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ABSTRACT Electric Vehicle (EV) charging station placement problem is a facility location problem. The
EV charging station placement problem concerns about the total coverage in traffic network, the system
losses and node voltage deviations in electric distribution system. To address the loss reduction and voltage
profile improvement, the distribution systems are normally equipped with shunt capacitors for reactive power
compensation. In this paper mathematical model comprising three objective functions, maximization of
coverage and minimization of loss and node voltage deviations subjected to constraints is proposed for the
simultaneous placement of EV charging stations and shunt capacitors. The control variables for optimization
are the rating and location of charging stations and shunt capacitors. A hybrid optimization algorithm
(PSO-DS) combining particle swarm optimization algorithm and direct search method is proposed for the
solution of the mathematical model. The performance of PSO-DS is justified by comparing it with other
state-of-the-art algorithms in solving the standard benchmark functions. Simulations are carried out on a
33-bus distribution system and a 25-node traffic network system to determine the different planning strategy
for the placement of charging stations.

INDEX TERMS Charging station, electric vehicle (EV), facility location problem, particle swarm
optimization (PSO), direct search (DS).

NOMENCLATURE N; Set of facility sites eligible to provide *“cover”
a; Coverage at i. to demand point i.
P Total Facility Coverage. Npus Total number of buses in the distribution system.
L Length of the shortest path from u to v. Di Personal best solution.
u&v  Vertices in the graph. Pe Global best solution.
p Shortest Path from u to v, Passes through Pp; The total active load on bus i without EV
Vertices in T. charging station active load.
1 Set of demand nodes. Opi The total reactive load on bus i without EV
J Set of facility sites. charging station reactive load.
T Vertices set. rand; Random numbers between 0 and 1.
1 Self-adjustment weight. rand,  Random numbers between 0 and 1.
02 Social-adjustment weight. S Distance beyond which a demand point is
8ij Conductance of feeder connecting i’ node and considered ‘“‘uncovered”’.
7™ node. Sij Apparent power in line connected between
k Iteration number, k=1, 2, ... knax- i and j bus with maximum limit SZ'W
Vi Voltage at bus i.
Vimin ~ Lower limit of bus i.
The associate editor coordinating the review of this manuscript and Vimax  Upper limit of bus i.
approving it for publication was Christopher H. T. Lee Vi VelOCity of the partiCle-
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V, Nominal voltage (1.0 p.u.).

w Inertia Weight.

X] Position of the Particle.
S Step size

As Decrement in step size.

UEV  Binary variable to include EV.
VSC  Binary variable to include shunt capacitor.

I. INTRODUCTION

Conventional road transportation system is one of the major
emitters of greenhouse gases [1]. EVs have emerged as the
best alternative to traditional Internal Combustion Engine
(ICE). Still, the increased arrival of electrical vehicles (EV)
demands sufficient charging infrastructure placed on the
cruising path to avoid driving anxiety. Various mathematical
models have been proposed for the placement of charging
infrastructure. The model consists of objective parts like
minimizing investment cost, loss reduction and voltage
profile improvement. Some papers consider only the traffic
network, and some include both traffic networks and the
electric distribution network for the solution.

In [2], the travelling behaviour of EVs is modelled. The
site and ratings of Electric Vehicle Charging Station (EVCS)
infrastructure were obtained with loss minimization and
voltage profile improvement using the cross-entropy method.
The uncertainties of EV load were incorporated in the
model, and PSO is used to find the solution [3]. In [4], the
driving range is considered for the placement of EVCS. Iter-
ative Mixed-Integer Linear Programming (MILP) method,
greedy approach, effective MILP and Chemical Reaction
Optimization (CRO) are utilized for the solution. The driving
range and destination patterns were analyzed, and charging
locations were identified in [5]. In [6], the traffic dynamics
of EV vehicle is incorporated into the energy consumption,
and the identification of charging infrastructure was made
using a novel nanoscopic city-scale traffic simulation-based
method. In [7], charging station infrastructure investment
cost is optimized in the strategic presence of wind power
generation. A non-Dominated Sorting Genetic Algorithm
(NSGA-II) was used to solve the optimization problem.
An optimization model was proposed to incorporate the
stochastic mobility behaviour of EV drivers in [8], the
quality of service was also executed. A stochastic flow-
capturing location model was proposed to consider the
uncertainty of EV charging demands in optimizing the
number of charging stations [9]. In [10], the installation
cost of charging stations was computed with and without
considering the limited battery size. Multiple backtracking
and greedy algorithm were utilized to find the optimal
solution. In [11], Grasshopper Optimizer Algorithm (GOA)
was applied to identify the location of battery swapping
stations and distributed generation for energy loss reduction
and voltage stability improvement. The charging station
placement was done considering Vehicle-to-Grid (V2G)
trading in [12], a novel heuristic quantum binary lightning
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TABLE 1. Description of unimodal benchmark function.

Functions Range Optimal Value
= R [-100, 100] 0
f2=2000 ol + Hi:12\1z| [-10, 10] 0
fo=Y0y (Sioias) [-100, 100] 0
fa =maz; {|z;], 1 <i<n} [-100, 100] 0
f5 = S05 [100 (w01 — %) + (@~ 1P| 130,301 0
fo =37 (z:+05)° [-100, 100] 0
fr =31 iz} + random|0,1] [-128, 128] 0

search algorithm was utilized to solve the mathematical
model. Demand Response Programmes (DRPs) identifies
charging station locations taking the total cost function as
the objective function in [13]. The number of charging
stations required to cover every two road network nodes
was obtained in [14]. Integer linear programming technique
was utilized to find the solution. The voltage regulation
cost and protection device up-gradation cost were considered
while selecting locations for charging stations [15]. [16]
proposed a mathematical model comprising line losses,
voltage profile and reliability of the distribution system as
objective functions. A hybrid optimization algorithm that
combines Chicken Swarm Optimization (CSO) algorithm and
Teaching Learning Based Optimization (TLBO) was applied
to find the locations of charging stations.

In the past, various optimization techniques were used
to find the optimal location of EV charging stations. The
charging station location problem is a planning activity;
the solutions directly influence the total investment cost.
Therefore, the selection of a proper optimization algorithm
is significant. This work combines PSO and the direct search
method to form a new hybrid optimization algorithm called
PSO-DS. PSO is a well-estabilized robust algorithm that
can effectively explore search space. However, in some
cases, the PSO struck at local optima. Like PSO, the
direct search method solves optimization problems without
requiring any information about the gradient of the cost
function. Robert Hooke and T.A.Jeeves first used the phrase
“Direct Search” in a paper published in the journal of the
association of computing machinery [17]. The advantage
of the direct search method is that it is straightforward
to implement. The alone application of the direct search
method does not yield fruitful results. Here we utilize the
PSO to solve the optimization problem and direct search
method to support the convergence and accuracy. The
PSO-DS algorithm’s effectiveness has been demonstrated
by its application to the standard benchmark functions
and by comparing it with other well-known optimization
algorithms.

Adding EV charging stations to the distribution system
will increase the loss and significantly reduce bus voltages.
Distribution systems have shunt capacitors installed for
loss reduction and voltage profile improvement. During the
planning of the EV charging stations location, we have to
coordinate the shunt capacitor location with the EV charging
station location. This paper uses the PSO-DS algorithm to
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FIGURE 1. Flow of the solving methodology.

TABLE 2. Description of multi-modal benchmark function.

ﬁ: N
a4

o

Set Gbest as initial base point and
evaluate the objective function

Startat base | (u————
Apply Pattern vector and
make exploratory moves

b 2
Compute objective
function at new point

Is New
value < Base
point

Set new Decrease
base point step size
RS

Apply Pattern vector and
make exploratory moves

17

Compute objective
function at new point

Is New
value < Base
point

Functions Range Optimal Value
fo = Xy —wisin (Vi) [-500, 500]  -418.9829
fo=>14 [112 — 10cos (27x;) + 10] [-5.12, 5.12] 0
f10 = —20exp (—042 % T xf) —exp (% 7, cos (2mxz;)) +20+ e [-32, 32] 0
fi1 = g Ty #F — Ty eos (55) +1 [:600. 600] 0
fz=1= {10 sin (my1) + 205 (ws — D2 [1 + 10sin (ry111)] + (yn — 1)2} + 37 u (@4, 10,100, 4) [-50, 50] 0
=k(z; —a)™, z; >a
=0—a, —a<z;<a
=k(~z;—a)™, 7; < —a
fi3 = 0.1 {sz‘n(?mci)2 F (i —1)? {1 + sin (3m2; + 1)2] + (20 — 1) [1 n sin(2ﬂxn)2]} +3" u(@i,5,100,4)  [-50, 50] 0

obtain the various constructive plans for a 33-bus distribution
system and a 25 node traffic network system. The construc-
tive graph shows the relationship between the number of
charging stations selected to install and coverage, power loss
and voltage profile. The remainder of this paper is organized
as follows. The mathematical model with three objective
functions and the constraints is presented in Section II.
A brief explanation of the PSO-DS algorithm and the detailed
flowchart is discussed in Section III. The performance of the
PSO-DS algorithm on different benchmark functions and its
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application to obtain the construction plans for a test system
is given in Section IV. Finally, conclusions are drawn in
Section V.

Il. DEVELOPMENT OF PLANNING MODEL

The planning model consists of three objective functions.
The first one is the maximization of coverage; it ensures
EV drivers at any point in the traffic network get access
to charging infrastructure within maximal service distance.
The second and third objectives are related to the electric
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TABLE 3. Description of multi-modal benchmark function with fixed dimensions.

Functions

Range

Optimal value

—T
_ 1 25 1
fia = (7500 +3202 41-%—2?:1(&:7&11)6)

fis = I, [

fi6 = 4x? — 2.12% + %r? +x1we — 422 + 423

5.1
fir = (12 =2

2
z% + %zl 76) + 10 (17 %) cos (z;) + 10

[-65, 65]

[-5, 5]
[-5, 5]
[-5, 5]

s = [L+ (@1 + @2+ 1)? (19 = 121 + 323 — Lzs + 62122 +323) | [30 + (221 — 322) (18 — 3221 + 1203 + 4825 — 36z122 +2723) | [2,2]

flo=—31_ ci exp
i=1

fZO—*§,4: Ci €xp
i=1

3 2

=251 0ij (x5 — Pij)
6 2

—22j=1 0 (&5 — Pij)

[0, 1]
[0, 1]

1

0.0003
-1.0316
0.398

3

-3.86
-3.32

fa=-30, [(z—ai)(z—al)T+ci]7l [0,10]  -10.1532
foo=—3", [(w —a) (@ —a)T + cz] - [0.10]  -10.4028
fs= -1 [@—a)@—a)” +ei] 0,101  -105363
TABLE 4. Results obtained for unimodal function.
Benchmark Functions  Metrics Firefly SimAnn GA PSO PSO-DS
Median 3.56965E-05 2204.1 0.168345 2.1842E-09 3.40E-10
Mean 3.78812E-05 2733.2 0.456729024  4.15318E-09 9.53E-10
f STD 2.40726E-05 2078.2501 0.685214455  5.16212E-09 1.39E-09
Worst 0.00011726 7998.7 3.2266 2.2006E-08 5.11E-09
Best 2.1816E-06 288.97 0.00017773 9.8544E-11 5.65E-14
Median -10020 10.454 9.04295 -1444500 1.61E-08
Mean -13003.66667  10.60749 13.86423167  -2360949.667  2.83E-08
f2 STD 16432.88471 4.6687151 15.02381255  5274912.975 3.33E-08
Worst -9980 21.218 67.131 -777990 1.45E-07
Best -100010 2.6325 0.51301 -30150000 5.25E-09
Median 0.000124505 2767.25 12.099 5.3389E-08 3.40E-09
Mean 0.000176485 3126.2969 19.46824867  3.7887E-07 8.15E-09
f3 STD 0.000171412 2249.9187 20.39192192  1.05625E-06 1.35E-08
Worst 0.000955 8494 .4 74.966 5.5954E-06 6.39E-08
Best 0.000023976 34.648 0.94666 2.7627E-09 5.97E-11
Median 4 37.537 5 4 4.61E-08
Mean 4.033333333 36.943267 5 4.033333333 6.18E-08
fa STD 0.182574186 13.864151 0 0.182574186 5.29E-08
Worst 5 75.701 5 5 1.91E-07
Best 4 11.142 5 4 5.57E-09
Median 0.00148525 250520 30.4025 0.18776 2.08E+02
Mean 0.002600238 1403662.6 193.235534 8.399190567 8.97E+03
fs STD 0.005134757 3097317 294.2791158  40.90551605 41130.47
Worst 0.0291 12347000 1081.9 224.77 2.26E+05
Best 0.00032446 5298.6 0.42752 0.003598 2.03E-01
Median 2.94545E-05 3438.45 0.391465 1.6999E-09 4.57E-10
Mean 3.1845E-05 3397.9677 0.56466621 3.5676E-09 1.80E-09
fe STD 2.3048E-05 2121.9475 0.657934632  5.24313E-09 4.18E-09
Worst 0.00012772 11150 2.8536 2.4427E-08 2.26E-08
Best 5.9406E-06 529.45 0.0074153 1.9597E-10 3.19E-11
Median 4 15683500 0.418435 4 2.89E-03
Mean 4.033333333 26118171 1.8578825 4.033333333 5.20E-03
fr STD 0.182574186 32004284 4.387639821  0.182574186 0.006426
Worst 5 140370000 19.414 5 2.94E-02
Best 4 18268 0.044475 4 1.21E-04
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TABLE 5. Results obtained for multi-modal function.

Benchmark Functions  Metrics Firefly SimAnn GA PSO PSO-DS
Median ~ -1557.5 -838.5 -288.735 -430.82 -2.18E+33
Mean -1587.253333  -888.642 -306.2136667  -431.6226667  -3.11E+34
I8 STD 109.1128828  245.3469 91.46782044  4.396386395 1.14E+35
Worst -1439.1 -556.35 -195.16 -430.82 -1.01E+31
Best -1976.5 -1411.9 -573.23 -454.9 -6.23E+35
Median  0.99497 34.4765 18.969 2.66735E-07 1.99E+00
Mean 0.663316683  33.167633  23.11760333  0.729636084  5.63E+00
fo STD 0.707565048  9.5114437  14.18374256 1.075205944  7.825746
Worst 1.9899 60.257 54.732 3.9798 2.49E+01
Best 3.1846E-06 13.146 2.0355 1.2028E-08 2.14E-09
Median  0.0036184 17.9445 9.6973 3.95965E-05 2.00E+01
Mean 0.0033333 17.955967  9.6973 0.172031981 2.01E+01
fio STD 0.000958716 1.5371541  3.61345E-15 0.654531104  0.056094
Worst 0.0053585 19.967 9.6973 2.5799 2.02E+01
Best 0.0011593 14.211 9.6973 5.8727E-06 2.00E+01
Median ~ 0.0124675 32.306 1.0172 2.62595E-09 5.79E-02
Mean 0.012128475  34.889497  1.010760667  0.015450726  7.36E-02
fi1 STD 0.008514015  20.088971  0.034282314  0.038636727  0.05749
Worst 0.027431 86.082 1.0172 0.15783 2.46E-01
Best 0.00001895 5.689 0.82932 3.4305E-10 7.54E-08
Median  0.051930022 452320000 9.4248 0.000762545  7.16E+00
Mean 0.295876225 462421333  9.382386667  0.014732056  7.54E+00
fiz STD 0.539089678 222375228  0.232307394  0.036271099  3.328861
Worst 2.4369 895170000  9.4248 0.10776 1.35E+01
Best 0.00004128 118060000  8.1524 0.00012163 1.90E+00
Median  0.000907765 710225000  1.3498E-32 0.0023249 1.39E+01
Mean 0.00090451 795025667  1.3498E-32 0.005891588 1.66E+01
fis STD 0.000177004 436606981  8.3511E-48 0.005731239  8.859562
Worst 0.0012595 1.722E+09  1.3498E-32 0.016468 4.45E+01
Best 0.00058978 188830000  1.3498E-32 0.00056873 5.42E+00

distribution system. Shunt capacitors are usually installed
in the primary distribution system to reduce power losses
and improve the voltage profile of the buses. As the EV
infrastructure acts as an additional load to the existing
distribution system, the optimal location and rating of shunt
capacitors should be computed along with the placement of
EV charging infrastructure. Therefore, the second and third
objectives of the model are the minimization of power losses
and node voltage deviations after the incorporation of EV
charging infrastructure and shunt capacitors. The planning
objectives and their constraints will be described in detail
below.

A. MAXIMIZATION OF COVERAGE

The EV charging stations placement problem is a facility
location problem. In the classical facility location problem,
the demand for service is assumed to occur at fixed locations
within a traffic network. The total weighted distance or time
for travel to the facilities and the distance or time that the user
most distant from a facility would have to travel to reach that
facility is taken as the control parameter for placement [18].
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The mathematical model to select the facility location that
will maximize the coverage is given below

Maximize F| = Zai)’i (D

iel

subject to the constraints,

ijZy,-, Viel )
JEN;
Sg=rp 3)
jeJ

1, if afacility is allocated to site j
Xj = (4)

0, otherwise

1, if one or more facilities are established

Y= at sites in the set N;
0, otherwise
Q)
Lv)y=p, VYveT (6)
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TABLE 6. Results obtained for multi-modal function with fixed dimensions.

Benchmark Functions  Metrics Firefly SimAnn GA PSO PSO-DS
Median  0.998 19.8545 12.671 11.719 9.98E-01
Mean 1.19628 77.360107  9.770956667 11.559 3.18E+00
fia STD 0.658313471 130.48895  5.071077752  0.667028408  4.17469
Worst 3.9683 484.96 14.563 12.671 1.83E+01
Best 0.998 1.0483 0.998 10.763 9.98E-01
Median ~ 0.00049764 0.0305335  0.0074558 0.00137795 1.80E-03
Mean 0.000577923  0.4050941 0.01379907 0.002253795 1.78E-03
fis STD 0.000294263 1.5674103  0.016398658  0.003275362  0.000108
Worst 0.0012232 8.3819 0.068132 0.019278 1.94E-03
Best 0.00030749 0.0021644  0.0014482 0.00081724 1.28E-03
Median  -1.0316 -0.25031 -1.03145 -1.0316 -1.03E+00
Mean -1.0316 2.3161591 -0.991666 -1.0316 -8.68E-01
fie STD 6.77522E-16 10.877358  0.141197931 6.77522E-16  0.332037
Worst -1.0316 56.981 -0.33074 -1.0316 -2.15E-01
Best -1.0316 -1.0316 -1.0316 -1.0316 -1.03E+00
Median  0.39789 1.4069 0.40331 0.39789 3.98E-01
Mean 0.39789 3.079807 0.425087333  0.39789 3.98E-01
fir STD 1.6938E-16 3.4964321 0.055115391 1.6938E-16 1.69E-16
Worst 0.39789 14.458 0.61116 0.39789 3.98E-01
Best 0.39789 0.39791 0.39789 0.39789 3.98E-01
Median 3 30.9915 3.00105 3 3.00E+00
Mean 3 32925927  20.1359 4.8 1.02E+01
fis STD 0 27.73444 32.93482561 6.850119556  21.19271
Worst 3 118.6 84.903 30 8.40E+01
Best 3 3.2427 3 3 3.00E+00
Median  -3.8628 -3.2311 -0.30048 -3.8628 0.00E+00
Mean -3.8628 -3.2170267  -0.430674333  -3.811266667  0.00E+00
fio STD 3.16177E-15 0.4265364  0.624078299  0.196116386 0O
Worst -3.8628 -1.8844 -0.30048 -3.0898 0.00E+00
Best -3.8628 -3.8496 -3.6983 -3.8628 0.00E+00
Median  -3.322 -0.968175 -0.000034085  -3.2031 0.00E+00
Mean -3.270476667  -1.138787 -0.000034085  -3.230843333  0.00E+00
f20 STD 0.059926424  0.6020592 0 0.051148767 0
Worst -3.2031 -0.33495 -0.000034085  -3.2031 0.00E+00
Best -3.322 -2.4546 -0.000034085  -3.322 0.00E+00
Median ~ -10.153 -0.555235 -5.0552 -5.0552 -5.10E+00
Mean -8.9781 -0.6387653  -5.0552 -5.617926667  -6.13E+00
f1 STD 2.446252865  0.4915368 1.80672E-15 2739854846  3.06004
Worst -2.6305 -0.27206 -5.0552 -2.6305 -2.63E+00
Best -10.153 -2.9786 -5.0552 -10.153 -1.02E+01
Median  -10.403 -0.53014 -5.0877 -5.0877 -5.13E+00
Mean -10.18037667  -0.7041413  -5.0877 -6.106423333  -5.84E+00
foz2 STD 1.219358215  0.4813122  9.03362E-16 3.235076851 3.169992
Worst -3.7243 -0.22108 -5.0877 -1.8376 -1.84E+00
Best -10.403 -2.0341 -5.0877 -10.403 -1.04E+01
Median  -10.536 -0.711975 -5.1285 -4.48195 -4.48E+00
Mean -9.11465 -0.9178063  -5.1285 -5.50499 -5.96E+00
f23 STD 2.903503988  0.4643159 1.80672E-15 3.500747951 3.657293
Worst -2.4273 -0.3543 -5.1285 -1.6766 -1.68E+00
Best -10.536 -2.3638 -5.1285 -10.536 -1.05E+01

A node is “covered” when the closest facility to that node
is at a distance less than or equal to S.The shortest distance

VOLUME 10, 2022

between a node and the nearest facility location is computed

using [19].
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Algorithm 1: Algorithm

Step1: Obtain the gbest computed by PSO and assign
xo = gbest

Step2: Evaluate objective function at xg.

Step3: Start at base point x = xp.

Step4: Apply pattern vectors to x to make exploratory
move.

s X [1,0,...0] +x = x!

sy % [0, 1,...0] +x = x?

s X [0,0,... 1]+x=xV
s X [—1,0,...0] +x = xN+1
s % [0,—1,...0] +x =xN+2

55 x [0,0,...— 1]4+x=x?N

where, x!, x2, ..., x?N are the new possible points
around x

N the total number of independent variables to be
optimized.

StepS: Compute the objective function at all points in
the order x!, x2, ... x?N and identify x; that gives
smallest objective function value in the set.

Step6: If objectivefunction (xk ) < objectivefunction(x),
then set x = x; go to step 2. Otherwise, go to step 5.
Step7: If

|objectivefuncti0n (x) — objectivefunction(x* )| <e,
go to step 6, otherwise set s, = s; — Asgandsetx = xj go
to step 2.

Step8: Send the solution vector to PSO for velocity
updating.

FIGURE 2. IEEE 33 bus test system.

B. MINIMIZATION OF TOTAL POWER LOSS AND VOLTAGE
DEVIATION

The installation of EV charging infrastructure to the dis-
tribution system changes the power flow pattern in the
feeders as well the voltage profile of the system will have
changed. The total EV load will increase the power loss

48094

FIGURE 3. Overlapping of traffic nodes in the distribution system.

TABLE 7. Parameter setting of PSO-DS.

Parameter Value
Maximum Iterations 200
Swarm Size 50
Self-adjustment weight 1.49
Social adjustment weight 1.79
Inertia range [0.1,1.1]
Initial Point s g 0.5
Step Size Asg 0.05

in the distribution system. However, we can bring this
loss to a minimum value by optimizing the location of
EV charging infrastructure. The EV station is modelled as
a constant load. The shunt capacitors are installed in the
primary distribution system to compensate for the absorption
of reactive power. The system’s total loss depends on the
location and ratings of EV charging infrastructure and shunt
capacitors. Keeping the other load in the distribution system
constant, we take the location and rating of EV charging
infrastructure and shunt capacitor as the design variables.
The second function (F2) for minimization is the total active
power loss of the distribution system is mathematically
expressed in equation (7). The reactive power compensation
by the shunt capacitor will also minimize the voltage
deviations. Equal importance should be given to voltage
profiles like total power loss. Function F3 is created to take
care of the voltage profile of the system, which is expressed
in equation (8) with the constraints listed in the equations
from (9) to (16)

Nbus Nbus

Fy =" gj(V} + V} — 2ViVjcosty) @)
i=1 j=1
Nbus

Vi =V,
F3=ZM ®)

-V
subject to the constraints,

—Pp; — UEV;Pgy ;
Nhus

= Z|yij| |Vi| Vil cos (6 + 8; — 8i) )
j=1

VOLUME 10, 2022



S. Muthukannan, D. Karthikaikannan: Multiobjective Planning Strategy for Placement of EV Charging Stations I EEEACC@SS

TABLE 8. Comparison results for the proposed function for 1 - 4 EVCS (without capacitor).

No of EVCS Parameter Firefly SimAnn  GA PSO PSO-DS
Best 226.3 226.3 226.3 226.3 226.3
Power Loss (kW) Worst 226.3 226.3 226.3 226.3 226.3
Average  226.3 226.3 226.3 226.3 226.3

Best 5.340909  5.340909  5.340909  5.340909  5.340909

Total Voltage Deviation (%)  Worst 5.340909 5340909 5.340909  5.340909  5.340909
Average  5.340909  5.340909  5.340909  5.340909  5.340909

Best 37.6 37.6 37.6 37.6 37.6
Coverage (%) Worst 37.6 37.6 37.6 37.6 37.6
Average 37.6 37.6 37.6 37.6 37.6
Best 2.2287 2.2287 2.2287 2.2287 2.2287
Objective Value Worst 2.2287 2.2287 2.2287 2.2287 2.2287
Average 2.2287 2.2287 2.2287 2.2287 2.2287
Best 273.8 228 228 228 214
Power Loss (kW) Worst 213.8 213.8 213.8 213.8 289
Average  243.8 220.9 220.9 220.9 251.5
Best 6.098788  5.409091  5.409091  5.409091 5.27303
Total Voltage Deviation (%)  Worst 5.323636 5.27303 5.27303 5.27303 6.30697
’ Average 5.711212  5.341061 5.341061  5.341061 5.79
Best 48.9 54.2 54.2 54.2 48.3
Coverage (%) Worst 48.3 48.3 48.3 48.3 40.3
Average 48.6 51.25 51.25 51.25 443
Best 1.9732 1.9732 1.9732 1.9732 1.9843
Objective Value Worst 1.9843 1.9843 1.9843 1.9843 1.9732
Average  1.97875 1.97875 1.97875 1.97875 1.97875
Best 220.5 220.2 217.6 230 215
Power Loss (kW) Worst 270.5 226.5 225.8 217.7 270.5
Average  245.5 223.35 221.7 223.85 242.75
Best 5.34303 5.340303 5.316061  5.416061  5.292424

Total Voltage Deviation (%)  Worst 6.052424 5397273 5391212  5.325758  6.052424
Average  5.697727  5.368788  5.353636  5.370909  5.672424

3 Best 64.9 64.9 64.9 61.8 64.9
Coverage (%) Worst 48.9 64.9 64.9 59.1 48.9
Average  56.9 64.9 64.9 60.45 56.9
Best 1.8099 1.8099 1.8098 1.8097 1.8102
Objective Value Worst 1.8109 1.811 1.8111 1.8115 1.8099
Average  1.8104 1.81045 1.81045 1.8106 1.81005
Best 224.2 224 220.6 226.7 216
Power Loss (kW) Worst 237.9 267.7 235.5 364.3 364.3
Average  231.05 245.85 228.05 295.5 290.15
Best 5.381212  5.369394  5.346061  5.407576  5.304848
Total Voltage Deviation (%)  Worst 5.615455 5.980909  5.521818  7.136061  7.136061
4 Average  5.498333  5.675152 5433939  6.271818  6.220455
Best 75.7 75.7 75.7 75.7 75.7
Coverage (%) Worst 76.2 73.1 76.2 47.4 47.4
Average  75.95 74.4 75.95 61.55 61.55
Best 1.7388 1.7387 1.7386 1.7381 1.7401
Objective Value Worst 1.7535 1.7675 1.7707 1.8012 1.8012
Average  1.74615 1.7531 1.75465 1.76965 1.77065
—QOpi — UEV;Qgy,i + VSCiOsc,i S < S (12)
Nbus min < . < (max 13
= = ¥y vy Vil sin (65 + & — si) (o) e =0Osei=05c (1
Jj=1 1, if the EVCS is located at bus i
Vimm < Vi < Vimax i ;é 1 (] ]) UEV[ - O, otherwise (14)
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TABLE 9. Comparison results for the proposed function for 5 - 8 EVCS (without capacitor).

No of EVCS Parameter Firefly SimAnn  GA PSO PSO-DS
Best 220.4 226.6 234.2 243.9 218
Power Loss (kW) Worst 237.8 236.1 245.6 260.4 237.8
Average  229.1 231.35 239.9 252.15 227.9
Best 5.351515 5462121  5.555758  5.706364  5.332424
Total Voltage Deviation (%)  Worst 5.59 5.599394 5733333  5.959697 5.59
5 Average  5.470758  5.530758  5.644545 5.83303 5.461212
Best 78.4 78.4 78.4 87 78.4
Coverage (%) Worst 60.9 65.5 82.1 76.7 60.9
Average  69.65 71.95 80.25 81.85 69.65
Best 1.6978 1.6974 1.6932 1.693 1.7068
Objective Value Worst 1.7272 1.729 1.7394 1.7427 1.7272
Average  1.7125 1.7132 1.7163 1.71785 1.717
Best 228.3 242.1 263.5 232.4 225
Power Loss (kW) Worst 279.3 272 229.7 249.2 254
Average  253.8 257.05 246.6 240.8 239.5
Best 5469394 5.641818 5.956061  5.542727  5.383939

Total Voltage Deviation (%)  Worst 6.140909  6.075455 5427879  5.751818  5.824545
Average  5.805152  5.858636  5.69197  5.647273  5.604242

6 Best 89.7 89.2 89.7 95.6 83.8
Coverage (%) Worst 82.8 57.4 76.2 77.9 66
Average  86.25 73.3 82.95 86.75 74.9
Best 1.6672 1.6653 1.6622 1.6586 1.708
Objective Value Worst 1.7101 1.7148 1.7447 1.7476 1.7003
Average  1.68865 1.69005 1.70345 1.7031 1.70415
Best 273.8 239.6 273.8 241.6 230
Power Loss (kW) Worst 248.2 265.5 308.1 234.9 269.4
Average 261 252.55 290.95 238.25 249.7
Best 6.09 5.604848  6.079697  5.672424  5.490303
Total Voltage Deviation (%)  Worst 5.729394 5978182  0.65303  5.575152  5.778485
7 Average  5.909697  5.791515 3.366364  5.623788  5.634394
Best 97.8 89.7 87 97.8 87.2
Coverage (%) Worst 87.5 82.8 80.7 82.1 67.7
Average  92.65 86.25 83.85 89.95 77.45
Best 1.6701 1.6694 1.6569 1.6527 1.6968
Objective Value Worst 1.7119 1.7196 1.7216 1.7369 1.6754
Average  1.691 1.6945 1.68925 1.6948 1.6861
Best 258.6 246.3 251.7 246.3 240.1
Power Loss (kW) Worst 348.7 314.6 239 317.3 269.4
Average  303.65 280.45 245.35 276.8 254.75
Best 5.922727  5.781515  5.753636  5.755152  5.630303
Total Voltage Deviation (%)  Worst 6.958485  6.605455 5.631818  6.634242  6.059697
3 Average  6.440606  6.193485  5.692727  6.090152 5.845
Best 88 95.6 98.3 98.3 99.5
Coverage (%) Worst 82.9 79 93.6 84.3 71.9
Average  85.45 87.3 95.95 91.3 85.7
Best 1.6632 1.6589 1.6554 1.6529 1.22818
Objective Value Worst 1.7281 1.7335 1.7445 1.7501 1.7119
Average  1.69565 1.6962 1.69995 1.7015 1.47004
VSC: — 1, if the shunt capacitor is installed at bus i Equation (16) is the element of bus admittance matrix, the
! 0, otherwise real part stands for conductance and imaginary part stands
(15) for susceptance.
Yy = Gy+jBy = |Yzj| L0 (16) The proposed mathematical model consists of three

objective functions. The pareto solutions of the multi-objective
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COVERAGE

FIGURE 4. No of EVCS vs coverage.

optimization problem can be obtained by using different
weighting coefficients and then converting the problem into
a single objective problem.

1
Minimize F = o (}«T) +oaxfr + asF;3 an
1

The three objective functions namely coverage, loss and
voltage deviations are of different order of magnitudes,
we need to normalize these objectives. In this paper, advanced
normalization method [20] is utilized.

Ill. IMPLEMENTATION OF PSO-DS ALGORITHM

PSO is an evolutionary computation algorithm developed
by [21], which was inspired by the social behaviour of bird
flocking and fish schooling. It creates a ‘“‘population” of
particles that fly through the problem hyperspace with given
velocities. At each iteration, the velocities of the individual
particles are updated according to the historical best position
for the particle itself and the neighbourhood best position.
Both the particle best and the neighbourhood best are derived
according to a user defined fitness function. For a given
problem, each individual possible solution can be modelled
as a particle that moves through the problem hyperspace. The
position of each particle is determined by the vector x; € R"
and its movement by the velocity of the particle v; € R" as
given below

xi(t) = xi(t = 1)+ vilt) (18)

The particles can gain information by their own experience
or from the knowledge of other individuals in its neigh-
bourhood. It is reasonable to apply random weights to each
part to give relative importance between these two that can
vary one decision to other. The velocity will be determined
by

vit) = vitt = 1)+ grrand, (i = xi (= 1)
+ g2 rands. (5, — % (= 1) (19)

The equation (19) consists of three components, the first
component is related to the tendency of the particle to
continue in the same direction it has been traveling, the
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FIGURE 6. No of EVCS vs total voltage deviation.

second component makes the particle to move towards the
best position ever found by the given particle p; (Pbest)
and the third component attracts the particles towards the
best position found by any particle: p, (Gbest). The third
component is termed as * social knowledge” or “‘group
knowledge”. In this paper, we want to integrate the direct
search method into particle swarm optimization (PSO) to
search for better Gbest. It applies the expansion or contraction
around the gbest particle computed by PSO. The value of the
objective function either decreases or remains the same from
Gbest particle. This integration avoids the major drawback
of the direct search method which lies in the selection of the
starting point. It also improves the convergence and accuracy
of canonical PSO.

The computational procedure for the optimization of the
proposed multi-objective function using PSO-DS is given in
the algorithm (1).

In this paper, the location of EVCS and shunt capacitors are
integers but the computation procedure of PSO-DS are with
real numbers. To incorporate integers, during initialization
as well as the updating, the concerned variable is rounded
to the nearby integer. Backward/Forward sweep load flow
algorithm is used to compute the total active power loss
and voltage profile of the test system at each iteration of
PSO-DS [22]. The flowchart of PSO-DS algorithm for the
placement of EV charging infrastructure and shunt capacitors
is shown in figure (1).
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TABLE 10. Pareto solution of the objective function.

No. of EVCS EVCS Location EVCS Capacity (kVA) Capacitor Location  Capacitor value (kVAr)
1 21 800 13, 3, 22, 30 364.4, 873.2, 365.8, 1000
2 21,1 400, 400 3,30,7, 14 712.0, 901.3, 400.5, 276.6
3 22, 1,21 111.1, 398.4, 290.5 30, 14, 24, 26 889.4, 298.2, 515.0, 424.2
4 22,21,1,2 119.9, 288.0, 360.5, 31.6 14, 30, 24, 7 276.3, 904.8, 512.2, 455.5
5 1,21, 11, 2, 22 338.2, 38.4, 8.3, 55.2, 359.9 24, 30,7, 14 548.6, 905.2, 464.5, 278.2
6 1,2,4,18,21,23 168.7, 139.5, 41.1, 25.5, 269.2, 156.1 24, 30, 14, 7 553.0, 905.3, 277.0, 460.3
7 18,2,23,6, 1, 8, 20 22.3, 18.8, 82.3, 32.7, 208.1, 88.0, 347.8 14, 30, 24, 7 285.4, 904.4, 519.1, 485.9
8 9,22,20,5,3,1, 11,21  32.7,25.6, 148.8, 91.7, 141.8, 82.2, 54, 223.3 28, 8, 18, 29 572.1, 690.9, 391.5, 662.5
—e—without capacitor  —#—with capacitor Base case Pareto Front
e . 14 <
£ . T2y
£ !\-—-—-/“'—'/‘—'/ a Coverage (%) -0.995
£ c 14 Power Loss (MW) 0.171368
E = Voltage Deviation (p.u) 1.15588 |#& ®
5]
10 = 0.8 Index 247
w 2 064 ‘j’ g’?"fﬁ‘f*ﬁﬁa *
S 0.4 ’
‘ 1 2 & 4 5 6 7 8 >
No oF eves 0.2
0.5

FIGURE 7. Power loss in the system after the installation of EVCS and
capacitors.

—e—uithout capacitor  —a—with capacitor Base case

|
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3 4 5 6 7 8
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FIGURE 8. Voltage deviation in the system after the installation of EVCS
and capacitors.

IV. RESULTS AND DISCUSSION

A. PERFORMANCE OF THE ALGORITHMS ON
BENCHMARK FUNCTIONS

The performance of the PSO-DS algorithm is compared with
other algorithms by applying it to the normal benchmark
functions [23]. table(1), table(2) and table(3) shows the
various benchmark functions for testing. The order of all test
functions is taken as 10. The metrics for validation are best,
worst, median, mean and standard deviation. The parameter
setting of the PSO-DS optimization algorithm is given in
the Table (7) The total number of independent runs for all
algorithms is 30. Simulations are performed in MATLAB
2021b using a system configuration of Intel(R) Core(TM)
i3-3217U0 CPU @ 1.80GHz 1.80 GHz, 6.00 GB RAM.
The results from table(4), table(5) and table(6) show the

48098

-0.8
0.2

Power Loss (MW) 01

0.9
Coverage (%)

FIGURE 9. Pareto front of the fitness function.

Voltage Deviation (p.u)

Power Loss (MW) 01" "

FIGURE 10. Interpolated surface plot of pareto front.

PSO-DS algorithm’s efficiency over other well-established
optimization procedures.

B. SYSTEM DESCRIPTION

After successfully applying the PSO-DS algorithm on
benchmark functions, IEEE 33 bus distribution and a 25-node
traffic network are taken to obtain constructive plans for
charging stations. The one-line diagram of the IEEE 33 bus
distribution system is shown in Figure (2). In the test
system, the traffic nodes 1-25 geographically overlap with
the distribution system nodes 2-26. Node 1 of the distribution
system is connected to the grid supply point. The details of the
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TABLE 11. Comparison of the simulation results.

Parameter

Without Capacitor = With Capacitor

Best
Worst
Average
Best
Worst
Average
Best
Worst
Average
Best
Worst
Average

Power Loss (kW)

Total Voltage Deviation (%)

Coverage (%)

Objective value

240.1 176.2
348.7 324.7
289 247.2
1.858 1.1163
2.2963 1.7595
2.0183 1.3909
99.5 99.5
71.9 71.9
89.45 89.45
1.76114 1.22818
2.40233 2.14359
2.01756 1.6684

TABLE 12. Results for the proposed multi-objective functions.

Power Loss (kW)

Voltage Deviation (%)

No. of EVCS
Base Case: 203 kW

Coverage (%)
Base Case: 5.3094 %

Without Capacitor ~ With Capacitor  Reduction (%)

Without Capacitor ~ With Capacitor  Reduction (%)

1 226.3 153.5 32.169686 5.5078125 3.8365625 30.3432624 37.6
2 213.8 142.4 33.395697 5.4378125 3.714375 31.6935808 48.3
3 215.2 141.9 34.061338 5.4578125 3.7609375 31.0907529 64.9
4 216.3 147.9 31.622746 5.470625 3.566875 34.7994973 75.7
5 2184 147.5 32.46337 5.4990625 3.75375 31.7383645 78.4
6 224.7 152.8 31.99822 5.5521875 4.066875 26.7518433 83.8
7 229.7 152.9 33.434915 5.661875 3.8525 31.9571697 87.2
8 240.1 176.2 26.613911 5.80625 3.4884375 39.919268 99.5
Best Function Value: 1.22818 9 r r r
1557
. 0.99
1571
0.98 [
145 _barr
3
[ S 096
2 I P
141
z E 0.95[
3 S
2135 . w 0941
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12 A A A A A A . A , 0.9 . L L T T T
o 10 20 30 40 50 60 70 80 90 0 5 10 15 20 2 30 »
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FIGURE 11. Convergence of the fitness function.

IEEE 33 bus distribution system and 25 node traffic network
are in the appendix. The superimposed nodes of the traffic
network in the electrical distribution system are shown in
Figure (3). The traffic network node data was taken from [2].

The maximum EV battery capacity is considered 30 kWh,
and the energy consumption rate is 0.25 kWh/km. When
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Bus

FIGURE 12. Bus voltage variation with 8 EVCS.

the EV is starting from the source node, the SOC of the
EV battery is considered as 50%. It is assumed that the
total charging demand of EVs in the distribution system is
800 kVA. It means the total installed capacity of EV charging
stations in the distribution system should equal 800 kVA. The
PSO-DS algorithm is utilized to obtain various constructive
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TABLE 13. Traffic network node data.

From Node To Node Distance (km) Weight From Node To Node Distance (km)  Weight
40 0.54 30 0.05

1

1 5 50 0.54 11 16 70 0.05
2 3 30 0.8 11 12 20 0.05
2 4 40 0.8 12 15 40 0.54
3 4 40 0.27 12 16 40 0.54
3 9 40 0.27 13 14 70 0.05
4 9 70 0.27 13 19 40 0.05
4 8 50 0.27 14 19 70 0.54
4 7 50 0.27 14 21 20 0.54
4 5 30 0.27 14 22 40 0.54
5 6 50 0.27 15 16 40 0.27
5 7 50 0.27 16 17 40 0.27
6 7 30 0.07 17 18 30 0.27
7 8 30 0.05 17 19 30 0.27
7 11 80 0.05 18 20 30 1.07
7 12 90 0.05 19 20 30 0.8
8 9 60 0.54 20 21 20 0.27
8 10 60 0.54 21 14 20 0.27
8 11 70 0.54 21 20 20 0.27
8 13 70 0.54 22 23 20 0.54
9 10 60 0.27 23 24 30 0.05
10 13 60 0.54 24 25 30 1.34
10 14 30 0.54 25 24 80 0.05

plans. Graphs like the number of EVCS versus coverage, the
number of EVCS versus total power loss, and the number of
EVCS versus total voltage deviations are found. The results
also include the effect of shunt capacitors on the total power
loss and total voltage deviations.

C. DISCUSSION

The proposed multi-objective model is solved by using
different algorithms, and the results are displayed in the
table (8) and (9). The results show that the PSO-DS algorithm
provides the best results among the other algorithms for the
multi-objective function. IEEE 33 bus distribution system
has a total active power loss of 203 kW and a total voltage
deviation of 5.31 % for the base loadings. By adding the
single EVCS, all the algorithms converged to the single
solution and the power loss increased by 11.48% from its
base loss, the voltage deviation increased by 3.74%, the
coverage is 37.6% only. The EVCS number is gradually
incremented, and the coverage, total loss and total voltage
deviation are obtained for all cases. However, the increase
of the number of EVCS would increase the power loss and
total voltage deviation, which can be understood from the
figure (5) and (6). When placing the 8 EVCS, the coverage is
maximized (i.e.) the customer from any location in the traffic
network can access the charging station with minimized
power loss and total voltage deviation. Another case includes
the simultaneous placement of EVCS and shunt capacitors.
It is clear from the tables that the installation of shunt
capacitors at the optimal locations significantly reduces the
total loss and enhances the voltage profile.

Table (10) shows the optimal EVCS locations, EVCS
ratings, shunt capacitor location, and shunt capacitor rating.
The simulation is run for 30 times and the best results have
been taken. The table (11) presents the comparative results
obtained from the toatl run. The values of the objective
functions with respect to the number of EVCS are presented
in Table (12). It is clear from Table (12) that the coverage
progresses to the maximum value as the EVCS number
increases and without the installation of shunt capacitor, the
power loss as well the total voltage deviations for the given
loading conditions increases.
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TABLE 14. IEEE 33 bus test system data.

Bus Data Line Data
Bus Pd Qd From Bus To Bus R (ochms) X (ohms)
1 0 0 1 2 0.0922 0.047
2 100 60 2 3 0.493 0.2511
3 90 40 3 4 0.366 0.1864
4 120 80 4 5 0.3811 0.1941
5 60 30 5 6 0.819 0.707
6 60 20 6 7 0.1872 0.6188
7 200 100 7 8 0.7114 0.2351
8 200 100 8 9 1.03 0.74
9 60 20 9 10 1.044 0.74
10 60 20 10 11 0.1966 0.065
11 45 30 11 12 0.3744 0.1238
12 60 35 12 13 1.468 1.155
13 60 35 13 14 0.5416 0.7129
14 120 80 14 15 0.591 0.526
15 60 10 15 16 0.7463 0.545
16 60 20 16 17 1.289 1.721
17 60 20 17 18 0.732 0.574
18 90 40 2 19 0.164 0.1565
19 90 40 19 20 1.5042 1.3554
20 90 40 20 21 0.4095 0.4784
21 90 40 21 22 0.7089 0.9373
22 90 40 3 23 04512 0.3083
23 90 50 23 24 0.898 0.7091
24 420 200 24 25 0.896 0.7011
25 420 200 6 26 0.203 0.1034
26 60 25 26 27 0.2842 0.1447
27 60 25 27 28 1.059 0.9337
28 60 20 28 29 0.8042 0.7006
29 120 70 29 30 0.5075 0.2585
30 200 600 30 31 0.9744 0.963
31 150 70 31 32 0.3105 0.3619
32 210 100 32 33 0.341 0.5302
33 60 40

The installation of 8 EVCS with the total rating of 800 kVA
increases the total system loss and total voltage deviation
to 240.1 kW and 5.5%. After the successful placement of
the capacitor, the losses in the system reduced by 26.61%
and the voltage deviation is reduced by 39.92%. Figure (4)
shows the variation of coverage with the number of EVCS
and this graph will give a quick reference to the decision
maker regarding the coverage with respect to number of
EVCS. Figure (5) and (6) gives the change of loss and total
voltage deviation with respect to the number of EVCS. The
effect of shunt capacitor on active power loss as well as total
voltage deviation are presented in the Figure (7) and (8). The
convergence of the proposed model solved by PSO-DS is
displayed in the Figure (11). The pareto front of the proposed
multi-objective function is displayed in the Figure (9). The
interpolated surface plot of the pareto front is shown in the
Figure (10) which projects the solution points in the surface.
A sample solution point is marked in the pareto figures which
clearly represents the possible solution in the surface.

V. CONCLUSION

The deployment of EVs impose challenges on the secure
operation of the electric distribution systems. The EV charg-
ing infrastructure location problem should offer charging
conveniences while minimizing the negative impacts to the
power systems. A new multi-objective EV charging station
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planning model has been developed in this paper taking
the total coverage, loss minimization and voltage profile
improvement as objective functions. PSO-DS algorithm has
been employed to solve the proposed mathematical model
because of its efficiency and simplicity. The case studies
shows that the proposed model have successfully yields
attractive construction plans of EV charging stations, while
maintaining the operation economy and the security of the
power system.
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