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ABSTRACT Electric Vehicle (EV) charging station placement problem is a facility location problem. The
EV charging station placement problem concerns about the total coverage in traffic network, the system
losses and node voltage deviations in electric distribution system. To address the loss reduction and voltage
profile improvement, the distribution systems are normally equipped with shunt capacitors for reactive power
compensation. In this paper mathematical model comprising three objective functions, maximization of
coverage and minimization of loss and node voltage deviations subjected to constraints is proposed for the
simultaneous placement of EV charging stations and shunt capacitors. The control variables for optimization
are the rating and location of charging stations and shunt capacitors. A hybrid optimization algorithm
(PSO-DS) combining particle swarm optimization algorithm and direct search method is proposed for the
solution of the mathematical model. The performance of PSO-DS is justified by comparing it with other
state-of-the-art algorithms in solving the standard benchmark functions. Simulations are carried out on a
33-bus distribution system and a 25-node traffic network system to determine the different planning strategy
for the placement of charging stations.

INDEX TERMS Charging station, electric vehicle (EV), facility location problem, particle swarm
optimization (PSO), direct search (DS).

NOMENCLATURE
ai Coverage at i.
P Total Facility Coverage.
L Length of the shortest path from u to v.
u&v Vertices in the graph.
p Shortest Path from u to v, Passes through

Vertices in T.
I Set of demand nodes.
J Set of facility sites.
T Vertices set.
ϕ1 Self-adjustment weight.
ϕ2 Social-adjustment weight.
gij Conductance of feeder connecting ith node and

jth node.
k Iteration number, k=1, 2, . . .kmax .

The associate editor coordinating the review of this manuscript and

approving it for publication was Christopher H. T. Lee .

Ni Set of facility sites eligible to provide ‘‘cover’’
to demand point i.

Nbus Total number of buses in the distribution system.
Epi Personal best solution.
Epg Global best solution.
PDi The total active load on bus i without EV

charging station active load.
QDi The total reactive load on bus i without EV

charging station reactive load.
rand1 Random numbers between 0 and 1.
rand2 Random numbers between 0 and 1.
S Distance beyond which a demand point is

considered ‘‘uncovered’’.
Sij Apparent power in line connected between

ith and jth bus with maximum limit Smaxij
Vi Voltage at bus i.
Vi,min Lower limit of bus i.
Vi,max Upper limit of bus i.
vi Velocity of the particle.
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Vo Nominal voltage (1.0 p.u.).
w Inertia Weight.
xl Position of the Particle.
ss Step size
1s Decrement in step size.
UEV Binary variable to include EV.
VSC Binary variable to include shunt capacitor.

I. INTRODUCTION
Conventional road transportation system is one of the major
emitters of greenhouse gases [1]. EVs have emerged as the
best alternative to traditional Internal Combustion Engine
(ICE). Still, the increased arrival of electrical vehicles (EV)
demands sufficient charging infrastructure placed on the
cruising path to avoid driving anxiety. Various mathematical
models have been proposed for the placement of charging
infrastructure. The model consists of objective parts like
minimizing investment cost, loss reduction and voltage
profile improvement. Some papers consider only the traffic
network, and some include both traffic networks and the
electric distribution network for the solution.

In [2], the travelling behaviour of EVs is modelled. The
site and ratings of Electric Vehicle Charging Station (EVCS)
infrastructure were obtained with loss minimization and
voltage profile improvement using the cross-entropy method.
The uncertainties of EV load were incorporated in the
model, and PSO is used to find the solution [3]. In [4], the
driving range is considered for the placement of EVCS. Iter-
ative Mixed-Integer Linear Programming (MILP) method,
greedy approach, effective MILP and Chemical Reaction
Optimization (CRO) are utilized for the solution. The driving
range and destination patterns were analyzed, and charging
locations were identified in [5]. In [6], the traffic dynamics
of EV vehicle is incorporated into the energy consumption,
and the identification of charging infrastructure was made
using a novel nanoscopic city-scale traffic simulation-based
method. In [7], charging station infrastructure investment
cost is optimized in the strategic presence of wind power
generation. A non-Dominated Sorting Genetic Algorithm
(NSGA-II) was used to solve the optimization problem.
An optimization model was proposed to incorporate the
stochastic mobility behaviour of EV drivers in [8], the
quality of service was also executed. A stochastic flow-
capturing location model was proposed to consider the
uncertainty of EV charging demands in optimizing the
number of charging stations [9]. In [10], the installation
cost of charging stations was computed with and without
considering the limited battery size. Multiple backtracking
and greedy algorithm were utilized to find the optimal
solution. In [11], Grasshopper Optimizer Algorithm (GOA)
was applied to identify the location of battery swapping
stations and distributed generation for energy loss reduction
and voltage stability improvement. The charging station
placement was done considering Vehicle-to-Grid (V2G)
trading in [12], a novel heuristic quantum binary lightning

TABLE 1. Description of unimodal benchmark function.

search algorithm was utilized to solve the mathematical
model. Demand Response Programmes (DRPs) identifies
charging station locations taking the total cost function as
the objective function in [13]. The number of charging
stations required to cover every two road network nodes
was obtained in [14]. Integer linear programming technique
was utilized to find the solution. The voltage regulation
cost and protection device up-gradation cost were considered
while selecting locations for charging stations [15]. [16]
proposed a mathematical model comprising line losses,
voltage profile and reliability of the distribution system as
objective functions. A hybrid optimization algorithm that
combines Chicken SwarmOptimization (CSO) algorithm and
Teaching Learning Based Optimization (TLBO) was applied
to find the locations of charging stations.

In the past, various optimization techniques were used
to find the optimal location of EV charging stations. The
charging station location problem is a planning activity;
the solutions directly influence the total investment cost.
Therefore, the selection of a proper optimization algorithm
is significant. This work combines PSO and the direct search
method to form a new hybrid optimization algorithm called
PSO-DS. PSO is a well-estabilized robust algorithm that
can effectively explore search space. However, in some
cases, the PSO struck at local optima. Like PSO, the
direct search method solves optimization problems without
requiring any information about the gradient of the cost
function. Robert Hooke and T.A.Jeeves first used the phrase
‘‘Direct Search’’ in a paper published in the journal of the
association of computing machinery [17]. The advantage
of the direct search method is that it is straightforward
to implement. The alone application of the direct search
method does not yield fruitful results. Here we utilize the
PSO to solve the optimization problem and direct search
method to support the convergence and accuracy. The
PSO-DS algorithm’s effectiveness has been demonstrated
by its application to the standard benchmark functions
and by comparing it with other well-known optimization
algorithms.

Adding EV charging stations to the distribution system
will increase the loss and significantly reduce bus voltages.
Distribution systems have shunt capacitors installed for
loss reduction and voltage profile improvement. During the
planning of the EV charging stations location, we have to
coordinate the shunt capacitor location with the EV charging
station location. This paper uses the PSO-DS algorithm to
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FIGURE 1. Flow of the solving methodology.

TABLE 2. Description of multi-modal benchmark function.

obtain the various constructive plans for a 33-bus distribution
system and a 25 node traffic network system. The construc-
tive graph shows the relationship between the number of
charging stations selected to install and coverage, power loss
and voltage profile. The remainder of this paper is organized
as follows. The mathematical model with three objective
functions and the constraints is presented in Section II.
A brief explanation of the PSO-DS algorithm and the detailed
flowchart is discussed in Section III. The performance of the
PSO-DS algorithm on different benchmark functions and its

application to obtain the construction plans for a test system
is given in Section IV. Finally, conclusions are drawn in
Section V.

II. DEVELOPMENT OF PLANNING MODEL
The planning model consists of three objective functions.
The first one is the maximization of coverage; it ensures
EV drivers at any point in the traffic network get access
to charging infrastructure within maximal service distance.
The second and third objectives are related to the electric
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TABLE 3. Description of multi-modal benchmark function with fixed dimensions.

TABLE 4. Results obtained for unimodal function.

VOLUME 10, 2022 48091



S. Muthukannan, D. Karthikaikannan: Multiobjective Planning Strategy for Placement of EV Charging Stations

TABLE 5. Results obtained for multi-modal function.

distribution system. Shunt capacitors are usually installed
in the primary distribution system to reduce power losses
and improve the voltage profile of the buses. As the EV
infrastructure acts as an additional load to the existing
distribution system, the optimal location and rating of shunt
capacitors should be computed along with the placement of
EV charging infrastructure. Therefore, the second and third
objectives of the model are the minimization of power losses
and node voltage deviations after the incorporation of EV
charging infrastructure and shunt capacitors. The planning
objectives and their constraints will be described in detail
below.

A. MAXIMIZATION OF COVERAGE
The EV charging stations placement problem is a facility
location problem. In the classical facility location problem,
the demand for service is assumed to occur at fixed locations
within a traffic network. The total weighted distance or time
for travel to the facilities and the distance or time that the user
most distant from a facility would have to travel to reach that
facility is taken as the control parameter for placement [18].

The mathematical model to select the facility location that
will maximize the coverage is given below

Maximize F1 =
∑
i∈I

aiyi (1)

subject to the constraints,∑
j∈Ni

xj ≥ yi, ∀ i ∈ I (2)

∑
j∈J

xj = P (3)

xj =

{
1, if a facility is allocated to site j
0, otherwise

(4)

yj =


1, if one or more facilities are established

at sites in the set Ni
0, otherwise

(5)

L(v) = p, ∀ v ∈ T (6)
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TABLE 6. Results obtained for multi-modal function with fixed dimensions.

A node is ‘‘covered’’ when the closest facility to that node
is at a distance less than or equal to S.The shortest distance

between a node and the nearest facility location is computed
using [19].
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Algorithm 1: Algorithm
Step1: Obtain the gbest computed by PSO and assign
x0 = gbest
Step2: Evaluate objective function at x0.
Step3: Start at base point x = x0.
Step4: Apply pattern vectors to x to make exploratory
move.
ss × [1, 0, . . . 0]+ x = x1

ss × [0, 1, . . . 0]+ x = x2

.

.

.
ss × [0, 0, . . . 1]+ x = xN

ss × [−1, 0, . . . 0]+ x = xN+1

ss × [0,−1, . . . 0]+ x = xN+2

.

.

.
ss × [0, 0, . . .− 1]+ x = x2N

where, x1, x2, . . . , x2N are the new possible points
around x
N the total number of independent variables to be
optimized.
Step5: Compute the objective function at all points in
the order x1, x2, . . . x2N and identify xk that gives
smallest objective function value in the set.
Step6: If objectivefunction

(
xk
)
< objectivefunction(x),

then set x = xk go to step 2. Otherwise, go to step 5.
Step7: If∣∣objectivefunction (x)− objectivefunction(xk )

∣∣ ≤ ε,
go to step 6, otherwise set ss = ss −1ssandsetx = xk go
to step 2.
Step8: Send the solution vector to PSO for velocity
updating.

FIGURE 2. IEEE 33 bus test system.

B. MINIMIZATION OF TOTAL POWER LOSS AND VOLTAGE
DEVIATION
The installation of EV charging infrastructure to the dis-
tribution system changes the power flow pattern in the
feeders as well the voltage profile of the system will have
changed. The total EV load will increase the power loss

FIGURE 3. Overlapping of traffic nodes in the distribution system.

TABLE 7. Parameter setting of PSO-DS.

in the distribution system. However, we can bring this
loss to a minimum value by optimizing the location of
EV charging infrastructure. The EV station is modelled as
a constant load. The shunt capacitors are installed in the
primary distribution system to compensate for the absorption
of reactive power. The system’s total loss depends on the
location and ratings of EV charging infrastructure and shunt
capacitors. Keeping the other load in the distribution system
constant, we take the location and rating of EV charging
infrastructure and shunt capacitor as the design variables.
The second function (F2) for minimization is the total active
power loss of the distribution system is mathematically
expressed in equation (7). The reactive power compensation
by the shunt capacitor will also minimize the voltage
deviations. Equal importance should be given to voltage
profiles like total power loss. Function F3 is created to take
care of the voltage profile of the system, which is expressed
in equation (8) with the constraints listed in the equations
from (9) to (16)

F2 =
Nbus∑
i=1

Nbus∑
j=1

gij(V 2
i + V

2
j − 2ViVjcosθij) (7)

F3 =
Nbus∑
I=1

|Vi − V0|
V0

(8)

subject to the constraints,

−PDi − UEViPEV ,i

=

Nbus∑
j=1

∣∣Yij∣∣ ∣∣Vj∣∣ |Vi| cos (θij + δj − δi) (9)
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TABLE 8. Comparison results for the proposed function for 1 - 4 EVCS (without capacitor).

−QDi − UEViQEV ,i + VSCiQSC,i

= −

Nbus∑
j=1

∣∣Yij∣∣ ∣∣Vj∣∣ |Vi| sin (θij + δj − δi) (10)

Vmin
i ≤ Vi ≤ Vmax

i i 6= 1 (11)

Sij ≤ Smaxij (12)

QminSC ≤ QSC,i ≤ QmaxSC (13)

UEVi =

{
1, if the EVCS is located at bus i
0, otherwise

(14)
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TABLE 9. Comparison results for the proposed function for 5 - 8 EVCS (without capacitor).

VSCi =

{
1, if the shunt capacitor is installed at bus i
0, otherwise

(15)

Yij = Gij + jBij =
∣∣Yij∣∣ 6 θij (16)

Equation (16) is the element of bus admittance matrix, the
real part stands for conductance and imaginary part stands
for susceptance.

The proposed mathematical model consists of three-
objective functions. The pareto solutions of themulti-objective
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FIGURE 4. No of EVCS vs coverage.

optimization problem can be obtained by using different
weighting coefficients and then converting the problem into
a single objective problem.

Minimize F = α1

(
1
F1

)
+ α2F2 + α3F3 (17)

The three objective functions namely coverage, loss and
voltage deviations are of different order of magnitudes,
we need to normalize these objectives. In this paper, advanced
normalization method [20] is utilized.

III. IMPLEMENTATION OF PSO-DS ALGORITHM
PSO is an evolutionary computation algorithm developed
by [21], which was inspired by the social behaviour of bird
flocking and fish schooling. It creates a ‘‘population’’ of
particles that fly through the problem hyperspace with given
velocities. At each iteration, the velocities of the individual
particles are updated according to the historical best position
for the particle itself and the neighbourhood best position.
Both the particle best and the neighbourhood best are derived
according to a user defined fitness function. For a given
problem, each individual possible solution can be modelled
as a particle that moves through the problem hyperspace. The
position of each particle is determined by the vector xi ∈ Rn

and its movement by the velocity of the particle vi ∈ Rn as
given below

Exi(t) = Exi(t − 1)+ Evi(t) (18)

The particles can gain information by their own experience
or from the knowledge of other individuals in its neigh-
bourhood. It is reasonable to apply random weights to each
part to give relative importance between these two that can
vary one decision to other. The velocity will be determined
by

Evi(t) = Evi(t − 1)+ ϕ1.rand1
(
Epi − Exi (t − 1)

)
+ϕ2.rand2.

(
Epg − Exi (t − 1)

)
(19)

The equation (19) consists of three components, the first
component is related to the tendency of the particle to
continue in the same direction it has been traveling, the

FIGURE 5. No of EVCS vs power loss.

FIGURE 6. No of EVCS vs total voltage deviation.

second component makes the particle to move towards the
best position ever found by the given particle pl (Pbest)
and the third component attracts the particles towards the
best position found by any particle: pg (Gbest). The third
component is termed as ‘‘ social knowledge’’ or ‘‘group
knowledge’’. In this paper, we want to integrate the direct
search method into particle swarm optimization (PSO) to
search for better Gbest. It applies the expansion or contraction
around the gbest particle computed by PSO. The value of the
objective function either decreases or remains the same from
Gbest particle. This integration avoids the major drawback
of the direct search method which lies in the selection of the
starting point. It also improves the convergence and accuracy
of canonical PSO.

The computational procedure for the optimization of the
proposed multi-objective function using PSO-DS is given in
the algorithm (1).

In this paper, the location of EVCS and shunt capacitors are
integers but the computation procedure of PSO-DS are with
real numbers. To incorporate integers, during initialization
as well as the updating, the concerned variable is rounded
to the nearby integer. Backward/Forward sweep load flow
algorithm is used to compute the total active power loss
and voltage profile of the test system at each iteration of
PSO-DS [22]. The flowchart of PSO-DS algorithm for the
placement of EV charging infrastructure and shunt capacitors
is shown in figure (1).
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TABLE 10. Pareto solution of the objective function.

FIGURE 7. Power loss in the system after the installation of EVCS and
capacitors.

FIGURE 8. Voltage deviation in the system after the installation of EVCS
and capacitors.

IV. RESULTS AND DISCUSSION
A. PERFORMANCE OF THE ALGORITHMS ON
BENCHMARK FUNCTIONS
The performance of the PSO-DS algorithm is compared with
other algorithms by applying it to the normal benchmark
functions [23]. table(1), table(2) and table(3) shows the
various benchmark functions for testing. The order of all test
functions is taken as 10. The metrics for validation are best,
worst, median, mean and standard deviation. The parameter
setting of the PSO-DS optimization algorithm is given in
the Table (7) The total number of independent runs for all
algorithms is 30. Simulations are performed in MATLAB
2021b using a system configuration of Intel(R) Core(TM)
i3-3217U CPU @ 1.80GHz 1.80 GHz, 6.00 GB RAM.
The results from table(4), table(5) and table(6) show the

FIGURE 9. Pareto front of the fitness function.

FIGURE 10. Interpolated surface plot of pareto front.

PSO-DS algorithm’s efficiency over other well-established
optimization procedures.

B. SYSTEM DESCRIPTION
After successfully applying the PSO-DS algorithm on
benchmark functions, IEEE 33 bus distribution and a 25-node
traffic network are taken to obtain constructive plans for
charging stations. The one-line diagram of the IEEE 33 bus
distribution system is shown in Figure (2). In the test
system, the traffic nodes 1-25 geographically overlap with
the distribution system nodes 2-26. Node 1 of the distribution
system is connected to the grid supply point. The details of the
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TABLE 11. Comparison of the simulation results.

TABLE 12. Results for the proposed multi-objective functions.

FIGURE 11. Convergence of the fitness function.

IEEE 33 bus distribution system and 25 node traffic network
are in the appendix. The superimposed nodes of the traffic
network in the electrical distribution system are shown in
Figure (3). The traffic network node data was taken from [2].

The maximum EV battery capacity is considered 30 kWh,
and the energy consumption rate is 0.25 kWh/km. When

FIGURE 12. Bus voltage variation with 8 EVCS.

the EV is starting from the source node, the SOC of the
EV battery is considered as 50%. It is assumed that the
total charging demand of EVs in the distribution system is
800 kVA. It means the total installed capacity of EV charging
stations in the distribution system should equal 800 kVA. The
PSO-DS algorithm is utilized to obtain various constructive
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TABLE 13. Traffic network node data.

plans. Graphs like the number of EVCS versus coverage, the
number of EVCS versus total power loss, and the number of
EVCS versus total voltage deviations are found. The results
also include the effect of shunt capacitors on the total power
loss and total voltage deviations.

C. DISCUSSION
The proposed multi-objective model is solved by using
different algorithms, and the results are displayed in the
table (8) and (9). The results show that the PSO-DS algorithm
provides the best results among the other algorithms for the
multi-objective function. IEEE 33 bus distribution system
has a total active power loss of 203 kW and a total voltage
deviation of 5.31 % for the base loadings. By adding the
single EVCS, all the algorithms converged to the single
solution and the power loss increased by 11.48% from its
base loss, the voltage deviation increased by 3.74%, the
coverage is 37.6% only. The EVCS number is gradually
incremented, and the coverage, total loss and total voltage
deviation are obtained for all cases. However, the increase
of the number of EVCS would increase the power loss and
total voltage deviation, which can be understood from the
figure (5) and (6). When placing the 8 EVCS, the coverage is
maximized (i.e.) the customer from any location in the traffic
network can access the charging station with minimized
power loss and total voltage deviation. Another case includes
the simultaneous placement of EVCS and shunt capacitors.
It is clear from the tables that the installation of shunt
capacitors at the optimal locations significantly reduces the
total loss and enhances the voltage profile.

Table (10) shows the optimal EVCS locations, EVCS
ratings, shunt capacitor location, and shunt capacitor rating.
The simulation is run for 30 times and the best results have
been taken. The table (11) presents the comparative results
obtained from the toatl run. The values of the objective
functions with respect to the number of EVCS are presented
in Table (12). It is clear from Table (12) that the coverage
progresses to the maximum value as the EVCS number
increases and without the installation of shunt capacitor, the
power loss as well the total voltage deviations for the given
loading conditions increases.

TABLE 14. IEEE 33 bus test system data.

The installation of 8 EVCSwith the total rating of 800 kVA
increases the total system loss and total voltage deviation
to 240.1 kW and 5.5%. After the successful placement of
the capacitor, the losses in the system reduced by 26.61%
and the voltage deviation is reduced by 39.92%. Figure (4)
shows the variation of coverage with the number of EVCS
and this graph will give a quick reference to the decision
maker regarding the coverage with respect to number of
EVCS. Figure (5) and (6) gives the change of loss and total
voltage deviation with respect to the number of EVCS. The
effect of shunt capacitor on active power loss as well as total
voltage deviation are presented in the Figure (7) and (8). The
convergence of the proposed model solved by PSO-DS is
displayed in the Figure (11). The pareto front of the proposed
multi-objective function is displayed in the Figure (9). The
interpolated surface plot of the pareto front is shown in the
Figure (10) which projects the solution points in the surface.
A sample solution point is marked in the pareto figures which
clearly represents the possible solution in the surface.

V. CONCLUSION
The deployment of EVs impose challenges on the secure
operation of the electric distribution systems. The EV charg-
ing infrastructure location problem should offer charging
conveniences while minimizing the negative impacts to the
power systems. A new multi-objective EV charging station
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planning model has been developed in this paper taking
the total coverage, loss minimization and voltage profile
improvement as objective functions. PSO-DS algorithm has
been employed to solve the proposed mathematical model
because of its efficiency and simplicity. The case studies
shows that the proposed model have successfully yields
attractive construction plans of EV charging stations, while
maintaining the operation economy and the security of the
power system.
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