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ABSTRACT PCB (printed circuit board) is an extremely important component of all electronic products,
which has greatly facilitated human life. Meanwhile, tons of PCBs in the waste streams become a waste of
resources, which puts the recycling and reuse of PCBs in urgent need. In the manufacturing and recycling
of electronic products, the classification of PCBs, recognition of sub-components, and defect detection
have been the key technology. Traditional manual detection and classification are subjective and rely on
individuals’ experience. With the development of artificial intelligence, lots of research efforts have been
dedicated to the automated detection and recognition of PCBs. In this paper, we propose a transformer-
based model, LPViT, for defect detection and classification of PCBs. We conduct the defect detection task
on the dataset DeepPCB, which consists of six different types of PCB defects. Defect detection benefits both
manufacturing and recycling of PCBs. Among many electronic products, a group of affordable, general-
purpose, and small-size PCBs is very popular, which are referred to as micro-PCBs. The classification and
recognition of those PCBswill greatly facilitate the recycling and reuse process.We conduct the classification
task on a dataset called micro-PCB, which includes 12 types of popular, general-purpose, affordable, and
small PCBs. Through comparative experiments, our system demonstrates its advantage in both classification
and defect detection tasks.

INDEX TERMS Classification, defect detection, label smooth, micro-PCB, DeepPCB, transformer, mask
patch prediction, recognition.

I. INTRODUCTION
In 1925, Charles Ducas of the United States printed out the
line pattern on an insulated substrate and then plated it to
build up the wires, which started a new era of the modern
PCB (printed circuit board) technology. At the end of the 20th
century, Rigid-Flex, buried resistance, buried capacitance,
metal substrates, and other new technologies continued to
emerge. Right now, PCB has become an extremely important
component of all electronic products and plays a pivotal role
in electronic industry. The electronic industry is driven by
Moore’s Law. Products are becoming more and more pow-
erful and integrated. The signal rate is getting faster and the
product development cycle is getting shorter. As electronic
products continue to miniaturize, PCB design faces various
challenges brought by high speed and high density.
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On the other hand, with the increasing usage of electronic
devices, more and more PCBs become wastes in the waste
streams. Many of them are functional or contain functional
components (e.x., tantalum capacitors and ceramic filters)
that are expensive and long-lasting. They also contain valu-
able chemical elements (rare earth elements, gallium, etc)
necessary for producing electronic products. The recent auto
crisis during COVID-19 caused by the shortage of chips
and small electronic goods makes those resources even more
precious. Therefore recycling and reuse of PCBs are getting
more attention.

During the manufacturing, recycling, and reuse of elec-
tronic products, the classification of PCBs, recognition of
electronic components on PCBs, and defect detection have
been the key technology. In practice, there are a massive
number of different PCB makes and models. With the devel-
opment of machine learning and deep learning technologies,
there has been plenty of research on classification and recog-
nition in the field of computer vision using intelligent models.
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The classification and recognition of PCBs have some simi-
larities with the problems in computer vision. However, there
are much more diversities in PCBs. For example, compared
to the human face, PCBs have electronic components (like
capacitors, resistors, and integrated circuits) organized fol-
lowing various patterns. Even on a small PCB, there are
many more features and those features are quite similar.
Especially, some modern capacitors and resistors are small
surface-mounted, which almost look the same while eyes,
noses, and mouths are relatively easier to identify.

These years, lots of research efforts have been dedicated to
the automated classification and recognition of components
on PCBs while most of the research is more focused on clas-
sical datasets such as ImageNet [1]. However, as explained
in [2], only a few PCB makes and models could be far more
common. A typical candidate for these ‘‘far more common’’
PCBs would be general-purpose, affordable, and small PCBs,
which are referred to as micro-PCBs [2]. The dataset we
use in the classification task is called micro-PCB [2]. If the
make and model of a PCB could be identified, we could
conveniently identify the PCBs that we want to reuse. The
sub-components used in it could also be directly recognized
through a bill of materials. Meanwhile, defect detection has
been necessary in real manufacturing and recycling process.
It’s challenging to conduct manual detection. To improve
efficiency, it is necessary to develop an automated defect
detection system.

In this research, we propose a new transformer-based
model called LPViT and its corresponding training strategy to
achieve accurate classification and defect detection on PCBs,
and improve the robustness of the model. Our model can be
used for both defect detection and classification tasks. We
conduct classification tasks on the micro-PCB [2] dataset
and the defect detection task on DeepPCB [3] dataset. The
experimental results demonstrate the advantage of our model,
which is the current SOTA model.

The main contributions of this research are as follows:

• Introducing the transformer structure to the classifica-
tion task of PCB image data;

• Using a label to improve the robustness of the model
smooth strategy;

• Driving the model to learn the relationship between
different patches by mask patch prediction to ensure its
extraction of deep relationships.

The rest of this paper is organized as follows. Section II
reviews related research work. Section III explains our pro-
posed method. In Section IV, comprehensive experiments
are conducted to evaluate the effectiveness of the proposed
method. Finally, in Section V, we conclude the paper.

II. RELATED WORKS
A. DETECTION AND CLASSIFICATION OF PCBS
The defect detection and classification of PCBs are critical for
modern electronic circuits, which greatly impact the precision
of circuit performance. Image processing has been applied for

PCB defect detection, classification, and localization, which
counters difficulties and subjective aspects in manual inspec-
tion and provides fast assessments. Malge and Nadaf [4]
proposed a PCB defect detection and classification system to
detect and classify defects in order to identify root causes. The
system was based on a morphological image segmentation
algorithm and image processing theories. The system focused
on images of single-layer PCBs. Kamalpreet [5] proposed an
algorithm to classify 14 defects into five groups, which used
MATLAB image processing operations. With the develop-
ment of machine learning and deep learning, more effective
models have been developed. In [6], a deep learning-based
advanced PCB inspection system was proposed. The classi-
fication task of PCBs is often limited by a limited dataset.
The research applied image augmentation to get better per-
formance. Ankit [7] created a deep learning model for Image
Classification for PCBs, which aimed to detect defective
PCBs and classify them asGood or Bad. In [8], to extract PCB
circuits, machine learning and computer vision methods were
investigated, designed, and tested with real-world PCB data.
Deep learning networks (Faster R-CNN) and unsupervised
machine learning clustering (XOR-based Kmeans) were used
to implement the detection and localization of electronic
components. However, all the above research aims to classify
PCBs, identify electronic components, and detect defects that
could be harmful to the circuit performance. Massive patterns
of electronic components, their combinations and locations
on PCBs, and limitations from the PCB image dataset make
the classification and recognition way more complicated
and less effective. In this research we are classifying micro
PCBs based on their makes and models,which will greatly
facilitate downstream tasks by conveniently retrieving sub-
components through a bill of materials.

Meanwhile, computer vision has made significant
progress. Its application in object detection [9], [10] has
advanced the development of autonomous vehicles [11],
robotics [12], and many other practical applications. There is
a potential to adapt those implementations to other detection
and classification tasks, such as PCB images. However, large-
scale datasets are required to train those object detection
networks to obtain good performance. Unfortunately, for the
PCB tasks, it is infeasible to build up a large-scale dataset to
train those networks.

B. TRANSFORMER MODELS
The transformer [13] mechanism was originally utilized
in NLP (Natural Language Processing). Being applied in
extended fields, it has demonstrated excellent performance in
different applications. The evolvement of transformer models
includes Bert [14], ALBERT [15], and RoBERTa [16]. Lead-
ing technology companies, like Google AI Lab, Amazon AI
Lab, Baidu’s ERNIE [17] and ERNIE2 [18] have been driven
to devote resources to the research.

Some researchers have attempted to migrate the trans-
former’s processing of input plenary data for use in the
field of computer vision with great success, demonstrating
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FIGURE 1. Overview of LPViT.

the general applicability and design rigor of such structures.
In the field of computer vision, many transformer-based
architectures have been presented, each of which is tailored
to the specific task. For example, DETR [19] was created for
object detection, and most AI researchers choose SETR [20]
for semantic segmentation.

For classification tasks, ViT [21] and DeiT [22] have
been proposed, which improve the metrics and become the
basis for complex tasks such as detection and segmenta-
tion. Transformer-based strategies can also be well adapted
to other applications. Taking the medical image classifi-
cation [23], [24] as an example, transformer-based mod-
els can be adapted for tumor detection [25] and semantic
segmentation.

However, for PCB classification, there is still no specific
classification model. The PCB image has a variety of colors
and components. For accurate classification, the features of
PCB images need to be studied and accurately modeled.

III. METHOD
The capacitors, resistors, and other components on micro
PCBs can vary significantly under different illumination and
viewing angles due to the reflection of light. The smaller scale
compared to ordinary PCBs further impacts on the results
of classifications, which requires our proposed model to be
extremely robust to eliminate the above interference.

In this research, we propose a new model, Label Robust
and Patch Correlation Enhanced ViT (LPViT), which ensures
the robustness of the model while fully exploiting the rela-
tionship between different regions of PCB images. Figure 1
shows the architecture of our proposed model, LPViT. In our
model, the input image is first chunked to get different
patches, and some of them are randomly masked or replaced,
which aims to improve the ability of mutual understanding
between different regions of the image. The operation is
designed to drive the model to recover the lost information,
and further extract features to get the patch embedding. With
the label smooth strategy for training to improve the robust-
ness, our model is able to achieve better results.

A. TRANSFORMER
First proposed by the Google team in 2017, Transformer
is an architecture that has demonstrated its effectiveness in
natural language processing. Completely abandoning many
of the previous approaches, its innovations allow for signifi-
cant improvement of the metrics of several natural language
processing tasks at the time and laid the groundwork for the
subsequent models. Figure 2 shows the overall architecture
of the Transformer.

1) ATTENTION MECHANISM
It is widely believed that it is the Attention mechanism that
contributes to the success of the Transformer architecture,
which enhances the feature extraction capability. Attention
is a mechanism for improving the effectiveness of RNN[15]
(LSTM or GRU)-based Encoder + Decoder models, com-
monly known as Attention Mechanism.

For example, in machine translation and speech recog-
nition, every single word will be assigned a weight,
which makes the learning of neural networks more flex-
ible (soft). Attention can be utilized to explain what
exactly the model has learned, as well as the alignment
relationship between the input and output sentences of
translations.

In a transformer, the most important part is the Attention
mechanism that is specially designed to promote the feature
extraction function of the model for a better global and con-
textual understanding of the input information. To measure
the relative importance of input features, the cosine similarity,
also known as dot-product, is adopted. We use Dot-product
Attention to describe the calculation of attention weights of
different features.

A similar operation is used at all time steps, here as we get
input key noted as ki, i = 1 . . .N , the corresponding values
vi, i = 1 . . .N and the query that we search, noted as q, we get
formula 1 as follows:

Attention(Q,K ,V ) =
N∑
i=1

qT kivi (1)
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FIGURE 2. Transformer architecture.

As the length of the vector grows longer, the scale range of
its dot product result grows wider. As a result, it will fall into
the saturation zone after going through the softmax operation,
reducing the gradient during backpropagation. It makes the
model optimization harder. To address this issue, the inner
product value we obtain will be divided by the square root of
its length, denoted as d, before executing softmax. Then we
get fomula 2.

Attention(Q,K ,V ) = Softmax(
QKT
√
d

)V (2)

In the case that keys, values and queries share the
same vector value, the special attention structure is called
self-attention.

2) INPUT OF THE TRANSFORMER
In the Transformer, with the word Embedding and the posi-
tional Embedding (Positional Encoding) added, the input
representation x of a word is constructed. Word Embedding
input representation can be produced in a variety of ways,
such as pre-trained using Word2Vec, Glove, and so on. This
is a common strategy in NLP applications.

We’ll also need a new embedding called positional embed-
ding to show the relative position of the word in the phrase.
Transformer, unlike RNN, uses all global information but
prioritizes the sequential information of words, which is crit-
ical for NLP. As a result, we employ Location Embedding
to keep track of each word’s relative or absolute position in
the sequence. With the word Embedding and the position
Embedding of the word added, the representation vector x
of the word is constructed, and x is used as the input for the
Transformer.

3) STRUCTURAL INNOVATION
The output of the Attention module can be multiplexed to
combine the information in numerous ways, thereby defining
the existing characteristics from several perspectives, to thor-
oughly investigate the information needed for the model. This
is referred to as theMulti-Head Attention Structure.

The Encoder block structure of the Transformer is shown
in red, and it is made up of Multi-Head Attention, Add

and Norm and Feed Forward. We just covered the Multi-
Head Attention computing method. Here Add refers to X +
MultiHeadAttention(X ), it is a residual connection that is fre-
quently used in ResNet to overcome the challenge of training
multi-layer networks by allowing the network to focus just on
the present section of the difference.

Layer Normalization, which is commonly utilized in RNN
structures, is referred to as the Norm. Layer Normalization
equalizes the mean-variance of the inputs of each layer of
neurons, allowing for faster convergence.

The Feed Forward layer is a two-layer completely con-
nected layer with ReLU as the first layer’s activation function
and no activation function in the second layer.

ReLU (ReLU (x) = max(0, x)) is one of the most widely
used activation functions in the field of deep learning, and the
nonlinear mapping that it can provide is one of the important
reasons why deep neural networks can produce excellent
results.

B. VIT
Gradually, several researchers attempted to apply the trans-
former structure, which excels in NLP tasks, to vision tasks,
resulting in Vision Transformer, or ViT. Figure 3 shows the
architecture of ViT.

The four primary aspects of the ViT process are as follows:
1) Image chunking, that is, to create image patches
2) Image patch embedding and position coding are both

available
3) Encoder with Transformer
4) Classification with simple models using features from

Encoder.
We will introduce ViT in terms of these four parts.

1) IMAGE CHUNKING
The very first step is pre-processing. Without any special
pre-processing, CNN convolves the image in two height and
width dimensions natively. To use the Transformer structure,
however, we must chunk it first.

If the input is an image x in HWC , and it is now divided
into patches of P × P × C , the total number of patches is
N = HW/P2. The dimension of data can be written in the
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FIGURE 3. ViT architecture.

shape of N × P × P × C . After that, each patch is spread,
and the data dimension corresponding to it can be expressed
as N × (P2 × C). The length of the sequence from the input
to the Transformer is N , the number of channels in the input
picture is C , and the size of the image patches is P.

2) IMAGE CHUNK EMBEDDING (PATCH EMBEDDING)
Because image chunking is simply a pre-processing step,
we must perform an image block embedding operation to
convert the vector dimension of N × (P2 × C) into a two-
dimensional input of size N × D. Block embedding, like
word2vec in NLP, transforms a high-dimensional vector into
a low-dimensional representation. The embedding is given a
particular code, such as ’CLS’ in BERT, to be used as the
category prediction result.

After dimensionality reduction, the so-called picture block
embedding is essentially a linear transformation, i.e., a fully
linked layer, of each spanned patch vector with dimension D.
A position encoding vector must be added to the image

block embedding to maintain the spatial location information
between the input picture patches. Instead of employing the

updated 2D position embedding approach, ViT’s position
encoding employs a direct 1D learnable position embedding
variable, as the authors discovered that in trials, the 2D and
1D embedding methods produced equivalent results.

3) TRANSFORMER
The transformer module is used to extract features, which
are then fed into the final classifier to produce the required
classification results.

Different investigations have proven that the transformer
architecture has a disruptive effect on various tasks by consid-
erably improving the ability to mix features and fuse higher-
order knowledge.

4) CLASSIFIER
After enough good features have been retrieved, all that is
required for reliable classification results is a simple network
topology, and a shallow network likeMLP(multilayer percep-
tron) can achieve incredibly high metrics.

The figures can be transformed into sequence information,
which is more conducive to understanding the relationships
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between them, thus increasing the metrics, by chunking them
and then extracting the features independently.

C. MASK PATCH PREDICTION
The most common front-to-back prediction performed on the
input sequence is called unidirectional prediction. In uni-
directional prediction, the semantics of the entire utter-
ance is not the focus, which means it is not completely
understood. So researchers further proposed bi-directional
prediction [27].

In BERT [14], its authors argue that bi-directional pre-
diction still cannot understand the semantics of the whole
utterance completely. A better approach is to use the full
information of the context to predict [mask]. That is, a ran-
dom part of the content is masked as the target of prediction.
BERT uses a two-step operation to perform the training of the
mask strategy.

The first step is to mask 15% of the words in an article.
According to the context, the model will omnidirectionally
predict the masked words. For N articles, average W words
in each article and randomly 15% of the words being masked,
the task of the model is to predict the 15%×W × N masked
words correctly. The transformer is trained to get appropriate
parameters for the prediction purpose.

Then, the second step is to continue training the parameters
of the model. For example, from the above-mentioned N
articles, select the utterances. These include two consecutive
contextual statements and a discrete pair of statements. The
transformer model will then identify consecutive and discon-
tinuous utterances.

In ViT [21], we use a similar strategy calledmasked patch
prediction for self-supervision which we believe will make
the model training more accurate and accelerate convergence.

For preliminary self-supervision investigations, we use the
masked patch prediction objective. To do this, we operate
part of patch embeddings in the procedure. Among them all,
we replace the embeddings with a learnable [mask] embed-
ding by the amount of 80% while 10% will be a random
another patch embedding, and the remaining(10%) are left
alone. In the end, we use the respective patch representations
to predict the mean color of every color channel for each
corrupted patch to recover information.

D. LABEL SMOOTH
With the widespread application of computer vision, there
are many adversarial generation methods against the model,
which seriously affects the effectiveness of the model and
the security of daily use, for example, FGSM [28], BIM
[29], JSMA [30] and DeepFool [31]. For such problems,
researchers have proposed a series of defenses, and label
smooth [32] is one of the most widely used.

In classification tasks, we often use one-hot codes to mark
the category information of the images. For an N-class classi-
fication task, the label Y is an N-d vector. If the corresponding
label is K, then only the K-th element of Y is 1 and all others
are 0.

When using the label smooth strategy, we distribute a
portion of the values corresponding to the true labels, denoted
as α, equally to the components of each category, making the
differences between categories smoother. In the classification
task, the label corresponding to each sample is a vector
of length equal to its number of categories, and when the
number of categories is 4, a 4-dimensional (4d) vector is
used for its representation. Taking N = 4, α = 0.2 as an
example, if the true category is 2, then the 4d vectors obtained
before and after label smooth processing are [0, 1, 0, 0] and
[0.05, 0.85, 0.05, 0.05] respectively.
The advantages of label smoothing strategy can be

explained from several perspectives:
1) In real scenarios, there could be noise especially when

there is a large amount of data. Label smoothing can be
added to prevent the model from incorrectly learning
the noise.

2) Sometimes we train a model to give fairly high con-
fidence, which may lead to other problems such as
over-fit. To address this issue, label smoothing can be
introduced to improve the learning difficulty of the
model.

3) For image classification, there will be some ambiguous
cases. Some pictures (like bottles and bowls) are using
soft-target instead of hard-target. Label smoothing can
provide a supervised effect for both categories. Here,
we denote the original one-hot label as the hard-target,
and the result of its label smoothing as the correspond-
ing soft-target.

With label smoothing, our proposed model, LPViT can
achieve more robust labeling and enhanced patch correlation.

LPViT model, compared with other classification models,
has the following characteristics, which are the reasons why
it works better than traditional CNN models and other trans-
former structures:
• The LPViT model, compared with other CNN-based
models, focusesmore on the information in the input and
extracts the parts that are more relevant to the results,
which optimizes the convergence process of the model.

• Mask and label smooth strategies in LPViT are more
robust and can achieve better generalization than other
transformer-based models for unseen data distributions
to obtain better results in different vision tasks, such as
detection and classification.

IV. EXPERIMENTS
A. CLASSIFICATION TASK
1) DATASET
We use a dataset called micro-PCB, which contains
8,125 photos of 13 micro-PCBs with high resolution. The
average width and height of all photos are 1949 and
2126 pixels.

Under optimal lighting circumstances, the micro-PCBs
were photographed in 25 various positions relative to the
camera. Each micro-PCB was photographed in 5 separate
rotations in each position. As a result, each micro-PCB has
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TABLE 1. PCBs and labels.

FIGURE 4. Raspberry Pi A+ sample image.

125 different orientations to the camera. For every orienta-
tion, a micro-PCB was photographed four times, which were
coded for training. After that, a single capture and testing of
a micro-PCB of the same make and model was performed.
An image of a micro-PCB utilized in training will not be used
in testing.

Although the micro-PCBs coded for training and testing
are essentially similar, there are relatively minor changes in
some circumstances. Each micro-PCB in the dataset com-
prises 500 training photos and 125 test images, resulting in
a 6,500/1,625 train/test split. Figures 4 - 7 demonstrate four
samples in themicro-PCB dataset.
Each type of PCB and its category (Label) are listed in

Table 1.

2) MODEL TRAINING
In our experiments, we utilize Python and Pytorch1.8.0. The
GPU GTX2080TI and CPU i7-10875h are the hardware
devices we employ to speed up the training.

We chose Adam [33] as our optimizer. The optimum
parameters beta1 and beta2 are set to be 0.9 and 0.999,
respectively, with a learning rate of 0.0001. To prevent
the denominator from being 0, we use eps = 1e-08.
The weight_decay equals 0, which means we do not
take them into the loss. With batch size of 64 we set
the binary classification problem and choose binary_

FIGURE 5. Arduino mega 2560 (black) sample image.

FIGURE 6. Beaglebone black sample image.

FIGURE 7. Arduino Leonardo sample image.

cross_entropy_with_logits to be the loss function. The total
training epochs are 75.

To further improve the training effect of the model, the
learning rate is dynamically adjusted, and we use a learning
rate decay strategy to reduce the learning rate by 10% for
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TABLE 2. Performance of different model Configs for classification on the micro-PCB dataset.

FIGURE 8. Base model loss.

FIGURE 9. Base model accuracy.

every 30 rounds of training. The initial learning rate is set
to 0.0001.

The probability of using tokens in masked prediction tasks
mask_prob is set to be 0.15, and the probability of randomly
replacing is set to be random_patch_prob = 0.30, with
replace_prob= 0.50, which means half of the tokens are set
to be mask token.

3) DATA AUGMENTATION
We utilize a random crop, a random horizontal flip with a
chance of 0.5, and scale the input photos to a fixed size of
224 × 224 for the training set. For test data, there is no data
augmentation.

4) PERFORMANCE METRICS
In this research, we use accuracy, precision, recall, and
F1-score as the metrics to evaluate the performance of differ-
ent models. They are calculated using formulas 3, 4, 5, and 6.

FIGURE 10. ViT loss.

FIGURE 11. ViT accuracy.

FIGURE 12. ViT label smooth loss.

We denote the total number of samples as N , the number
of correctly classified samples as N c, the predicted number
of positive samples as N̂+, where the true number of positive
samples is N c

+ and the number of positive samples in the data
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FIGURE 13. ViT label smooth accuracy.

FIGURE 14. LPViT loss.

FIGURE 15. LPViT accuracy.

set is N+.

Accuracy =
N c

N
(3)

Precision =
N c
+

N̂+
(4)

Recall =
N c
+

N+
(5)

F1− score =
2× Precision× Recall
Precision+ Recall

(6)

5) EXPERIMENTAL RESULTS
We choose ResNet50 [34] as the baseline model for this
experiment, which has shown excellent performance in many

FIGURE 16. Error sample 1.

FIGURE 17. Error sample 2.

TABLE 3. Defect types and numbers.

vision tasks. A comparison with it can effectively illustrate
the performance of the proposed model.

We use three different configurations for training.

• ViT.
• ViT + Label Smooth.
• LPViT

The metrics of the baseline model and three ViT-based
methods are shown in Table 2. It can be found that our pro-
posed model improves the accuracy rate by 1.36% compared
to the baseline, which fully illustrates the effectiveness of the
proposed model and its adaptability to the dataset.

In the first model configuration with the ViT only, the
performance has already exceeded the baseline model. After
adding label smooth and MPP (mask patch prediction), the
accuracy can be improved by another 0.62%. They reduce
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FIGURE 18. Overview of LPViT for defect detection.

TABLE 4. Metrics of different model Configs for DeepPCB dataset detection.

the risk of overfitting and enhance the smoothness of the
boundary, which improves the model’s understanding of the
relationship between different regions of the images. Pre-
cision, Recall, and F1-score demonstrate a similar pattern
of improvement. We also compare our model with another
transformer Swin Transformer model on the classification
task. As shown in Table 2, LPViT, outperforms other models
by all metrics.

Furthermore, the processing speed of our model is
156.1FPS (frame per second), while the processing speed of
the Swin Transformer is 129.9FPS.

Figures 8 - 15 demonstrate the accuracy and loss versus
epochs for each model. It should be specifically noted that
in all ViT-based methods, the accuracy on the training set
outperforms the test set after a certain number of epochs of
training. It indicates that the patch method of ViT can better
extract the association of different regions in the image and
obtain the underlying information in the recognition process
to achieve better migration results on unseen new data.

6) ERROR ANALYSIS
Figures 16 and 17 provide two examples of misclassifica-
tion cases. With a further examination of the misclassified
samples, it can be seen that the images are blurred to a
certain extent compared to the correctly classified images.
Some relevant details for classification are lost, resulting in
the wrong classification.

In the future, we can model the correlation between differ-
ent parts of the images and use it to recover the missing data
of a certain place.

B. DEFECT DETECTION
In order to fully investigate the effectiveness of our proposed
model for different tasks, we use it to perform defect detec-
tion tasks. It should be noted that in order to maintain the
relative position of the original images, we turn the output
patch sequence back to the original two-dimensional arrange-
ment as the output of the backbone. Figure 18 illustrates the
overview of the system for defect detection.

FIGURE 19. PCB template sample.

FIGURE 20. PCB defect annotation sample.

1) DATASET
Here we use a new dataset DeepPCB [3] for detection exper-
iments. It contains 1500 pairs of images. In each pair, there
is one defect-free template image and an annotated defect
image. In DeepPCB, there are six different types of PCB
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FIGURE 21. Detection result sample 1.

FIGURE 22. Detection result sample 2.

defects: open, short, mousebite, spur, pin hole, and spuri-
ous copper. The details of each type are shown in Table 3.
Figures 19 and 20 demonstrate an example pair of images.

2) MODEL TRAINING
We continue to use Adam as the optimizer, with a learning
rate of 0.0005 for the defect detection experiment. We set the
total training epochs to be 2000.

3) PERFORMANCE METRICS
We use mean Average Precision(mAP) as the metric for
PCB defect detection task.

We arrange the detection results predicted by the trained
model in decreasing order of the confidence score. If the
predicted box and the ground truth with the same pair get an
IoU (intersection over union) greater than a certain threshold,
we believe it is a ‘‘match’’. We get mAP by fusing different
AP values. Here we use AP, AP50, and AP75 which have dif-
ferent sampling and threshold values. The calculation process
is the same and they can evaluate the effectiveness of the
model from different perspectives.

4) EXPERIMENTAL RESULT
We chose Faster RCNN [35] as our baseline model, which
is a very widely used two-stage detector with outstanding
detection results. We modify its backbone step by step to be
LPViT to test the effect of the model on the defect detection
task.

After replacing the backbone with ViT, there is a signifi-
cant drop for each AP. It could be caused by the loss of some
important interaction information during one-dimensional
sequence processing, which makes the extracted features not
the most relevant part of the detection task. The drop is
significantly improved by adding MPP, which demonstrates
the effect of the MPP strategy on model learning. MPP obvi-
ously improves the learning direction of the model and has
significant effects on both classification and detection tasks.
The addition of label smoothing further reduces some of the
false positives and improves the performance of the model.
Table 4 shows the comparative experimental results with the
maximum values in each column identified. LPViT improves
all metrics by more than 6%. It also outperforms the current
SOTA model (98.8% vs. 98.6%) that employs the group
pyramid pooling module [3]. Furthermore, the processing
speed of our model is 27.7FPS, while the processing speed
in [3] is 24.6FPS. The experimental results fully demonstrate
the effectiveness of the proposed structure.

V. CONCLUSION
PCB devices have greatly facilitated human life. The classi-
fication and defect detection of PCB image data can greatly
accelerate downstream tasks such as production and sorting,
effectively improve manufacturing and recycling efficiency,
and meet the growing demand for PCBs. Both industry and
research institutions have devoted great efforts to the clas-
sification and defect detection of PCBs, which requires full
consideration of the small scale of the PCB model, the small
distinction between categories, and various imaging condi-
tions such as image illumination angles. Among the massive
PCBs, a big group of applications is using micro-PCBs man-
ufactured by several prevailing companies. Once the makes
andmodels of PCBs are identified, the sub-components could
be easily retrieved through a bill of materials. In this research,
we propose a transformer-based classification model, LPViT,
which can be used to classify micro-PCBs based on their
makes and models and detect defects on PCBs. We also intro-
duce mask patch prediction and label smooth to improve the
accuracy and the robustness of the model. Through compar-
ative experiments, our proposed model has achieved SOTA
performance on the micro-PCB dataset for classificaiton and
on DeepPCB dataset for defect detection.

Meanwhile, there are some limitations in this research,
which could be further studied in future research. Data aug-
mentation can be achieved by different methods. In the future,
we could apply more complex data augmentation models to
further enrich the dataset, which could potentially promote
the performance of our system. The dataset we use for clas-
sification is micro-PCBs. The classification performance of
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our system on large-scale PCBs needs to be further studied
and verified.
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