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ABSTRACT The integrated circuit (IC) ecosystem, today, is widely distributed. Usually, a handful of
companies is involved in the development of a single chip – an environment that presents many opportunities
for malicious activities such as the insertion of hardware trojan horses. This work presents a specialized form
of a hardware trojan that is able to mount a hardware-based ransomware attack, an attack that previously
only existed in the software domain. This attack is therefore termed a hardware ransomware and is the main
contribution of this work. As case studies, two architectures of the hardware ransomware are presented,
along with a silicon demonstration in 65nm CMOS. In order to discuss the detectability of the malicious
logic, the hardware ransomware is inserted in a complex system on chip (SoC). The experimental results
show how an adversary can effortlessly insert the ransomware logic: the baseline SoC has a representative
area utilization factor of 59.97% and, after the trojan is inserted, the area utilization factor increases by 0.73%
to 60.70%. The inserted logic is also responsible for an increase of approximately 2% in static power – well
within process variation margins. Finally, this paper discusses the implications of such an attack at length,
showing that from the implementation and technological side, there are no barriers for an adversary to devise
a hardware ransomware.

INDEX TERMS Ransomware attack, hardware security, hardware trojan horse, malicious logic, ASIC.

I. INTRODUCTION
Today, there are enormous challenges to protect networks,
servers, personal computers and devices. It is estimated that
the (cyber)security segment is a 100 billion dollar indus-
try [1], with security solutions for hardware and infrastruc-
ture receiving a lot of increased attention. Adversaries are
typically interested in accessing, modifying, or destroying
information they are not privy to, but may also be interested in
applying/causing a denial of service (DoS), leaking informa-
tion, or extortingmoney from users. The latter type of threat is
often termed as a ransomware and is the subject of this paper.

Ransomware is a type of malicious software (i.e., malware)
that is designed to encrypt or limit the access of user data [2].
Typically, a ransomware is triggered by the user himself or
by a timing event, which is then followed by an encryption
of all of user data. Finally, a ransom is demanded to be paid
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for the decryption, typically handled through the anonymity
of a Bitcoin transaction. In recent years, ransomware became
a widespread concern. For instance, WannaCry infected tens
of thousands of computers in over 150 countries [2], [3]
in an attack in which the attackers demanded $300 per
infected computer. Cryptolocker [4], which is another infa-
mous example, was responsible for tens of millions of dollars
in extortion when it first emerged. Several large organiza-
tions, such as England’s NHS, have been affected by ran-
somware attacks [5].

It must be highlighted that ransomware attacks are often
possible due to software and network vulnerabilities. Mean-
while, there is a whole array of other vulnerabilities and
attacks that are studied in the domain of hardware security
(e.g., backdoor insertion [6] and hardware trojan horses [7]).
Backdoors and trojans are malicious logic that is inserted by
an adversary. Backdoors can attempt to give an adversary
privileged access to a given functionality of the integrated
circuit (IC), while trojans might just attempt to corrupt some
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computation. Then, the question we are interested in answer-
ing in this paper is the following: can an adversary mount a
ransomware attack as a hardware trojan?

In this feasibility study, we assert that, by combining
cryptographic hardware and a key-generation scheme, a ran-
somware attack can indeed be mounted in hardware. We term
this attack a hardware ransomware, which can be consid-
ered a specialized case of a hardware trojan. No demonstra-
tion of such an attack exists prior to our work, although it has
been hypothesized in [8].

A. FEASIBILITY OF A HARDWARE RANSOMWARE
Before discussing the technical details of our work, we must
address the feasibility of such an attack. Differently from
software, the attacker has to balance a much more compli-
cated risk-reward equation. First, not all systems are good
candidates for being infected by hardware ransomware. The
attack only makes sense if the ransomware targets a system
that carries persistent data that has value to the user, such
that the victim would be motivated to pay a ransom. On the
other hand, if this system also runs software and an Operating
System, the software ransomware attack vector remains more
practical since it can be mounted by a much less capable
adversary. An external hard drive is an example of a system
that could be the target of hardware ransomware.

In the case of hardware ransomware, we have some strin-
gent limitations that do not exist for its software counterpart,
especially regarding how to communicate with the victim.
In software, a ‘‘popup’’ warns the victim that the attack has
taken place and provides instructions for payment. In hard-
ware, a similar communication channel can be established if
the ransomware can write files to the storage system. This,
in turn, incurs a significant overhead since the malicious logic
has to understand the filesystem of the storage. We address
this limitation in our discussion.

On the detection side, both software and hardware versions
of ransomware have to be stealth – it must not become
obvious for a victim that his/her system is infected before the
ransomware attack is executed. Let us assume an attacker has
managed to successfully insert ransomware-like logic into an
IC that was mass-produced. The attacker has to be insightful
when orchestrating the trigger condition for this ransomware.
Otherwise, once the first victim assigns blame to the infected
IC, other potential victims would proceed to perform data
backups or simply replace the IC altogether. For this reason,
the authors of [8] make an argument that attackers can benefit
not only from straightforward payment of ransom, as well as
from causing the stock value of a targeted company to drop.
On that premise, our focus on this paper has been to show the
technical feasibility of a ransomware attack in hardware.

B. COMPARISON TO EXISTING THREATS: SOFTWARE
RANSOMWARE AND HARDWARE TROJANS
1) SOFTWARE RANSOMWARE:
The most obvious comparison to be made is against the
existing threat of a software ransomware. To guide this

comparison, we note that a software ransomware has three
distinct components: trigger, cryptographic payload, and user
interface. The trigger is the condition at which the attack starts
to execute and, in many cases, it is linked to an action by the
user of a system (e.g., when downloading an infected file).
For a hardware-based ransomware attack, this is not the case.
The malicious logic has to already be in place from the time
the circuit is fabricated.

Regarding the cryptographic payload, here the difference
between software and hardware is non-existent: there are
known open-source implementations of cryptographic proto-
cols that an adversary can select from, both in software and
in hardware.

From the user interface point of view, a software-based
ransomware has much more flexibility when demanding the
ransom payment from the user. The same cannot be said about
hardware; this remains themost important difference between
the two and has a severe impact on the feasibility as already
discussed.

2) HARDWARE TROJAN:
Generally speaking, a hardware trojan is a malicious mod-
ification of the circuitry of an IC. Among the many types
of hardware trojans described in the literature, the functional
type aims to corrupt some internal data of the IC. We will
show that the herein described hardware ransomware has
the same characteristic since the user data is encrypted with
an unknown key, thus appearing to be corrupted from the
user point of view. Therefore, the main difference between
a traditional hardware trojan and a hardware ransomware is
the ransom demand and the subsequent reversal of the attack
via decryption.

Traditional hardware trojans are also characterized by a
trigger and a payload, where the trigger can be a long
sequence of events that have to take place before the payload
acts on the circuit. This characteristic remains in the hard-
ware ransomware since it is a specialized case of a hardware
trojan. However, the payload of a hardware ransomware is a
cryptographic core that requires a non-negligible amount of
area.

C. CONTRIBUTIONS
We summarize the contributions of this paper as follows:

• Proposal of two hardware ransomware architectures,
one optimized for latency and another that is area-
optimized. No software/processor components are uti-
lized in either.

• A silicon demonstration of a hardware ransomware as
a standalone ASIC. Our demonstration is optimized for
low leakage power and small footprint.

• Presentation and analysis of measurement data from the
parts fabricated in a 65nm CMOS technology.

• Implementation of both architectures in a Field Pro-
grammable Gate Array (FPGA)-specific form.
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FIGURE 1. Representative ASIC design flow, possible attackers, and
compromised design artifacts.

• A case study of the insertion of the low-footprint hard-
ware ransomware in a complex System on Chip (SoC)
and the related discussion on detection.

The remainder of this work is organized as follows: in
Section II, a background pertaining to attackers and the IC
design flow is presented. The proposed hardware architec-
tures for ransomware are described in Section III. Pre-silicon
and post-silicon results for the fabricated design are given
in Section IV, while FPGA-based results are presented in
Section V. A case study of ransomware insertion in a complex
SoC design is given in Section VI. In Section VII, a com-
parison with known trojans is given, as well as a discus-
sion on related limitations and avenues for future research.
Section VIII concludes the paper.

II. BACKGROUND: ATTACKERS VS. DESIGN FLOW
The IC ecosystem, today, is widely distributed, both geo-
graphically and logistically. Usually, a handful of companies
is involved in the many steps an IC goes through, including
design, fabrication, test, packaging, etc. As a result of this
spread, there are many opportunities for malicious attackers
to act.

Application Specific Integrated Circuits (ASICs), in their
vast majority, are developed following a standard cell-based
design flow that is carried out by a set of Computer-Aided
Design (CAD) tools. In Fig. 1, we show a design flow as a
series of transformations that the design goes through: from a
natural language specification to a netlist of standard cells to
a physical layout. The representative design flow presents the
locations of three distinct attackers that can mount a hardware
ransomware. The attackers are labeled as A1-A2-A3. Their
capabilities are discussed in Section II-A.

TABLE 1. Possible attackers and characteristics.

A. THREAT MODEL
We consider three different attackers and, for the sake of
brevity, name them A1, A2, and A3. Their locations in the
design flow are indicated in Fig. 1. Their characteristics are
given in Table 1. The goal of all considered attackers is to
insert the hardware ransomware logic without detection. For
all attackers, we can also make the assumption that they are
rogue elements within their organizations.

Attacker A1 is an IC designer that is responsible for a given
block. He/she does not enjoy chip-level visibility. He/she has
no control over the top-level floorplan.

Attacker A2 is an IC designer that is responsible for the
integration. He/she enjoys chip-level visibility. He/she has
full control over the top-level floorplan, except for pinout.

Attacker A3 is a foundry engineer. He/she enjoys chip-
wide visibility, albeit in a finalized layout form. He/she has
no control over the top-level floorplan.

Generally speaking, any malicious modification of the
circuitry of an IC can be referred to as a hardware trojan.1

Trojans can be characterized by their physical representation
and behavior. Moreover, there are various works where sur-
veys and taxonomies for hardware trojans have been cata-
logued/proposed [9]–[11].We have adopted the classification
proposed by Rajendran et al. [10] where trojans are catego-
rized based on: 1) insertion phase, 2) abstraction level, 3)
activation, 4) effect, and 5) location on the design.

Regarding insertion phase, attackers A1 and A2 perform
insertion at design time. Attacker A3 performs fabrication-
time insertion. Consequently, the abstraction level for
attacker A1 is register-transfer level (i.e., meaning the
attacker can modify code to instantiate the malicious logic).
Attacker A2, on the other hand, has a netlist description of
the ransomware and treats it as another piece of the system.
Attacker A3 is a rather special case: our assumption is that
he/she leverages the engineering change order (ECO) flow of
a commercial physical synthesis tool, meaning that the sys-
tem, as he/she sees it, is a finalized layout and the malicious
logic is a netlist. The attacker’s job is to insert the netlist into a
finalized layout with minimal invasiveness, which is exactly
the motivation for the use of an ECO flow. The feasibility of
this type of attack was first shown in [12] for relatively small
designs.

1The terminology varies from author to author, with subtle differences
between the definition of backdoors and trojans.
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FIGURE 2. Block diagram of the proposed hardware ransomware.

For all considered attackers, having an internal trigger is
preferred for activation. With respect to the effect of the
hardware ransomware, the closest definition it can be mapped
to is DoS. Finally, the location of the hardware ransomware
changes according to the attacker: for A1, the ransomware
logic becomes part of an existing block; for A2, the ran-
somware logic is placed at the system-level as a block of
its own; finally, for A3, the ransomware logic lives in the
gaps between the standard cells of a placed layout, i.e., the
locations of filler cells. It should be evident that A2 has a
privileged position and a relative ease to alter the logic of
an IC.

III. PROPOSED HARDWARE RANSOMWARE DESIGN
Now that we have covered the design flow and associated
threats, we shift the discussion to the specifics of our pro-
posed ransomware circuit. A simplified block diagram of the
proposed ransomware is given in Fig. 2. The design con-
sists of three units: a Physical Unclonable Function (PUF),
an encryption/decryption unit that employs an Elliptic Curve
Diffie Hellman (ECDH) protocol, and a dedicated Control
Unit (CU) that is based on a Finite State Machine (FSM).

In short, our ECDH-based architecture makes use of two
private/public key pairs (denoted as PRKA, PRKV , PBKA,
and PBKV ) and a shared secret (SS). The PUF unit is respon-
sible for providing a chip-side key (PRKV ) as an input to the
ECDH unit and for notifying the CU through the done signal
when PRKV has been transmitted.
As shown in Fig. 2, trigger is a one-bit signal which is

used for the purpose to activate the ransomware. Therefore,
an external trigger was implemented (in our design) to make
the silicon demonstration more controllable (and easy to
bring-up). However, in a realistic attack scenario, the attacker
would not enjoy device access in order to assert the trigger.
Being so, a more sophisticated trigger mechanism would
be mandatory. A version of our ransomware using an internal
trigger is detailed in Section IV-A.

Once the ransomware is activated by an external event
(notice the input signal named trigger in Fig. 2), it works
by itself without any intervention by the attacker. Then, the
CU asserts the enc signal for the ECDH unit to perform data
encryption. Conversely, the CU asserts the dec signal for
decryption operation only when the value of SS_in (meaning
the SS key applied externally) and the SS key generated

internally are a match. The scheme works for the adversary
has decided the ECC parameters, the constant value of PBKV ,
and the also constant (and related) PRKA. Once the adversary
receives PBKV , calculating SS is trivial, i.e., the user of the
system sendsPBKV alongwith the hypothetical payment and,
in exchange, receives SS back. For the sake of clarity, Fig. 2
does not capture the adversary side of the attack where he/she
calculates SS. 2

It is worth noting that the software version of a ransomware
typically employs known cryptographic functions such as the
Advanced Encryption Standard (AES) [13], Rivest–Shamir–
Adleman (RSA) [14], and Elliptic Curve Cryptography
(ECC) [15]. In particular, CTB_locker, Petya, and TeslaCrypt
use ECC, which is also the strategy we employ in our ECDH
block. ECC-based crypto cores are often regarded as very
efficient (with respect to RSA), especially in terms of area,
and therefore are a good fit for our design. Another aspect
of software ransomware that is worth mentioning is that the
ransom addresses can be unique to each infected machine,
as is the case in the Locky family of ransomwares [16]. In our
approach, we make use of PUFs to the same end.

The aforementioned units (PUF, ECDH, and Control Unit)
are further described in the subsequent subsections.

A. PUF - PHYSICAL UNCLONABLE FUNCTION
A PUF is a structure that derives values from the physical
characteristics of the IC. It can generate signatures that lever-
age (undesirable) manufacturing variability such as shifts
in gate delay, threshold voltages, and many other physical
characteristics [17]. The physical randomness creates a fin-
gerprint – a unique value – for each device. Our PUF block,
depicted in Fig. 2, is actually a wrapper that harvests this
signature from a randomness source.

PUFs are divided into two categories: strong and weak.
This classification is based on the number of Challenge-
Response Pairs (CRPs) of a PUF. A strong PUF has an
immeasurable number of CRPs while a weak PUF has one (or
a limited number) of CRPs. Importantly, for the ransomware
scenario, a weak PUF is sufficient. The most common source
of weak PUFs are Static Random Access Memory (SRAM)
and Ring-oscillator (RO) devices [18]. The use of SRAM as a
PUF exploits the positive feedback loop in the SRAM bitcell.

Interestingly, despite FPGA devices being often
SRAM-based, there is a limitation to use the SRAM bits
of the FPGA fabric as a PUF: SRAM bits are often erased
on reset or during the programming. Therefore, the SRAM
bits have their ‘randomness’ lost after a power-on challenge.
Effectively, although SRAM bits are plenty in an FPGA,
they cannot be used for PUF purposes. On the other hand,
an RO is another kind of weak PUF that relies on gate delay
manufacturing variability [19]. Since FPGA devices are also

2The adversary side is not bound to any hardware limitations, so he/she
may make use of the same infrastructure that a software ransomware adver-
sary does.
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ICs, they suffer from variability that can be exploited in an
RO PUF.

In short, both SRAM and ROs can be utilized for generat-
ing unique signatures that enable the hardware ransomware
attack. An attacker is not bound to using one or the other
PUF. The use of an SRAM PUF is discussed in Section IV,
while the use of an RO PUF is discussed in Section V.

B. ECDH — ELLIPTIC CURVE DIFFIE HELLMAN
In our architecture, the ECDH unit and its elliptic-curve-key-
generator (ECKG) sub-unit are responsible for implementing
the ECDH protocol. As shown in Fig. 2, the ECKG gen-
erates PBKV and SS. To generate PBKV , the ECKG unit
takes elliptic-curve parameters (ECC-P) and PRKV as inputs.
To generate SS, the ECKG unit takes the attacker’s public key
(PBKA) and PRKV as inputs. Notice that PRKV and SS never
leave the architecture, while PBKV does. We also highlight
that we have used a predefined constant value for PBKA,
chosen by the attacker.

The employed ECKG unit is over GF(2m) with m =
163, i.e., all keys are 163 bits long. The initial elliptic-curve
parameters, i.e., ECC-P, have been selected from NIST rec-
ommendations [20]. The ECKG unit consists of a register file
unit, pipeline registers, and an elliptic-curve arithmetic unit.
It is a modified version of [21], now containing an additional
protocol layer and an interface to the PUF.

We have provided two different solutions to generate
shared keys for the attacker and victim. The first solu-
tion, termed low-latency ECDH core (LL-ECDH), requires
a reduced number of clock cycles at the expense of area. The
second solution, termed low-area ECDH core (LA-ECDH),
requires fewer hardware resources but the computation takes
longer to complete. The key generation procedure imple-
mented requires a total of 3426 and 162512 clock cycles for
the LL-ECDH and LA-ECDH cores, respectively.

C. CONTROL UNIT
The final module of our proposed architecture is the CU,
an FSM with four states (idle, keygen, encrypt, decrypt)
that orchestrates the operation of the ransomware. As we
previously alluded to, the ransomware starts the key gener-
ation and subsequent encryption after the trigger signal is
asserted, which causes a transition from the idle to keygen
state. Conceptually, a ransomware can be activated by the
occurrence of an event inside or outside of the system it
resides in. Both approaches can be of interest for an attacker:
an external trigger provides better control over the attack,
while an internal trigger is likely to bemore difficult to detect.
It is important to note that trigger (in our fabricated chip – this
will be described later in detail in Section IV) is an external
single bit signal that activates the ransomware on demand.
This choice is purely for practical demonstration reasons.

The keygen state of the CU FSM handles the calculation
of two keys: PBKV , and SS. The PUF module generates
the PRKV and sends it to the ECDH module along with the
done signal informing that PRKV is ready – the ECDH block

can now calculate SS. After that, the FSM transitions to the
encrypt state. The CU starts to read address by address from
the storage system. The data being read is sent to the ECDH
block to encrypt using SS as the key. Next, the encrypted
data is sent to the CU to be written back at the same address
on the storage system. We assume a generic storage system
(or its interface) is in place, such that the the adversary will
be able to identify it and connect malicious logic to it. The
encryption/decryption takes 32-bit chunks of data at a time.

Once the encryption process is concluded, the CU goes
again into idle mode until the hypothetical ransom payment
is executed. The attacker is able to calculate SS externally
and provides this value back to victim upon payment. If the
user provides the right SS key (using the SS_in signal, shown
in Fig. 2) to the circuit, the CU notifies ECDH to start
the decryption process by driving the dec signal. Here, the
procedure is identical to the encryption: addresses are read
one by one, decrypted, and written back to the storage, 32 bits
at a time. This process is repeated until the last address is
processed. The attack ends.

However, it is conceivable that the victim will turn the
system on and off once the attack takes place. The ideal
PUF for a hardware ransomware should provide the same
response every time. It is not important that the PUF remains
stable over a long period of time like in other applications,
so concerns with lifetime degradation of the PUF are eased.

IV. ASIC IMPLEMENTATION AND SILICON
DEMONSTRATION
In order to demonstrate that a hardware ransomware attack is
technically feasible, we designed and manufactured an ASIC.
The following assumptions were made with respect to the
design: 1) the trigger is external to the device; 2) the storage
is emulated 3 as an SRAM memory; 3) the adversary can
connect his malicious logic to the address and data buses
of the storage. In practice, this last assumption holds true if
the adversary has system-wide visibility, as is the case for
attackers A2 and A3. The motivation for carrying out this
exercise in silicon was to demonstrate a minimal working
example where the targeted system has only one block other
than the malicious logic, i.e., the storage itself.

The ransomware silicon demonstration is carried out in a
65 nm CMOS technology. The design emulates an external
hard drive as our case study application. It can be repurposed
for any application that contains a storage system that holds
persistent user data. In Fig. 3, we show a high-level diagram
of the three main blocks of our design. The malicious logic on
the left portion of the image corresponds to the ransomware
architecture previously detailed in Section III, with the excep-
tion that SS is exposed to a debug unit. The storage system
on the right side of the image corresponds to a single SRAM
instance that is generated from a memory compiler provided
by a partner silicon foundry. In the center of the image,

3An actual storage should be non-volatile and contain information that is
of value to the user. SRAM memory does not present such characteristic,
so the keyword here is emulation.

VOLUME 10, 2022 44831



F. Almeida et al.: Ransomware Attack as Hardware Trojan: Feasibility and Demonstration Study

FIGURE 3. Top-level diagram (simplified) of our ASIC design that
implements a hardware ransomware.

we highlight the use of a debug structure. Conceptually, this
debug structure is not part of the system or the ransomware,
but it is added to our demonstration so we can have visibility
of the many circuit internals for validation purposes.

For coding and verification efforts, we have chosen the
verilog language. The top-level design was synthesized using
Cadence Genus and a foundry-provided 65 nm standard cell
library. The resulting netlist was used for physical implemen-
tation in Cadence Innovus. For physical verification (DRC
and LVS), we have used Calibre from Mentor Graphics. The
design implements the LL-ECDH variant of our elliptic curve
arithmetic unit.

In Fig. 4, we show the layout of our chip in which the major
structures are highlighted. Some routing layers are removed
for the sake of clarity. The visible structures are the SRAM
PUF on the upper right corner, the storage system on the
lower left, the ransomware core in the center of the chip (a sea
of standard cells), and the debug module on the lower right
corner. Both SRAMs have an exclusive power ring around
them, so no standard cells are allowed in their vicinity. The
PUF uses an SRAMwith 32 address and 6-bit data lines. The
storage system is also an SRAM but with 64 address and 32-
bit data lines. IO cells are visible on the chip periphery, while
power stripes are gridded and routed across the entire chip,
horizontally and vertically.

The GDSII file was submitted to the foundry through a
broker. The design was completed in March 2020, underwent
fabrication in April-May, and parts were delivered a few
months later when they were also bench tested at our in-house
lab. A total of one hundred chips was fabricated, but only
twenty were packaged in a Dual-In-Line-28 (DIP-28) form
factor. In Fig. 5, we show a die shot of an unpackaged chip
taken with the aid of a microscope. It is possible to recognize
the same power routing stripes and IO cells as in the layout.
A black circle is used to facilitate the identification of the
lower right corner of the chip in both Fig. 4 and Fig. 5.
A custom PCBwas fabricated to aid in the validation of our

chip. The packaged chip is placed on a PCB with a DIP-28

FIGURE 4. Screenshot of the chip layout generated in Cadence Virtuoso.
Chip dimensions are 960µm x 960µm, but the ransomware core only
requires a fraction of the area (0.14mm2). Major structures are
highlighted. The ransomware is the LL-ECDH variant.

FIGURE 5. Microscope view of an unpackaged die where we can identify
the same IOs and some power stripes on the top metal layer.

socket. The PCB also provides power to the core logic (1.2V)
and to the IO cells (2.5V). A handful of decoupling capacitors
is utilized for each power supply. A Zedboard FPGA [22]
is utilized to drive/read the signals to/from the PCB. More-
over, the FPGA drives the trigger, as well as the clock, and
collects the outputs of the chip. A Universal Asynchronous
Receiver/Transmitter (UART) is used to communicate with
a workstation that performs the same encryption/decryption
process for verification of correctness of the chip outputs. The
setup is shown in Fig. 6, also highlighting a high-precision
multimeter for leakage measurement and an oscilloscope to
aid in debugging.

The experiments with our fabricated ransomware show
that after a trigger, all data in the storage are encrypted as
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FIGURE 6. Setup utilized to validate our fabricated ransomware ASIC.

expected. Data are only decrypted after providing a cor-
rect key back to the chip, as expected. Switching between
these different actions is managed by the output_select signal
shown in Fig. 3, which can take the values of BYPASS
(‘00’), DUMP (‘01’), and ACT (‘10’). In BYPASS mode, the
ransomware is completely ignored and a direct connection
between signals key_in (input) and debug_out (output) is
created. This is useful to verify that the fabricated parts are
alive before more complex tests are performed. In DUMP
mode, the debug module exposes the content of the storage
system directly on the output of the chip. Finally, in ACT
mode, the ransomware is allowed to come into operation.

When the debug module is active, it drives the debug_out
output signal, which is a single bit. In practice, the infor-
mation of interest has to be serialized out of the chip. The
SRAM is read address by address, and each data element
has a header and a tail appended to it. In other words, the
debug module generates a packet composed of {HEADER +
DATA + TAIL}. The same packet concept is applied when
serializing PRK, PBK, and SS. This artifice facilitates the
identification of data and keys when the debug module is
utilized for validation/bring-up of the chip, while still keeping
the pin count under control – the actual implementation by an
adversary would not have such costly features.

The attack begins after the activation of the trigger signal.
Next, the ransomware generates the SS key for encryption
using the PUF as a seed. However, before initiating the
encryption, we perform an initial DUMP to get all the val-
ues from the memory. We collect the memory content and
all keys, which serve as a golden model to verify if the
encryption and decryption modules are working correctly.
Then, the ECDH block encrypts the user data, one address
at a time. We again perform a DUMP to verify if all the
data is encrypted. Next, the user is expected to provide a
key back via the SS_in input. The use of the right key trig-
gers the decryption. Finally, a third DUMP of the storage
is performed and the values are compared (i.e., the storage
content after decryption should match the plain-text used
during encryption).

TABLE 2. Dynamic and static power values reported from physical
synthesis.

FIGURE 7. Static current measurements plotted as a normal distribution.
Each red circle corresponds to a single die. Best (1.2µW ) and worst
(16.6µW ) values for static power are highlighted.

Avoiding high leakage current is a concern since the
attacker mounting a hardware ransomware attack wants to
defeat detection. Thus, power optimization was used to
achieve the lowest leakage possible (along with the exten-
sive use of HVT transistors). Table 2 presents a compari-
son among different corners: SS (Slow-Slow) at 125oC and
1.08V, TT (Typical-Typical) at 25oC and 1.2V, and FF (Fast-
Fast) at 0oC and 1.32V. The leakage portion is very low
compared with the dynamic power (Internal and Switching).
We argue that the presence of the ransomware would not
be noticeable in a design with a significant amount of logic
such as in a modern SoC. In Section VI, we expand on this
argument when we present the insertion of the ransomware
on a SoC design.

In Fig. 7, we plot a normal distribution of the leakage
power measurements from 20 packaged chips. We remind
the reader that leakage power is the static consumption of a
circuit when it is effectively idle. The average leakage power
is 5.2µW and the standard deviation is 4.2µW . Measurement
points are plotted as red dots. The measurement results are
in line with the pre-silicon results from Table 2, well within
the expected process margins. These relatively low values are
only possible due to the extensive use of HVT transistors
and power optimizations during synthesis. An adversary can,
without any restrictions, make these same design decisions.

In our manufactured IC, we have utilized an SRAM PUF
with 32 addresses and 6 bits per address. Since this is a
compiled memory, not all sizes and ratios are valid. The
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FIGURE 8. Heatmap representation of the 163 bits collected from the
SRAM PUFs of 20 chips. The darker the pixel, the higher the ocurrence
of ‘1s’.

32 × 6 configuration is the least wasteful arrangement to
generate the 163 PRK bits we need for ourminimal working
example. The remaining 29 bits can be utilized for enhancing
the quality of the PUF response. In Fig. 8, we show a heatmap
of the 163 PUF bits from the same 20 ICs. The occurrence
of ‘1s’ is slightly higher (55%) than ‘0s’ (45%). Each chip
was power cycled 10 times, revealing that 17% of the bits
showed instability, i.e., intra PUF variation. On average,
22 bits per chip have different values at power-on. This value
is in line with the findings of other works that also make
use of a commercial SRAM IP as a PUF [23]. Further error
correction schemes and helper data would be necessary to
guarantee that the SRAM PUF response – after correction –
has the same deterministic value at every challenge [24], [25].
Alternatively, the attacker can repurpose the foundry SRAM
IP to promote better stability [26] (and therefore require less
resources for error correction). An attacker can also make use
of PUF that requires no error correction codes at all, such as
the self-testing approach described in [27].

The die size is 0.960mm x 0.960mm, but additional struc-
tures are necessary for fabrication. The insertion of a seal ring
increases the die size to 1mm x 1mm. However, when exclud-
ing all the extra structures like storage system, debug module,
seal ring, and IO cells, which conceptually are not part of the
ransomware, the actual area of the ransomware logic then
becomes 0.1411mm2. This represents the actual amount of
logic an attacker would have to insert. In Table 3, we show
a breakdown of the components of the chip, from which
it becomes clear that the biggest area and leakage power
consumption comes from the ECDH block. We separate the
PUF contribution in two lines, where the first refers to the
SRAM instance itself while the second line refers to standard
cell logic that is required to interface with the memory (‘PUF
wrapper’).

A. ALTERNATIVE IMPLEMENTATION
In this section, we provide a discussion on an alternative
implementation of our ransomware that has an internal trigger

TABLE 3. Ransomware area report after physical synthesis. This version
uses an external trigger and the LL-ECDH core.

TABLE 4. Ransomware area report after physical synthesis. This version
uses an internal trigger and the LA-ECDH core.

FIGURE 9. FPGA placement solutions of the ECDH implementations.
In red the ECDH version, in yellow the RO, and in green the FSM.

and uses the LA-ECDH variant of our elliptic curve arith-
metic unit. This version was not fabricated and the results
herein reported are from synthesis using the exact same
libraries as in the fabricated version.

First, this version is expected to have a much smaller
area footprint, which is shown in Table 4. Figures are also
provided for the numbers of gates and power consumption.
The LA-ECDH version of our ransomware has reduced the
number of gates by 81.66%, area by approximately 71.91%,
and total power by 80.42%. However, the ransomware using
the LA-ECDH has a degraded performance: the number of
clock cycles required to generate the SS is 47 times bigger
than in the LL-ECDH core. This might still be a welcomed
trade-off for an attacker that is interested in defeating detec-
tion above all.

The internal trigger module developed for this version uses
a counter register that is incremented every time a specific
address is accessed on the storage system. Every time the spe-
cific address is utilized for writing or reading, the counter is
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incremented.When any other address is accessed, the counter
resets to zero. When the counter reaches a threshold (in our
implementation the threshold is set to 10), the internal trigger
is activated. This type of counter-based trigger can easily be
extended for any threshold and adapted for any target address
and target width. This type of trigger is extremely relevant to
an attacker as he or she can devise a malicious software that
performs read/write operations that would lead to the trigger
being activated on purpose. For any other piece of software,
it would be unlikely that the trigger condition would be met.
The proposed internal trigger is very small, and requires only
4 flip-flops. Attackers A1, A2, and A3 are equally capable of
devising this internal trigger.

The results presented so far show that the system-level
increase in area and power would be insignificant if the ran-
somware is inserted in a complex SoC design with millions
of gates. It should also be taken into account that the ran-
somwarewould be fabricatedwithout all the debug structures,
which further contributes to a reduction in area and power.
These values would be easily masked in the variation of man-
ufacturing technology, which we show later in Section VI.

V. FPGA IMPLEMENTATION
As discussed in Section III, we described two ECDH cores,
one optimized for area (LA-ECDH) and another for latency
(LL-ECDH). The most contrasting difference from the previ-
ous ASIC versions is the need to use a PUF type other than
SRAM.

For this purpose, we have utilized an RO PUF which is
also a weak PUF just like the SRAM PUF. The utilized RO
PUF is adapted from [28]. A pair of ROs can be used to
generate a single value based on differences in gate delay
caused by variation in the manufacturing process (i.e., ‘0’ if
RO1 is faster, ‘1’ if RO2 is faster). Therefore, ROs have a
limited number of CRPs. A total of 163 RO pairs were used
for competing with each other to generate 163 random bits
to be used as the PRK. In other words, 163 ROs pairs are
necessary to provide 163-bit CRPs. The PRKA is still utilized
as a seed in the ECDH block to generate SS which is then
used to encrypt and decrypt.

Both implementations were deployed in a Zedboard FPGA
based on Xilinx Zynq R©-7000 SoC [22]. Vivado development
kit was used for synthesis, implementation, and bitstream
generation. In Fig. 9, we show the placement of the two
versions after the implementation phase. In Fig. 9a, we can
observe the ransomware with LL-ECDH and, in Fig. 9b, the
ransomware with LA-ECDH and internal trigger. The portion
of the design highlighted in red corresponds to the ECDH
while the yellow portion corresponds to the ROPUF. It should
be clear, even from visual inspection, that the overhead of an
SRAM PUF in ASICs (see Table 4) is much smaller than the
overhead of having an equivalent size PUF with RO pairs in
FPGAs.

In Table 5, we show the instance count for each ran-
somware implementation in terms of LUTs, registers, and
muxes. In a separate line, we show results for the RO PUF

TABLE 5. FPGA resources required by both ECDH versions.

only. The ransomware using the LL-ECDH version requires
32.84% of the FPGA resources. The ransomware using the
LA-ECDH, on the other hand, only requires 17.56% of the
resources. This relatively high density is due to our FPGA
device of choice. Currently, there are modern FPGAs like
Intel R© Arria R©10 [29] that have versions with 1.15M LUTs
and 1.7MRegisters. The Zedboard FPGA used for our imple-
mentation has only 53.2K LUTs and 106.4K registers. There-
fore, for a modern FPGA, the density increase caused by our
ransomware would be smaller. Graphically, however, using
the Zedboard FPGA allows us to make a visual comparison
of the implemented designs and their relative sizes.

VI. CASE STUDY: COMMON EVALUATION PLATFORM
The Common Evaluation Platform (CEP) [30] is an SoC
design based on the Freedom U500 RISC-V Core with two
levels of cachememory and a collection of open-source cores.
The CEP is composed of crypto cores, Digital Signal Process-
ing (DSP) cores, and Global Positioning System (GPS) logic.
It also interfaces with a variety of protocols and memories,
including support for an SD card functionality. The platform
is meant to allow users to test a variety of tools and techniques
in a realistic SoC.

To demonstrate the insertion of our ransomware in this
SoC design, we chose a simplified version of the CEP. Using
5 crypto cores (AES-192, Triple-DES, MD5, SHA-256, and
RSA), two Fourier transform cores (Discrete Fourier Trans-
form (DFT) and Inverse Discrete Fourier Transform (iDFT)),
and two filters (Finite Impulse Response (FIR) and an Infinite
Impulse Response (IIR)). Without loss of generality, we have
removed the GPS code generator (too small) and the cache
memories (too big).

The ransomware variant chosen to be inserted into the CEP
was the LA-ECDH core with the internal trigger. First, for the
sake of establishing a baseline, we have synthesized, logically
and physically, a ransomware-free version of the SoC. Later,
we perform the same exercise but include an instance of the
ransomware on the top level description of the SoC. Referring
to Fig. 1, this type of insertion would be feasible for an
adversary that is involved in the integration process (i.e.,
we act as attacker A2). It is also conceivable that an adversary
in the manufacture process could perform the ransomware
insertion, but certainly the challenge would be much higher
for this adversary as he/she has to find enough gaps in the
placement to insert his malicious logic and then find enough
routing resources to connect the inserted cells [31]. We will
also show how this type of fabrication-time attack is possible
(i.e., we act as attacker A3).
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Both the ransomware-free SoC and the ransomware logic
were synthesized using Cadence Genus. The netlists were
taken from Genus and loaded into Cadence Innovus. The
same technology and standard cell library from our fabricated
ransomware demonstration was employed in this experiment.
Next, in Innovus, all memory macros and top-level pins were
placed in the exact same position in the floorplan of all
designs. This is important both for the sake of fairness but
also to represent a more realistic attack scenario. We assume
attackers cannot change the position of the top level pins.
The position of the memory macros guides the placement of
the many modules of the CEP, i.e., the memories serve as a
seed for the floorplan. Finally, all standard cells are placed
and routed.

In Fig. 10, we illustrate the floorplan (amoeba view) and
the placed and routed (physical view) of three versions of
the CEP. The leftmost design is the original design, with-
out any malicious logic. Notice how the memory macros,
small rectangular blocks highlighted in green and pink colors,
are placed in the design’s periphery. Also notice how high-
congestion areas form around the AES and RSA modules.

We also consider a modified design where the attacker is
A2. Since here the attacker is in charge of the integration
process, he can insert the ransomware and place it as if it
was a regular module of the design. The ransomware logic
is highlighted in purple in the second panel from left to
right. Observe that the AES module is placed in almost the
same position in both versions, implying that the presence of
the ransomware is not aggressively disturbing the placement
solution. The RSA module, on the other hand, was moved
downwards to create space for the ransomware logic on the
upper right corner. This move did not compromise the per-
formance of either the AES or RSA modules. Still regarding
the RSA module, notice how it forms 6 very distinguishable
regions of high congestion. It is very clear to see the move
of these regions in the physical views. A careful reader can
appreciate that RSA and AES modules are the congestion
bottlenecks for this design, which is evidenced by the higher
usage of pink lines (metal 7). Visually, the congestion level
in M7 remains very similar before and after the ransomware
insertion.

Finally, a third version of the design is considered where
the attacker is A3. Notice how the floorplan of this version is
nearly identical to the floorplan of the original design. This is
a guarantee of the ECO flow that we have employed, which
will perform the insertion of the malicious logic without
perturbing the existing logic. It is possible to appreciate that
the ECO placer was able to find a region with many gaps
between standard cells in the same top right corner of the
floorplan.

All three versions were implemented using the same core
area, i.e, all versions have the same size of 2.165mm by
2.164mm. The baseline implementation of the CEP has a
placement utilization factor of 59.97% (meaning that 59.97%
of the area is covered by logic). After the insertion of the ran-
somware by attacker A2, the utilization factor was increased

by 0.73% to 60.70%. We have performed timing analysis
and extraction on both designs, which revealed that the addi-
tional capacitance due to the insertion of the ransomware
is insignificant, causing no performance loss to the SoC.
The results also show that the total power consumption was
increased by 0.36% and 0.15% for attacks mounted by A2
and A3, respectively. The ransomware-free baseline burns
344.97mW,while the compromised versions burn 346.20mW
and 345.49mW.

As mentioned before, a higher than expected leakage
current/power is indicative that some malicious logic was
inserted into the design. When considering all three design
corners, the leakage power of the ransomware-free CEP is
89.19µW (SS), 22.78µW (TT), and 66.69µW (FF). In prac-
tice, the real leakage of a fabricated IC is a normal dis-
tribution centered around the typical (TT) value and with
a deviation proportional to the other corners (SS and FF).
Now, we have to reason about how the ransomware insertion
affects this value. According to Table 4, the leakage power
associated with our LA-ECDH ransomware is 0.5035µW ,
roughly 2% of the SoC leakage. Effectively, a victim would
have no direct way of differentiating the expected variation
from the insertion of our malicious logic. We emphasize that
the ransomware insertion has not increased chip area and/or
impacted timing. Moreover, since the trigger events are rare,
an IC with a hardware ransomware virtually behaves as a
trojan-free circuit.

VII. DISCUSSION AND COMPARISON
To the best of our knowledge, there are no hardware imple-
mentations of a ransomware prior to our work. Our literature
review unveiled only one reference that hypothesizes on the
topic [8], but no circuits were built or simulated, therefore
comparisons are not possible. From this point of view, this
type of attack is poorly understood. In the interest of clarity,
we revisit some limitations of the attack in this section.

First, the SRAM-based PUF, as implemented off a com-
mercial IP, would not generate a stable key. An attacker would
have to carefully design a mechanism for error correction
or similar measure. However, the literature contains many
solutions that can be leveraged. The use of a correction mech-
anism would incur further overheads that are not desirable
from the point of view of the attacker. However, the attacker is
not concerned with long term reliability issues in PUFs (e.g.,
aging). The allowed time window between the trigger and the
ransom payment can be defined by the attacker, i.e., the PUF
should provide a reliable response during challenges within
the time window.

On the crypto front, we have utilized ECC augmented by
a Diffie-Hellman protocol for key exchange. Other solutions
can be sought, perhaps with lower overheads. Furthermore,
an adversary can reuse existing pieces of logic from the
original design to conceal his malicious logic. For instance,
our case study SoC already contains many crypto cores,
which an adversary could have wrapped with his customized
ECDH-like protocol. We argue that the insertion discussed
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FIGURE 10. Amoeba and physical views detailing the floorplan of the original CEP design and two variants with ransomwares inserted. The image
inset shows the congestion increase promoted by the ECO-inserted ransomware, which is localized and does not affect the performance of the
other modules.

along with our case study is already hard to detect, but
would become even harder if the adversary is now capable of
reusing logic from the original design. This approach remains
a formidable avenue of research for future attacks.

Without a doubt, designing the trigger condition and the
associated user interface are the hardest aspects of a (suc-
cessful) hardware ransomware. The adversary has to reason
about verification, so the trigger is not detected at design time.
The adversary also has to reason about Test to make sure the
trigger is not detected post fabrication. The adversary also has
to reason about the victim’s usage of the infected device and
the implications of the attack becoming public. It is unlikely
that an adversary will attempt to design malicious logic that
understands a filesystem, as the logic would be very complex.
Albeit beyond the scope of our work, the adversary may
benefit from a companion malicious software that handles
the interface aspect (and perhaps the trigger aspect as well).
The most compelling solution is probably for an adversary
to completely ignore the communication with the victim, and
instead make sure the attack becomes public at a time of his
choosing and only at that time (i.e., a time-bomb attack).

Finally, we highlight that even the area optimized imple-
mentation is not cost-free. Our ransomware has more cells
than other published trojans due to its complexity.We provide
a comparison of our ransomware to other works in Table 6.
A key differentiating characteristic of our attack is that it must
‘communicate’ with the victim and that it is reversible, i.e.,
user data has to be encrypted and decrypted. Other trojans
typically do not have these concerns.

A. DETECTION AND PREVENTION
Our concerns with detection relate to changes in the charac-
teristics of the targeted IC when the attack is not yet taking

TABLE 6. Comparison of our hardware ransomware with published
hardware trojans.

place. In other words, both dynamic and static power con-
sumption can be utilized as proxies for detection, akin to
a side-channel analysis. Yet, the victim does not have two
versions of the design, with and without the ransomware,
to compare one against the other. In practice, for large
SoCs, the ransomware detection has to be strong enough to
overcome process variation in a statistically-sound manner.
For instance, the authors of [34] propose a test generation
approach for trojan detection by augmenting their side-
channel traces. For the approach to work, identifying rare
nodes of a circuit is necessary. However, for the ransomware
version with the internal trigger, it is assumed it is connected
to data and address buses. These signals, by definition, do not
have rare switching probabilities. The counter-based nature of
the internal trigger already prevents traditional test practices
from succeeding in detecting the trojan.

In terms of physical inspection, the changes to the design
highlighted in Fig. 10 are all possible to spot. Modern reverse
engineering practices [35] can, albeit with some challenges
in scalability, identify features in the 10 nm range. However,
physical inspection is not an ordinary step in the design
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flow or life-cycle of an IC. For it to be executed, the victim
should already suspect of the presence of the compromised
logic, which can be minimized if the attack has a time-bomb
characteristic.

Regarding prevention, the specialized literature contains
many examples of techniques that counter the insertion of
hardware trojans. In BISA [36], the authors develop a scheme
where filler cells are given functionality, which in turn pre-
vents them from being easily removed from a design. The
approach is not practical for large SoCs that have placement
utilization factors in the range of ∼ 60%, as is the case in
the experiment depicted in Fig. 10. In practice, covering the
remaining gaps in the floorplan with functional cells would
also increase the leakage power by ∼ 40%. Even if this
approach is deemed necessary, it cannot stop attacker A2
since he/she can insert BISA after the ransomware insertion,
thus nullifying the technique. Attacker A3 could be stopped
(or severely discouraged) if a technique like BISA was a
common practice in IC design.

VIII. CONCLUSION
In this paper, we have investigated the possibility of a hard-
ware ransomware attack. The feasibility of this attack, previ-
ously exclusive to the software domain, is discussed at length.
We also provide detailed steps on how to map the design
to different platforms, namely FPGA and ASIC. Two ver-
sions of the ransomware logic were implemented: one aiming
low area and another aiming high performance. A clever
adversary can improve either implementation to further meet
specific malicious criteria he/she might have. We hope that
a demonstration of this type of attack can shed light on this
out of the ordinary hardware-based attack. We believe that
a capable adversary, with the right resources, could proba-
bly address the various limitations we have highlighted and
from there and construct a harder-to-detect version of the
ransomware. On the opposite side, we hope that the feasibility
analysis herein described can raise security concerns in the
design and fabrication of ICs, therefore raising the bar even
higher for this type of attack.
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