procedure is repeated for a limited number of iterations
until the convergence of Q-table. Algorithm 1 describes the
pseudo-code for the Q-learning algorithm to find the shortest
routing path in mesh topology. Algorithm 1 works for mesh
topology based NoC without any faults or with link and router
faults because the rewards are given based on the condition
of NoC.

Algorithm 1: Proposed Reinforcement Learning Based
Fault-Tolerant Routing Algorithm

Input: Source router address, destination router address
and mesh topology (faulty or fault-free)
Output: Optimal routing path from source router to
destination router

1 Initialize V(s,a) =0

2 Initial state (sg) = Source router address

3 Target state (s;) = Destination router address

4 Current state (is;) = Initial state;

5 /* Q-table updating process*/

6 for epoch < 1to N do

7 if Current state | = Target state then

8 Perform a random action and update V (s;, a;) <
Visi,a) o[ ri+ ymax V(sit1, @) = V(si, a;)]
Current state = (si41)

9 end

10 else if Current state = Target state then
11 Current state = Initial state

12 end

13 end
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Reward policy for updating the Q-value is taken from the
structure of mesh topology (fault-free and faulty), and every
action has a predetermined reward value specified by the
programmer. An action leading to the state transition, i.e.,
from router to router, if both are connected, will receive a
reward of 100. If both routers are not connected or faulty,
no reward will be given, and if the next state is the destination,
it will receive a reward of 1000. Q-values are updated during
the learning process based on the interaction of the agent with
the environment as well as with the other agents. At the end
of the learning process, Q-table has the cumulative Q-values
(V(sj,a;)) for every state-action pair. In the process of finding
the optimal routing path, the action with the highest Q-value
is picked at the initial state, and based on the action, state
transition occurs. This process is repeated at every current
state until the packet reaches the destination router.

C. ROUTING WITH Q-TABLE

In the proposed RL-FTR, the router first identifies the group
of the destination. Based on the group the destination is
present, port with the best Q-value is selected at the source
router. Depending on the selected port the data reaches to the
next router and the process is continued till the data reaches
the destination. During the learning process, all the agents in
the RL-FTR explores the complete mesh topology.

Figure. 5 shows an example to find the shortest path
between the routers R1 and R16 using the proposed RL-FTR
algorithm. Here R1 is the source router and R16 is the des-
tination router. Figure. 5a shows the updated table after the
learning process. Out of all available ports at the source router
R1, East port has the highest accumulated Q-value. So, the
east port is selected, accordingly the data transfers to the
next router, i.e., router R2. Similarly, the port selected at R2
router is west, which transfers the data to R6. This process
is continued until the data reaches destination router R16.
Figure. 5b shows the obtained shortest routing path between
the routers R1 and R16.

Similar to the example shown in Figure. 5, for all the
sources to destinations the RL-FTR algorithm has control
over the complete routing path, hence the proposed RL-FTR
algorithm is free from dead-lock and live-lock.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the performance of the proposed RL-FTR
algorithm is observed using the NoC simulator. Besides, real-
time functionality is observed using FPGA implementation.

A. IMPLEMENTATION ON NoC SIMULATOR

In this section, scalability and efficiency of the proposed
RL-FTR algorithm is tested using the System-C based cycle
accurate NoC simulator [27]. The simulations are performed
on different sizes of mesh topology. The algorithm is tested
for various conditions of NoC by increasing the number of
faulty links or routers or the combination of faulty links and
routers present in the mesh network.
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FIGURE 5. Example: Routing path finding between R1 and R16 in mesh
topology (4 x 4) using the proposed algorithm.

TABLE 1. NoC simulator configuration parameters.

Parameter Value
Traffic Synthetic
Injection rate 0.02 Packets/Cycle/IP
Simulation time 2,00,000 Cycles
Saturation time 10,000 Cycles
Switching type ‘Wormbhole
Flit length 32 bits

Packet size 64 flits (1 Header, 62 Payload, 1 Tailer)

1) EXPERIMENTAL SETUP

The proposed RL-FTR algorithm is implemented in System-
C language and integrated with the System-C based cycle-
accurate NoC simulator [27]. The routing algorithm takes the
connection file as the input during the initial setup process.
It updates the Q-tables, which contains information about
routing in mesh topology. The fault related information is
provided to the routing algorithm through the connection
file.

Table 1 shows the NoC simulator configuration parameters
used for all the experimentations. The simulations are per-
formed on a machine having Intel Xeon E5-1650 v3 proces-
sor and 32 GB RAM.
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FIGURE 6. Change in percentage of packets delivered with respect to
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2) EXPERIMENTAL RESULTS ANALYSIS

The simulations are performed on different dimensions of
mesh topology by increasing the number of faults present
in mesh topology. Based on the kind of faults present in the
mesh topology, the simulations are performed in three groups.
Group-wise analysis of the simulation results is as follows:

a: GROUP 1: LINK FAULTS IN MESH TOPOLOGY
In this group, simulations are performed on different sizes
of mesh topology by varying the percentage of link faults
present in the topology. The percentage of faulty links is
calculated using the following formula:

No. of faulty links

Total No. of Links

Percentage of faulty links =

Figure. 6. presents the effect of link faults on the packets
delivery in different sizes of the mesh network. It is observed
that as the percentage of faulty links increases in the mesh
network, the percentage of packets delivered decreases. The
failed links isolate some of the destinations and sources from
the mesh network, which resulted in packet loss. The pro-
posed RL-FTR algorithm delivered more packets than the
algorithms proposed in [7], [8] and [9].

Figure. 7. presents the effect of link faults on the average
network latency. It is observed that the average network
latency increased till 25-30 percentage of link faults present
in the mesh network because the algorithms delivered pack-
ets using fault-tolerant routing paths that are often longer
compared to the fault-free routing paths. However, the aver-
age network latency for the proposed RL-FTR algorithm is
less than the algorithms proposed in [7], [8] and [9]. After
30 percentage of link faults in the network, average network
latency is decreased because the algorithms delivered packets
only to the nearest destinations. But, it is increased in the
proposed RL-FTR algorithm than the algorithms proposed
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FIGURE 8. Change in percentage of packets delivered with respect to
change in the percentage of faulty routers.

in [7], [8] and [9]. This is because the proposed RL-FTR
algorithm delivered more packets to the longer distance des-
tinations.

b: GROUP 2: ROUTER FAULTS IN MESH TOPOLOGY

Similar to the link faults, in this group, simulations are carried
out by increasing the percentage of router faults in mesh
topologies of different sizes. The percentage of faulty routers
is calculated using the following formula:

No. l ¢
Percentage of faulty routers = 0. of faulty routers

Total No. of routers

Figure. 8 shows the variation of percentage of packets
delivered with respect to the change in percentage of faulty
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FIGURE 9. Change in average network latency with respect to change in
the percentage of faulty routers.

routers in mesh topologies of different sizes. Like the faulty
links, the packet delivery is decreased with an increase in the
percentage of faulty routers. However, the packet delivery
is less for faulty routers compared to faulty links. This is
because, a single faulty router can block up to four links and
also it may disconnect the destination from the mesh network.
In this case also, packet delivery is more for the proposed
RL-FTR algorithm than the algorithms proposed in [7], [8]
and [9].

Figure. 9 presents the effect of faulty routers on the average
network latency in different mesh topology sizes. Similar to
faulty links case, the average network latency in the proposed
fault-tolerant algorithm increased till 20-25 percentage of
faulty routers present in the mesh topology. The algorithms
deliver packets through fault-tolerant routing paths, which
are typically longer than fault-free routing paths, resulting in
increased latency. After 25 percentage of faulty routers in the
network, average network latency is decreased because the
algorithms delivered packets only to the nearest destinations.
However, in comparison to the algorithms proposed in [7],
[8] and [9] , the average network latency in the proposed
RL-FTR algorithm is high. This is due to efficiency of the
proposed RL-FTR algorithm to deliver more packets to the
longer distance destinations.

¢: GROUP 3: COMBINATION OF LINK AND ROUTER FAULTS
IN MESH TOPOLOGY

In this group, simulations are conducted by changing the links
as well as router faults in the mesh topologies of various sizes.
The percentage of faulty links and routers is calculated using
the following formula:

Percentage of faulty links and routers
_ No. of faulty links

~ Total No. of Links
No. of faulty routers

Total No. of routers

VOLUME 10, 2022



S. Jagadheesh et al.: RL-FTR Algorithm for Mesh Based NoC and Its FPGA Implementation

IEEE Access

—e—our approach —approach 7]
—=—approach [9] ——approach [§]

100 | Becs.
N
80 .

% of packets delivered
IS
=

0 5 10 15 20 25 30 35 40
% of faulty links and routers

(a) Mesh of size 4x4.

~e—our approach —approach [7]
—=—approach [9] —#—approach [8]
100 | B

% of packets delivered
=
&

0 5 10 15 20 25 30 35 40
% of faulty links and routers

(c) Mesh of size 6x7.

—e—our approach —approach [7]
—s—approach [9] —&—approach 8]

NN

=
3

3
8

©
3

<

510 15 20 25 30 35 40
% of faulty links and routers

Average Network latency

(a) Mesh of size 4x4.

—e—our approach —approach [7]

—s—approach [9] —&—approach [8]

% of packets delivered

0 5 10 15 20 25 30 35 40
% of faulty links and routers

(b) Mesh of size 5x6.

—e—our approach —approach [7]
—=—approach [9] —4—approach [8]

100
80
60
20

0

5 10 15 20 25 30 35 40
% of faulty links and routers

% of packets delivered
.
3

(d) Mesh of size 8x8.

FIGURE 10. Change in percentage of packets delivered with respect to
change in the percentage of faulty links and routers.
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FIGURE 11. Change in average network latency with respect to change in
the percentage of faulty links and routers.

The change in percentage of packets delivered and aver-
age network latency for the change in percentage of faulty
links and routers are presented in Figure. 10 and Figure. 11,
respectively.

From Figure. 10, it is depicted that the percentage of
packets delivered are less compared to faulty links and faulty
routers. Because the mesh topology has more number of
faulty components (links and routers). From Figure. 11, it is
evident that the average network latency is less compared
with the faulty links and the faulty routers because less num-
ber of packets delivered to longer distance destinations.

In this section, the performance of the proposed RL-FTR
algorithm is evaluated using NoC simulator. The percentage
of packets delivered and average network latency are reported
for all the experimentations.
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FIGURE 12. NoC router architecture overview [27].

Flit Structure

31 30 29 28 -0
(Unused) | (EOP) (BOP)

0 0 1 Header Flit

0 0 0 Payload Flit

0 1 0 Tailer Flit

0 1 1 Invalid Flit

FIGURE 13. Flit structure.

Header Flit

31 30 | 29 28 27 26-16 | 15-8 (Source Address) | 7-0 (Destination Address)
(Unused) | (EOP) | (BOP) | (VC_IDI) | (VC_IDO) | (Unused) | 15-12 ‘ 11-8 74 ‘ 30
Lo [T o] v | x | x | Row Index | Column Index | Row Index | Column Index

FIGURE 14. Header flit structure.

B. FPGA IMPLEMENTATION

The proposed RL-FTR algorithm is implemented on FPGA to
observe the real-time functioning. For FPGA implementation
the router architecture is taken from [27] and routing logic is
modified as per the proposed algorithm. Figure. 12 shows the
overview of 5-port NoC router architecture. Out of 5 ports
one port serves the core and other ports are used to connect
with the neighbouring routers. Depending on the position of
the router in mesh topology the number of links associated
with the router varies.

The router transfers the messages in the form of flits.
Flits are flow control units formed by dividing the packet
into small parts. Each packet contains header, payload, and
tailer flits. Header flit includes the source and destination
addresses. Payload and tailer flits contain the actual message.
Figure. 13 shows the structure of different flits. Each flit is
32-bit in size, and the type of the flit is defined by end-of-
packet (EOP) and begin-of-packet (EOP) bits.

The structure of the header flit for mesh topology is shown
in Figure. 14. It has the source and destination address fields
of each 8-bits, followed by the address field, 11-bits are
unused (or) reserved for future requirements. Next, 2-bits
are used for virtual channel identification (VCID). For EOP
and BOP, the next 2-bits are used, and the last bit is unused.
We have used 8-bits to address each core. The core address
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FIGURE 15. FPGA experimental setup.

field has two parts of each 4-bits, the first part of the
address field holds the column index, and the second part
of the address field holds the row index value. For example,
4 x 4 mesh has four rows and four columns. The index of
row and column ranges from O to 3. So, the address of core
1 is 0000_0000 (0 x 00). Similarly, the address of core 15 is
0011_0010 (0 x 32).

1) EXPERIMENTAL SETUP

The proposed RL-FTR algorithm is developed using the Ver-
ilog programming language and integrated in place of the
routing logic of the router architecture [27]. The algorithm
takes the connection file consisting of mesh topology struc-
ture (without any faults or with link and routers faults) as
input. It produces a Q-table with the routing path information
in mesh topology based NoC. Figure. 15 shows the experi-
mental setup of FPGA.

Mesh based NoC design of size 4 x 4 is implemented
using a S-port router. The router architecture is taken
from [27]. The complete NoC design is developed using
Verilog HDL programming and implemented on Xilinx
Kintex-7 FPGA KC705 [28] Evaluation Kit using the Vivado
tool [29]. Kintex-7 FPGA kit has a limited number of physical
input/output ports. So, we have used the Vivado IP Virtual
Input/Output (VIO) core to drive the inputs and to observe the
output signals in real-time [30]. The output of VIO is input
to design, and the input of VIO is the output of the design.
Accordingly, the input core link of NoC is connected to the
output of VIO to inject the packets into NoC. Similarly, the
output core link of NoC is connected to the input of the VIO
to observe the data received at the core link. A DIP switch
present on the FPGA evaluation kit is used to manually shift
the routing algorithm from fault-free to fault-tolerant and vice
versa, which is shown in Figure. 16. NoC uses XY as the
routing algorithm when the switch is in OFF state, and NoC
uses the proposed RL-FTR algorithm for the routing when
the switch is in ON state.

2) EXPERIMENTAL RESULTS ANALYSIS
The proposed RL-FTR algorithm is tested on FPGA with case
studies by considering various conditions of NoC. We have
used mesh topology of size 4 x 4 for the case studies, and the
results are compared with the algorithms proposed in [7], [8]
and [9]. Following are the case studies:
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FIGURE 16. FPGA evaluation board switch configuration.
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FIGURE 17. Obtained routing path between the routers R1 and R15 for
mesh topology of size 4 x 4.
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(a) Post-Implementation timing simulation output.

hw _vio_1
a Marne 1 value | actwivy | Direction | wio |
I e la clr 1l [B] @ - Qutput hw _vio_1
|| e2a 5 data_in_core_r1_1[31:0] [H] 2000_0032 - Output hw _vio_1
t B3 e-ig data_out_core_r15_1[31:0] [H] 2000_0032 Input hw_vio_1
(b) VIO output

FIGURE 18. FPGA implementation of proposed RL-FTR algorithm and
algorithm proposed in [7] for mesh topology of size 4 x 4 without any
faults.

a: CASEI: FAULT FREE

For the case study, routers R1 and R15 are considered as the
source and destination routers, respectively. Figure. 17 shows
the routing path obtained from source to destination router
using the proposed RL-FTR algorithm and the algorithms
proposed in [7], [8] and [9]. All algorithms are taking five
hops to reach the destination from the source, but the traversal
paths are different.
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FIGURE 19. FPGA implementation of algorithms proposed in [8] and [9]
for mesh topology of size 4 x 4 without any faults.

Figure. 18a shows the post-implementation timing sim-
ulation output of the proposed RL-FTR algorithm and [7].
In this, the data is sent from the router R1 to the router R15,
as shown in Figure. 17. The router R1 started sending the
header flit at time 150.10 ns and router R15 received the
header at the time 450.00 ns, i.e., it took 299.90 ns to reach
router R15 from router R1. Figure. 18b shows the run-time
inputs/outputs of FPGA implemented NoC design in VIO for
the case taken in Figure. 17. In Figure. 18b, the input data to
source router R1 is the output of VIO and the data received
at the destination router R15 is observed as the input to the
VIO. Similarly, Figure. 19a shows the post-implementation
timing simulation output and Figure. 19b shows the run time
inputs/outputs of FPGA implemented NoC design in VIO for
the algorithms proposed in [8] and [9]. From Figure. 18 and
19, it is clear that all algorithms require the same amount of
time to reach router R15 from router R1 in fault-free condition
of mesh.

b: CASE2: LINK FAULT

In this case study, a link fault is injected in the routing path
between source and destination. Here, we have considered the
source-destination pair same as the fault-free case, to com-
pare the obtained result with the fault-free case.

Figure. 20 shows the routing path obtained using the pro-
posed RL-FTR algorithm and the algorithms proposed in [7],
[8] and [9]. The routing path generated by the algorithms [8]
and [9] is same. The proposed RL-FTR algorithm and [7]
requires five hops to reach the destination, whereas the algo-
rithms proposed in [8] and [9] requires seven hops to reach the
destination. Compared with the algorithm in [8] and [9], the
proposed RL-FTR algorithm requires two hops less, which
is same as the fault-free case. Figure. 21a shows the post-
implementation simulation result of the proposed RL-FTR
algorithm. From Figure. 21a, it is observed that the time taken
to reach R15 from R1 is equal to the time taken in fault-free
case i.e., 299.90 ns. Figure. 21b and Figure. 22b show the
real time inputs/outputs of FPGA implemented NoC design
in VIO. In Figure. 22a, post-implementation simulation result
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FIGURE 20. Obtained routing path between the routers R1 and R15 for
mesh topology of size 4 x 4 in the presence of link fault.
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FIGURE 21. FPGA implementation of proposed RL-FTR algorithm and

algorithm proposed in [7] for mesh topology of size 4 x 4 without any
faults.
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(b) VIO output.

FIGURE 22. FPGA implementation of algorithms proposed in [8] and [9]
for mesh topology of size 4 x 4 in the presence of link faults.

shows the time taken to reach R15 from R1 using the algo-
rithms proposed in [8] and [9] is 399.90 ns, which is 100ns
more than that of the proposed RL-FTR algorithm and [7].

From Figure. 21a and 22a, it is evident that in the link fault
case the proposed RL-FTR algorithm is providing the shortest
routing path compared to the routing path provided by the
algorithms proposed in [8] and [9].
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FIGURE 23. Obtained routing path between the routers R1 and R15 in
mesh topology of size 4 x 4 in the presence of router fault.
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FIGURE 24. FPGA implementation of proposed RL-FTR algorithm and
algorithm proposed in [7] for mesh topology of size 4 x 4 without any
faults.

c: CASE3: ROUTER FAULT
Similar to the link fault case in this case study, a router fault is
injected in the routing path between source and destination.
As considered in previous cases, the same source and des-
tination pair is used for comparative purposes. The obtained
routing path is shown in Figure. 23. The routing path obtained
is same for the algorithms [8] and [9]. The proposed RL-FTR
algorithm requires five hops to reach the router R15 from the
router R1 in router fault condition in mesh topology, which
is equal to fault-free and two hops less when compared with
the routing path obtained from the algorithms proposed in [§]
and [9]. Figure. 24b and Figure. 25b show the input/output of
the FPGA implemented NoC design in VIO.

From Figure. 24a and 25a, it is observed that the proposed
RL-FTR algorithm is providing the shortest routing path in
case of router faults.

d: CASE4: COMBINATION OF LINK AND ROUTER FAULTS

In this case, the routing path between the source and destina-
tion routers is injected with the arbitrary router and link faults.
For comparison purpose we have used the same source and
destination pair, as considered in the previous cases.
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FIGURE 25. FPGA implementation of algorithms proposed in [8] and [9]
for mesh topology of size 4 x 4 in the presence of router faults.
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FIGURE 26. Obtained routing path between the routers R1 and R15 in
mesh topology of size 4 x 4 in the presence of router fault.

TABLE 2. Time taken by packet to travel from router R1 to router R15.

RL-FTR Algorithm | Algorithm | Algorithm

NoC Condition (ns) proposed proposed proposed

in [7] (ns) in [8] (ns) in [9] (ns)
Fault-free 299.90 299.90 299.90 299.90
Link faults 299.90 299.90 399.90 399.90
Router faults 299.90 299.90 399.90 399.90
Link and 299.90 | 299.90 399.90 399.90

router faults

Figure. 26 depicts the obtained optimal routing path
between the routers R1 and R15. In this case, the routing
paths obtained from all the algorithms are different. But, the
proposed RL-FTR algorithm requires 5 hops to reach the
destination, which is equal to the fault-free routing path and
two hops less than the path obtained using the algorithms
proposed in [8] and [9]. Figure. 27b and Figure. 28b show the
input/output of the FPGA implemented NoC design in VIO.
From Figure. 27 and Figure. 28, it is evident that the proposed
RL-FTR algorithm is providing the shortest routing path in
presence of both link and routers faults. Table 2 shows the
summary report of all case studies.

3) HARDWARE RESOURCE UTILIZATION
Any design implemented on FPGA consumes the available
resources on FPGA. Table 3 shows the detailed hardware
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FIGURE 27. FPGA implementation of proposed RL-FTR algorithm and
algorithm proposed in [7] for mesh topology of size 4 x 4 without any
faults.
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FIGURE 28. FPGA implementation of algorithms proposed in [8] and [9]
for mesh topology of size 4 x 4 in the presence of link and router faults.

TABLE 3. Hardware resource utilization report for mesh (4 x 4).

Approach | Approach | Approach
Resource | RL-FTR 7] 8] [9]
LUTs 73147 74281 72319 71137
Registers 97228 97634 97010 96610
F7 Muxes 10975 11697 10258 9297
F8 Muxes 278 284 274 248
BUFG 12 12 12 12

resource utilization report for mesh topology of size 4 x4 with
the proposed RL-FTR algorithm, the algorithms proposed
in [7], [8] and [9]. The reports are generated from Vivado
Tool.

From Table 3, it is observed that except global clock
buffer (BUFG) utilization the proposed algorithm is utilizing
less hardware resources than the algorithm proposed in [7]
and more hardware resources than the algorithms proposed
in [8] and [9]. Compared to the algorithms proposed in [8]
and [9], RL-FTR algorithm has overall hardware utilization
overhead is 2.27% and 8.02%, respectively. The proposed
RL-FTR algorithm generates a Q-table with the information
related to routing. Placing and accessing the Q-table inside
the router requires more hardware resources. So, the pro-
posed RL-FTR algorithm is using more hardware resources
compared to the algorithm in [8] and [9]. But, the proposed
RL-FTR is taking 2.73% less resources than the algorithm
proposed in [7]. This is because in the proposed RL-FTR
the every router has a individual Q-table which require less
resources, whereas in [7] all the routers have a common
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TABLE 4. On-Chip power analysis report for mesh (4 x 4).

RL-FTR Approach Approach Approach
Resource |~y tt6) [7]1)?Watts) [sf {’Watts) [9})?Watts)
Clocks 0233 0.233 0233 0233
Signals 0219 0224 0214 0210
Logic 0.157 0.159 0.156 0.154
Total
Dynamic | 0.609 0.616 0.603 0.597
Power
Sta"“ 0.163 0.163 0.163 0.163
ower
Total 0.772 0.779 0.766 0.760
Power

Q-table which holds large amount of data and requires high
volume of resources.

4) POWER ANALYSIS

A detailed power analysis for mesh topology of size 4 x 4 with
the proposed RL-FTR algorithm, the algorithms proposed in
[7], [8] and [9] is reported in Table 4.

The power analysis report is generated using Vivado tool.
According to Table 3, the proposed RL-FTR algorithm is
using more hardware resources than the algorithms proposed
in [8] and [9], relatively the power consumption is also high
for the proposed RL-FTR algorithm. Similarly, compared
to the algorithm proposed in [7], RL-FTR consumes less
power. Based on the power analysis reported in Table 4, it is
evident that the proposed RL-FTR algorithm requires only
0.006 Watts and 0.012 Watts more power than the algorithms
proposed in [8] and [9], and 0.007Watts less power than the
algorithm proposed in [7]. Compared to the conventional
algorithms proposed in [8] and [9], the proposed RL-FTR
algorithm has very little overhead of resource utilization and
power consumption. Compared to the RL based algorithm the
proposed RL-FTR has less overhead of resource utilization
and power consumption. However, the proposed RL-FTR
algorithm is more efficient than all the compared algorithms
in packet delivery and average packet latency.

In this section, functioning of the proposed RL-FTR algo-
rithm on FPGA is observed with the case studies. The
resource utilization and power analysis are reported for the
FPGA implementation.

C. DISCUSSION

The proposed RL-FTR algorithm delivered an average of
4.1%, 13.1% and 21% more packets in link faults case,
4.6%, 12.5% and 17.3% more packets in router faults case,
and 7.1%, 15% and 20.1% more packets in link and router
faults case than the algorithms proposed in [7], [8] and [9],
respectively. As the number of faults increases, the routing
paths to a few nodes are blocked by faults, which results in
packet loss by the proposed RL-FTR algorithm.

Overall, in both FPGA implementation and simulator, the
proposed RL-FTR algorithm always provides an optimal
routing path between the source and destination routers in the
presence of faults. It also shows a significant improvement
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over the algorithms proposed in [7], [8] and [9] against all
the performance parameters.

VI. CONCLUSION

In this paper, a reinforcement learning based fault-tolerant
routing algorithm is proposed and implemented on System-C
based NoC simulator and FPGA. RL-FTR uses MARL
with two-level Q-table. The two-level Q-table not only pro-
vides more learning information, but also mitigates outdated
Q-value issue commonly experienced in large-scale systems.
The experimental results show that the proposed algorithm
acted well in both faulty links and routers present in the mesh
topology. Performance parameters such as average network
latency, packet delivery, power and hardware resource uti-
lization are reported in this paper. In comparison with the
conventional routing algorithms proposed in [8] and [9], the
proposed FTR algorithm has an overall improvement of 15%
and 20.1% in packets delivery, with a hardware utilization
overhead of 2.27% and 8.02%, and the power consumption
increased by 0.78% and 1.7%, respectively. In comparison
with the RL based routing algorithm proposed in [7], the
proposed FTR algorithm has an overall improvement of 7.1%
in packets delivery, with 2.7% less hardware utilization, and
0.89% less power consumption. In future work, the algorithm
will be extended to other topologies and implemented the
same on FPGA.
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