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ABSTRACT Smart ambulance is a novel system where modern communication, computation, and sensing
technologies are employed to revolutionize ambulance and emergency systems. We propose a smart system
that aims to minimize the ambulance response time, travel time from patient’s location to the hospital, and the
waiting time at the hospital. We utilize the road traffic conditions and hospital loading information (collected
in real-time basis) to make optimal decisions (which hospital responds to the patient’s request and which
ambulance it sends, which route the ambulance takes to reach the patient, which hospital the ambulance heads
to after picking up the patient, and which route it should take to the selected hospital). The first two decisions
are used to minimize the response time while the last two decisions are employed to minimize the door-
to-needle time. We analyze the performance of the proposed algorithm; both analytically and by simulation
for verification. The results showed very good consistency between simulation results and analytical results,
which confirms the correctness and accuracy of the analysis. In addition, we compare the performance of
our proposed smart algorithm with a previous algorithm that is reported in the literature and that minimizes
the drop-off delay. The results confirmed the superiority of our smart algorithm under considered operating
conditions and scenarios.

INDEX TERMS Smart health, smart ambulance, emergency service, performance analysis.

I. INTRODUCTION
There is a growing demand for smart systems nowadays
where provided services can be improved using modern tech-
nologies of sensing, communication, high computing perfor-
mance, signal processing and multimedia. Such technologies
can be utilized to improve ambulance and emergency ser-
vices. In [1], authors analyzed data for emergency medical
service in urban and rural areas in the United States. Mea-
sured data showed that the average response time was 7 Min-
utes for urban areas and 14 Minutes for rural areas. Authors
in [2] showed that longer response time is associated with
worse outcomes for trauma patients. In [3], it was indicated
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that in rural cases modest delay in response time can be
life threatening. In [4], the authors proposed an ubiquitous
emergency medical service system. The proposed system
aims to minimize the response time (call-to-site and site-
to-door) and to improve the pre-hospital treatment (includ-
ing patient’s site before ambulance arrival as well as the
ambulance vehicle. In [5], it was shown that reducing the
response time by one minute improves the survival rate
of patients with sudden cardiac arrest by 24%. Authors
in [6] used several techniques to reduce the response time
by 50%. These techniques include controlling traffic lights
(through central traffic system). In [7], it was shown that
dynamic rerouting can be used to relocate nearest ambulance
vehicle to the site. In [8], the authors analyzed the trans-
portation delay in emergency medical service of suspected
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ST-elevation-myocardial infarction in the VIENNA-STEMI
network. They used records of 4751 patients to measure the
call-to-site and site-to-door times.

Smart ambulance has been proposed recently to improve
the performance of ambulance. Smart ambulance uses tech-
nologies such as Internet-of-things, real-time data communi-
cation and video streaming, connected vehicles, road traffic
monitoring, big data, biomedical sensing, and body area net-
works to improve the emergency service, minimize response
time, and provide medical support with the least possible
delay [9]–[11]. However, smart ambulance needs high speed
data transmission to support high-quality and real-time video,
data and audio communication between ambulance and hos-
pitals. Authors in [12] showed that existing communication
networks (e.g., Long-Term Evolution (LTE) wireless net-
works) are unable to meet the requirements of smart ambu-
lance and proposed a 5G-based wireless network to facilitate
the smart ambulance. Authors in [13] designedmobile apps to
locate the nearest ambulance to the patient. When the ambu-
lance reaches the patient’s location, the mobile app shows
nearby hospitals, their locations from which the nearest hos-
pital is selected. Finally, the app at the ambulance finds the
shortest route to the hospital.

A fuzzy logic -based system was proposed in [14] to
manage the traffic system. The objective of the proposed
system is to minimize the ambulance travel time. The fuzzy
controller receives traffic conditions (in terms of the average
vehicle speed and occupancy level) and produces a conges-
tion value parameter. The congestion level and other param-
eters (emergency priority level received from the ambulance
and traffic conditions) are applied to the traffic management
system which controls the traffic lights, reserved lane, max-
imum speed, vehicle rerouting, and lane clearance. A sys-
tem was proposed in [15] to alert the drivers (using mobile
app-generated messages) about the emergency route (route
selected by a coming ambulance). By doing so, the drivers
make the road clear for the ambulance early enough before it
arrives, which can minimize the response time.

In [16], authors proposed an algorithm to minimize the
ambulance drop-off time. They classified hospitals as urban
(inside the city) or community (outside the city). When a
patient requests ambulance, the closest hospital deploys an
ambulance to the patient. If there is no congestion at urban
hospitals, the ambulance takes the patient back to the closest
hospital. Otherwise, the ambulance takes the patient to the
closest community hospital instead. Markov-decision pro-
cess is used to model the system and determine the opti-
mal solution. Results showed that the proposed algorithm
reduced the drop-off time. However, their work has some
drawbacks. First, authors combined all waiting patients in
urban hospitals in one virtual queue. Second, they assumed
that the congestion status is the same for all urban hospital,
i.e. either all urban hospitals are congested or all of them are
not. Furthermore, they assumed that community hospitals are
always uncongested. Moreover, this work does not take the
traffic and road conditions into consideration in the system

model. These limitations make the work less practical in
general situations and restricts its outcomes to small cities
with uniform traffic conditions and uniform distribution of
city inhabitants and uniform distribution of resources at the
urban hospitals.

Authors in [17] proposed a queuing model to analyze the
performance of ambulance system. They analyzed the impact
of patient routing (from patient’s location to one of the hos-
pitals) by the dispatcher in the performance particularly the
drop-off delay. The authors extended their work in [18] by
optimizing the routing probability to minimize the drop-off
delay. Despite the effectiveness of the proposed algorithm in
minimizing the drop-off delay, it has some limitations. First,
it is a static algorithm where the routing probabilities is cal-
culated using the long-term statistical parameters (e.g., aver-
age arrival rate, average treatment (service) time, number of
servers (treatment teams) at each hospital, etc.). Hence, the
algorithm lacks the adaptation mechanism in case some of
those parameters change. Second, due to the static nature of
the algorithm, it does not take into account the loading at each
hospital (which is dynamic by its nature). Third, the algorithm
does not take into consideration the patients’ locations and the
traffic and road conditions. Fourth, the authors assume that
ambulance requests are lost if they arrive while no ambulance
is available. This assumption is not realistic since the patient’s
request should be kept in a virtual queue to be served by one
of the next available ambulances.

In [19], we proposed a novel algorithm that uses smart
health technology in ambulance service to minimize the
response time (time from receiving the request to the arrival
of the ambulance at the patient’s location) and to minimize
the door-to-needle time which is the sum of the delivery time
(from the patient’s location to the hospital) and the waiting
time (at the hospital). Therefore, we minimize the time from
request until the patient starts to receive treatment at the
emergency department in the hospital. In this paper we extend
the work proposed in [19] as follows:
• We enhance the accuracy and practicality of the system
model by adding the ambulance drop-off delay at hospi-
tals, the non-preemption priority to emergency patients,
and the ambulance centres.

• We improve the proposed smart algorithm by adding one
more feature which is the treatment time reduction due
to the use of smart ambulance.

• We develop a queuing model that represents all phases
of ambulance system including the ambulance travel
from hospitals/ambulance centres to patients’ location,
ambulance travel from patients’ location to hospitals,
and waiting at hospitals unlike the queuing model in
[17], [18] that does not include the ambulance travel
and provides only the optimal routing decision that min-
imized the waiting time at hospitals. Analytical results
are obtained using our queuing model and are compared
with the simulation results for verification.

• We compare our results with existing work in the litera-
ture (namely work in [18]) and show that our algorithm

VOLUME 10, 2022 42657



M. A. R. Abdeen et al.: Novel Smart Ambulance System—Algorithm Design, Modeling, and Performance Analysis

outperforms that in [18] as discussed in details in the
Results section.

• We analyze the proposed algorithm under realistic
time-varying loading conditions.

• We apply the proposed algorithm to Madinah city in
Saudi Arabia to analyze the performance results of the
proposed algorithm in practical settings.

The remainder of this paper are organized as follows.
In the next section, we explain the system model and the
proposed algorithm. In Section III, we present the queuing
model which we developed to determine the performance of
the proposed algorithm analytically. Results are given and
discussed in Section IV. Finally, conclusions and future work
are given in Section V.

II. SYSTEM MODEL AND PROPOSED ALGORITHM
We consider a virtual city1 with a circular shape of a radius
Rmax as shown in Fig. 1. Modern cities and especially in
the ‘‘new world’’ usually exhibit a regular shape such as
square or rectangular (Manhattan model). This is mainly due
to the fact that lands were available in vast sizes and there
were no natural barriers that limit city planners to use other
shapes [20]. Ancient cities (such as Madinah and Mecca in
Saudi Arabia), on the other hand, were designed and built in
areas that are normally populated and that are built around
a specific centre of attraction (city centre and thereby the
name) [21]. The assumed city shape and hospital locations
are chosen to resemble the centre of Madinah city.

The proposed smart ambulance provides interconnectivity
between hospitals, ambulance centres, ambulance vehicles,
central dispatcher, and patients. The high-speed connectiv-
ity between the hospitals/ambulance centres and ambulance
vehicles can be provided using 5G wireless networks. This
interconnectivity makes information (including ambulance
vehicle location, patients’ locations, load at hospitals, con-
gestion and road conditions, etc.) available in real-time basis
at the central dispatcher as well as the ambulance vehicles.
Thus, this information is used to minimize the time between
requesting the ambulance service and the start of treatment at
the emergency departments at the hospitals. It is assumed that
the considered virtual city has S hospitals and N-S ambulance
centres. Hence, we have a total of N locations of ambulance
vehicles. However, it should be noted that hospitals have
emergency departments and ambulance vehicles while the
ambulance centres have ambulance vehicles only. The virtual
city has main roads (shown as thick solid lines) and inner
roads (shown as thin dashed lines) with maximum speed
limits of 70 km/h and 40 km/h, respectively. Furthermore,
we assume ambulance vehicles move at the maximum speed
limit of the roads. The city inhabitants are uniformly dis-
tributed across the city area. The patients’ arrival is modelled
using Poisson distribution with an average arrival rate λa

1We consider a regular city shape to facilitate the mathematical analysis.
However, we consider a practical city model (Madinah City in Saudi Arabia)
afterwards in the Results Section.

FIGURE 1. Virtual city map.

patients/hour and λw patients/hour for ambulance patients and
walk-in patients, respectively.

Each hospital/ambulance centre has Ki ambulance vehi-
cles, where i is the index of the hospital/ambulance centre.
When a patient calls the emergency service, the central dis-
patcher uses the road traffic information, the patient’s loca-
tion and the locations of all ambulance vehicles to assign the
request to the hospital/ambulance centre with the minimum
expected response time (TR), where the response time is the
sum of the travel time from the hospital/ambulance centre
to the patient’s location (TH2P) and the waiting time until an
ambulance vehicle becomes available if none of the Ki ambu-
lance vehicles is available. Then, the hospital/ambulance cen-
tre sends an ambulance vehicle to the patient’s location. After
the ambulance reaches the patient’s location, the patient is
delivered to one of the S hospitals. The ambulance selects the
hospital that minimizes patient door-to-needle time which is
the sum of the travel time from the patient’s location to the
hospital (TP2H) and the waiting time at the hospital (TWT ).
The optimal routes to be followed by the ambulance (in
its way to the patient and back to the hospital) are also
determined. We assume that each hospital has a maximum
capacity ofMi patients; which means thatMi patients at most
can be treated simultaneously by the emergency department
at the ith hospital. When a patient arrives to the emergency
service, he/she is admitted and served if there is enough
capacity. Otherwise, the ambulance patient is kept in the
ambulance vehicle due to the need of life-support equipment,
while the walk-in patient is kept in the hospital waiting room.
When resources become free at the emergency departments,
waiting patients are admitted in first-in first-out (FIFO) basis
with a non-preemption priority to the ambulance patients.
We also assume that the service time (i.e, treatment time) is
exponentially distributed with an average duration TT . When
an ambulance patient is admitted and transferred from the
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ambulance to be treated, the ambulance vehicle returns to
its initial location at one of the S hospitals or N-S ambu-
lance centres. In this work we analyze the performance of
the proposed algorithm using the following performance
metrics:

1) Average ambulance response time (T avgR ) : The average
time duration between receiving the call for an ambu-
lance service and the arrival of the ambulance vehicle
at the patient’s location.

2) Average ambulance patients door-to-needle time
(T avgP2H_a + T avgWT_a): The sum of the average time the
ambulance takes to transport the patient to one of the
hospitals and the average drop-off time (time between
the ambulance patient’s arrival at the hospital and the
beginning of the treatment).

3) Average walk-in patients door-to-needle time
(T avgP2H_w +T

avg
WT_w): The sum of the average time the

walk-in patient takes to go from the patient’s location
to one of the hospitals and the average waiting time
(time between the patient’s arrival at the hospital and
the beginning of the treatment).

We have selected these three performance metrics because
the first metric indicates how fast the ambulance arrives at the
patients’ location while the second and third ones indicate
how fast the patients receive treatment after departing form
their locations. Furthermore, these three metrics are the func-
tions that our proposed smart algorithm aims to minimizes.

Algorithms 1, 2, and 3 (given below) illustrate the 3 compo-
nents of the proposed smart system (ambulance dispatching,
selecting a hospital for an ambulance patient, and selecting
a hospital for a walk-in patient, respectively). As shown in
Algorithm 1, when a patient’s request is received, the central
dispatcher estimates the response time (which is the travel
time from the ambulance vehicle’s location to the patient’s
location) based on the patient’s location, available ambu-
lance vehicles’ locations, and road traffic conditions. The
ambulance vehicle with the minimum response time is dis-
patched to the patient’s location. In Algorithm 2, the travel
time from the patient’s location to each hospital is estimated
based on the patient’s location, hospitals’ locations, and road
traffic conditions. Algorithm 2 also estimates the ambulance
patient’s waiting time (also called drop-off time) at each
hospital by nwap (i)TT

/
Mi, where nwap (i) is the number of

waiting ambulance patients at the ith hospital. Finally, the
estimated door-to-needle time is calculated as the sum of
the estimated travel time and the estimated drop-off time. The
hospital with the minimum estimated door-to-needle time is
selected and the ambulance vehicle drives the patient from
her/his location to the selected hospital using the route with

the minimum travel time. Finally, Algorithm 3 estimates the
door-to-needle time of a walk-in patient in a similar way
to Algorithm 2 except that the waiting time at the hospital
of walk-in patients is estimated by ntwp (i)TT

/
Mi, where

ntwp (i) is the total number of waiting patients (including
ambulance patients and walk-in patients) at the ith hospi-
tal. This difference between the estimated waiting time of
ambulance patients and walk-in patients is due to the non-
preemption priority of the ambulance patients.

Table 1 lists all mathematical symbols used in this paper.
We compare the proposed algorithm with traditional ambu-
lance which does not take into consideration the real-time
information about the hospitals and the roads.

III. ANALYTICAL MODEL
In order to analyze the performance of the proposed system
analytically we developed the queueing system shown in
Fig. 2. The block at the top models the central dispatcher
that receives the patients’ requests. The central dispatcher
responds to these requests by assigning the patient to the
ith hospital/ambulance centre with the minimum response
time (TR). This step is modelled using the first bank of
parallel queues (below the central dispatcher). Each one
of these N queues has multiple servers, namely, queue i
has Ki where i = 1, 2, 3, . . . ,N , and Ki is the number
of ambulance vehicles at the ith hospital/ambulance centre.
Since the central dispatcher assigns the patient to the hospi-
tal/ambulance centre with the minimum expected response
time (sum of the expected queuing delay and average ser-
vice (travel) time to the requesting patients’ location), this
bank of parallel N queues can be modelled as parallel queues
with multiple servers per queue, where the shortest delay
first (SDF) routing policy is employed to assign requests to
queues.

The travel time from the patient’s location to the hospitals
is represented by the S parallel servers after the decision-
making block. The last part of the queuing model is the
bank of S parallel queues with multiple servers per queue
(Mi servers, where i = 1, 2, 3, . . . , S) representing the emer-
gency departments at the hospitals. It is worth noting that
arrivals to the queues consist of ambulance patients and walk-
in patients. The routing policy of these S parallel queues
can also be considered as the SDF routing policy. It was
shown in [22] and [23] that the performance of parallel queues
(with multiple servers per queue) using SDF routing policy is
almost identical to that of a single queue with the same total
number of parallel servers and FIFO policy. Hence, we can
analyze the two banks of parallel queues shown in Fig. 2 using
an equivalent single queue with multiple servers and FIFO

T avgR = T avgH2P +

(
T avgH2P + T

avg
P2H_a + T

avg
WT_a

)
C
(∑N

i=1 ki, λa
(
T avgH2P + T

avg
P2H_a + T

avg
WT_a

))
∑N

i=1 ki−λa
(
T avgH2P + T

avg
P2H_a + T

avg
WT_a

) , (1)
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Algorithm 1 Ambulance Dispatching
input:
Queue PatientRequest B FIFO queue for the received

calls
List AvailableAmbulances B List of available

ambulances ready for order

while true do
if PatientRequest.isEmpty or

AvailableAmbulance.isEmpty
then continue B We do not have any request, or we do

not have available ambulance
else

Patient← PatientRequest.dequeue
SelectedAmbulance←AvailableAmbulances [0]
MinResponseTime← Integer.Max
forall Ambulance B AvailableAmbulances do

ResponseTime← calculateTravelTime
(Ambulance, Patient) B get the shortest
travel time path between an ambulance and
patient
ifMinResponseTime > ResponseTime then

SelectedAmbulance← Ambulance
MinResponseTime← ResponseTime

end
end

end
AvailableAmbulances.remove(SelectedAmbulance)
send (AvailableAmbulance, Patient)

end

policy. Thus, the performance metrics can be approximated
as follows:

A. AVERAGE RESPONSE TIME (T avg
R )

Eq. (1), as shown at the bottom of the previous page, where
T avgH2P is the average travel time from the selected hospi-
tal/ambulance centre to the patient, T avgP2H_a is the average
travel time from the patient’s location to the selected hospital,
T avgWT_a is the average ambulance drop-off time at the hospital
and C (., .) is the Erlang-C formula [24].

B. AVERAGE AMBULANCE PATIENT DOOR-TO-NEEDLE
TIME (T avg

P2H_a + T avg
WT _a)

T avgP2H_a +
1

1− σ

(
c! (1− ρ) c

TT

c−1∑
n=0

(cρ)n−c

n!
+

c
TT

)−1
,

(2)

where σ is the server utilization ratio by the ambulance
patients which is given by λaTT /c, ρ is the server utilization
ratio by either ambulance patients or walk-in patients which
is given by (λa + λw)TT /c, and c is the total number of
servers in the single queue FIFO system which is given by
c =

∑s
i=1Mi [25].

Algorithm 2 Selecting a Hospital for the Ambulance-Patient
input:

List Hospitals B List of Hospitals
AmbulancePatient B The ambulance patient after
the ambulance arrived to his/her location

MinDoor2NeedleTime← Integer.Max
SelectedHospital← Hospitals[0]
forall Hospital ∈ Hospitals do

ExpectedTravelTime← calculateTravelTime
(Hospital, AmbulancePatient) B get the
shortest travel time path between the current
location of the patient and the hospital
ExpectedDropOffTime←
Hospital.calculateDropOff() get the expected
drop-off time for the hospital based on its
current status
Expected Door2NeedleTime←
ExpectedTravelTime +
ExpectedDropOffTime
ifMin Door2NeedleTime > Expected
Door2NeedleTime

then
SelectedHospital← Hospital
Min Door2NeedleTime← Expected
Door2NeedleTime

end
end
send(AmbulancePatient, SelectedHospital)

C. AVERAGE WALK-IN PATIENT DOOR-TO-NEEDLE TIME
(T avg

P2H_w + T avg
WT _w )

T avgP2H_w +
1

(1− σ) (1− ρ)

×

(
c! (1− ρ) c

TT

c−1∑
n=0

(cρ)n−c

n!
+

c
TT

)−1
. (3)

In order to calculate the average travel times of the ambulance
(T avgH2P, T

avg
P2H_a and T

avg
P2H_w), we need to determine the areas

that belong to each hospital by finding the closest hospital to
point in the city circular shape. As shown in Fig. 3 (for N =
S = 4), we draw the green borderlines that separate the city
area based on the closest hospitals. This is done by connecting
each pair of hospitals using the blue lines. Then, drawing a
perpendicular green line that pass by the middle point of the
blue line indicates the borderline between these two hospitals.
The area that belongs to each hospital is defined by the green
borderlines and the part of the circumference of the outer area
with the maximum radius (Rmax).

Hence, T avgH2P can be determined by averaging TH2P over
the city area. Hence, T avgH2P can be expressed as

T avgH2P =

N∑
i=1

∫∫
Ai

∑
l

dH2P (i, r, θ, l)
va (i, r, θ, l)

fR,2 (r, θ) rdrdθ

,
(4)
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TABLE 1. List of symbols and their definitions.
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FIGURE 2. Queuing model of the smart ambulance system.

where Ai is the area that belongs to the ith hospital/ambulance
centre, dH2P (i, r, θ, l) is the length of the l th road segment of
the route with the minimum travel time between the ith hos-
pital/ambulance centre and the patient’s location expressed in
the polar coordinates (r, θ), va (i, r, θ, l)is the corresponding
ambulance speed in the l th road segment, and fR,2 (r, θ) is
the probability density function (pdf) of the polar coordinates
(R, 2) of the patients’ location. Assuming uniform distribu-
tion of the patient’s locations and independence between R
and 2, it can be shown that

fR,2 (r, θ) =


2r
Rmax

1
2π
=

r
Rmaxπ

,

0 ≤ r ≤ Rmax 0 ≤ θ ≤ 2π
0 otherwise

(5)

Similarly, T avgP2H_a and T
avg
P2H_w can be approximated by

T avgP2H_a=

S∑
i=1

∫∫
Ai

∑
l

dP2H (i, r, θ, l)
va (i, r, θ, l)

fR,2 (r, θ) r dr dθ

,
(6)

and

T avgP2H_w =

S∑
i=1

∫∫
Ai

∑
l

[
dP2H (i, r, θ, l)
vw (i, r, θ, l)

+ τl

]

× fR,2 (r, θ) r dr dθ

. (7)

where dP2H (i, r, θ, l) is the length of the l th road segment of
the route with the minimum travel time between the patient’s
location and the ith hospital and vw (i, r, θ, l) is the corre-
sponding walk-in speed in the l th road segment, τl is the
average delay at the intersection between the l th road segment
and the next road segment.

IV. RESULTS
In this section we discuss the results of the proposed algo-
rithm using simulation and the analytical model derived in the
previous section. We simulate the system model describe in
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Algorithm 3 Selecting a Hospital for the Walk-in Patient
input:

List Hospitals B List of Hospitals
WalkinPatient B The walk-in patient who is
looking for a hospital

Min Door2NeedleTime← Integer.Max
SelectedHospital← Hospitals[0]
forall Hospital ∈ Hospitals do

ExpectedTravelTime← calculateTravelTime
(Hospital,WalkinP atient)

Bget the shortest travel time path between the
current location of the

patientand the hospital
ExpectedWaitingTime←

Hospital.calculateWaitingTime()
B get the expected waiting time for
walk-patient at the hospital based on its
status

ExpectedDoor2NeedleTime←
ExpectedDoor2T ravelTime+
ExpectedWaitingTime
ifMinNeedleTime > ExpectedNeedleTime
then

SelectedHospital← Hospital
MinNeedleTime←
ExpectedNeedleTime

end
end
send(WalkinPatient, SelectedHospital)

FIGURE 3. Borderlines of areas served with each hospital.

Section II using an event-driven dynamic simulation (imple-
mented in Java) to simulate the patients’ arrivals, ambu-
lance vehicle selection, ambulance vehicle mobility, hospital
selection, route selection, and patients’ service (treatment)

start and end. We compare the simulation results with the
analytical results for verification. The analytical results are
obtained by numerical substitution and numerical solution of
the integrations in the equations developed in the analytical
model. We also compare the performance of the proposed
algorithm with that proposed in [18]. Finally, we evaluate the
performance of the proposed algorithm using a real model
and data of Madinah city in Saudi Arabia using AnyLogicr

simulation package.

A. CAPACITY PROPORTIONAL TO THE ARRIVAL RATE
As shown in Fig. 3 the areas A1, A2, A3, and A4 associated
with the four hospital H1, H2, H3, and H4, respectively are not
equal. Numerical results showed that A1, A2, A3, and A4 are
approximately given by 0.2, 0.2, 0.3, and 0.3 of the total area.
Since it is assumed that the city inhabitants are uniformly
distributed, the patient arrival rates to the four hospital H1,
H2, H3, and H4, can be expressed as 0.2, 0.2, 0.3, and 0.3 of
the total patient arrival rate, respectively. In order to balance
the load at the four hospitals, the capacity is assumed to be
proportional to the arrival rate. Specifically, the capacity of
H1, H2, H3, and H4 are set to M1 = 4, M2 = 4, M3 = 6, and
M4 = 6, respectively. The numerical values of the remain-
ing system parameters are listed in Table 2. Fig. 4 depicts
the performance metrics versus the patient arrival rate. It is
evident that analytical results are in a very well agreement
with the simulation results, which verifies the correctness and
accuracy of the results. We also can observe that the proposed
system and the traditional system have the same performance.
This is because the hospital capacity is proportional to the
arrival rate which balances the load over the four hospitals.

Also, traffic conditions are assumed to be homogenous
over the city. Therefore, there is no room for improvement
since the traditional ambulance can be considered optimal in
this case. In addition, it can be seen that ambulance patients
have shorter delay to get treatment (door-to-needle time)
compared to walk-in patients due to the higher priority of the
former.

B. CAPACITY NOT PROPORTIONAL TO THE ARRIVAL RATE
Unlike the previous subsection, here we assume that the
capacities of the four hospitals are not proportional to the
arrival rates. Specifically, the capacity of H1, H2, H3, and H4
are set to M1 = 3, M2 = 3, M3 = 7, and M4 = 7, respec-
tively, while the traffic arrival rates and other parameters
are kept as in subsection (a). Fig. 5 shows the performance
metrics versus the patient arrival rate. It is evident that our
proposed smart system improves the performance and signif-
icantly reduces the delay especially at high arrival rate. This
is because our smart algorithm almost kept the performance
metric unchanged (very close to the optimal values in the
previous subsection) while the performance of traditional
system is negatively affected by the unbalanced distribution
of the capacity. The performance of our smart algorithm was
almost unchanged because it directs the patients to the least
loaded hospital that is equivalent to parallel queues with the
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TABLE 2. System parameters.

shortest queue first route policy, which is an optimal policy
and equivalent to a single queue with multiple servers using
a FIFO policy.

As mentioned in the Introduction section, authors in [18]
proposed an algorithm to minimize the drop-off time (wait-
ing time of ambulance patients). However, they didn’t con-
sider the response time and the delivery time. Therefore,
we compare the performance of our algorithm and the
proposed algorithm in [18] in terms of the average drop-
off time and the waiting time waiting time of walk-in
patients.

Fig. 6 shows the average waiting time of the ambulance
patients and walk-in patients for the algorithm proposed
in [18] (referred to as ‘‘Almehdawe’’) and our proposed smart
algorithm. In both cases (ambulance patients and walk-in
patients) our algorithm has shorter waiting time compared
with Almehdawe’s algorithm. As a matter of fact, for the
ambulance patient drop-off time our algorithm is slightly
better than Almehdawe’s algorithm and this is because the
latter is designed with the objective of minimizing the drop-
off time. The slight improvement of our algorithm (especially
at high arrival rate) is due to the fact that our algorithm uses
real-time data and directs patients to the hospital that are
least crowded, while Almehdawe’s algorithm uses optimal
routing probability, but it directs patients to hospitals arbi-
trarily. For instance, if Almehdawe’s algorithm uses optimal
routing probabilities of 20%, 20%, 30%, and 30% for the
four hospitals H1, H2, H3, and H4, respectively, the dis-
patcher will direct 20% of the patients to H1 regardless of the
instantaneous loading at the hospital at this particular time
instant.

In addition, the improvement in the waiting time of walk-
in patients is significantly higher. For example, our algo-
rithm reduces the average waiting-time from 26 minutes to
12.78 minutes. This is because our algorithm allows walk-
in patients to access the instantaneous loading of hospitals
in terms of the expected average waiting time (e.g., using a
mobile app) while Almehdawe’s algorithm does not direct
walk-in patients to hospitals and they are left to choose hos-
pitals arbitrarily (e.g., the closest hospital).

FIGURE 4. (a) Average ambulance response time (T avg
R ) for proportional

capacity. (b). Average ambulance patient door-to-needle time for
proportional capacity. (c). Average walk-in patient door-to-needle time
for proportional capacity.

C. COMPARISON WITH PREVIOUS WORK
In practice patients’ arrival to hospitals changes with time
(during the day) and even from a day to day (e.g., weekdays
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FIGURE 5. (a). Average ambulance response time (T avg
R ) for

non-proportional arrival rate. (b). Average ambulance patient
door-to-needle time for non-proportional capacity. (c). Average walk-in
patient door-to-needle time for non-proportional capacity.

versus weekends). Fig. 7(a) shows a record of the average
ambulance patient arrival rate over a week in a Calgary,
Alberta, Canada hospital [26], where the first five days are
the weekdays and the last two days are the weekend days.

We use this record of the average patient arrival rate to
analyze the proposed algorithm and compare its performance
with Almedhawe’s algorithms under a realistic time-varying
average arrival rate. In order to deal with the variation in
the arrival rate versus time, we assume that the capacities at
the hospitals are adjusted over time so that higher capacity
is offered at periods with a high average patient arrival rate
and lower capacity is employed at periods with a low average
patient arrival rate.

The adaptation of the total capacity (capacity of the four
hospitals given by

∑4
i=1Mi) is depicted in Fig. 7(a). We also

assume that the total capacity is distributed over the four
hospitals using the same ratio of the arrival rates at the four
hospitals. For instance, if the total capacity is set to 10 and the
arrival rates of the four hospitals H1, H2, H3, and H4 are 0.2,
0.2, 0.3, and 0.3 of the total arrival rate, respectively, then the
capacity of the 4 hospitals are adjusted to M1 = 2, M2 = 2,
M3 = 3, and M4 = 3, respectively. Although Almehdawe’s
algorithm is static where the routing probabilities are once
calculated using the long-term average statistical parameters
of the emergency systems in the hospitals (e.g., average
arrival rate, service rate, etc.) we allow this algorithm to adjust
the routing probability every time the capacity is changed at
the hospitals (which is assumed to be done 3 times a day).
This modification allows Almehdawe’s algorithm to be more
efficient since it updates the optimal routing probability when
there is a significant change in the average patient arrival rate
and the capacity.

As shown in Figs. 7(b) and 7(c) our algorithm outperforms
the other two algorithms (traditional ambulance and Alme-
hdawe’s algorithm). Our proposed smart algorithm achieves
smaller waiting time at hospitals for both ambulance patients
and walk-in patients. For instance, at 8:00 am of the sec-
ond day, the average drop-off (ambulance waiting) time
is 5.7, 3.78, and 2.8 minutes for traditional ambulance,
Almehdawe’s algorithm, and our proposed smart algorithm,
respectively. At the same time instant, the average walk-in
patient waiting time is 42.56, 31.4, and 11.3 minutes for tradi-
tional ambulance, Almehdawe’s algorithm, and our proposed
smart algorithm, respectively.

D. NON-HOMOGENOUS TRAFFIC CONDITIONS
In the previous results we assumed that the traffic condi-
tions are homogenous and uniform across the city. However,
in reality, traffic congestion happens due to car accidents,
construction work, variation in road capacities, etc. In this
section, we show the results of our algorithm and the tradi-
tional ambulance taking traffic congestion into consideration.
We don’t take traffic congestion due to rush hours since it
usually affects most of the city areas. We rather take into
consideration congestion due to car accidents and short-term
construction work. We use the parameters given in Table 3 to
model the congestion across the city.

Fig. 8 shows the response time, door-to-needle of ambu-
lance patients, and door-to-needle of walk-in patients versus
time under non-homogenous traffic conditions. As depicted
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FIGURE 6. (a). Average ambulance drop-off time (T avg
WT _a) for non-proportional arrival rate. (b). average waiting time (T avg

WT _w ) for non-proportional
arrival rate.

TABLE 3. Spatial-temporal parameters of the road congestion model.

in the figures, the three performance metrics experience fluc-
tuations due to spatial and temporal variations in traffic con-
ditions. The peaks correspond to congestions periods due to
accidents and short-term construction. However, it is apparent
that our proposed smart algorithm is able tominimize the neg-
ative impact of the congestion compared with the traditional
ambulance. For instance, at 3:00 o’clock in the fourth day, our
algorithm reduces the response time from 15.61 minutes to
8.92 minutes, the door-to-needle time of ambulance patients
from 14.95 minutes to 9.64, and door-to-needle time of walk-
in patients from 21.6 minutes to 12.38 minutes. This is due
to the fact that our smart algorithm collects road conditions
in real-time and selects the routes and the destined hospitals
based on the collected information. For instance, hospital H1
can be the closest to a patient who requested an ambulance
service. However, due to an accident or short-term construc-
tion work in the roads between H1 and the patient’s location,
the travel time from H2 to the patient is shorter than that
from H1. In this case, our algorithm will select H2 to send
an ambulance to the patient and deliver him/her back to

the hospital while the traditional algorithm would select H1
instead, which increases the response time and travel time.

E. REDUCED TREATMENT TIME
It was shown in [27] that the use of smart ambulance not
only reduces the response and door-to-needle time but also
shortens the treatment time. This is due to the fact that smart
ambulance allows paramedics in the ambulance to exchange
biomedical data, images, and videos (recorded or in real-time
basis) with the emergency departments and specialists. The
exchanged data, images and videos, as well as the potential
intervention by paramedics supervised by specialists, can
help in reaching initial diagnoses for the case and treatment
preparation at the hospital, which reduces the treatment time.
As depicted in Fig. 9, the average ambulance drop-off time
(T avgWT_a) and the average walk-in waiting time (T avgWT_w) are
considerably shortened due to the reduction in the treat-
ment (TT ), especially at high arrival rate (λa = λw). For
instant, at λa = 22.5 patients/hour, T avgWT_a and T avgWT_w are
reduced by 60% and 80%, respectively for 10% reduction
in TT while T avgWT_a and T avgWT_w are reduced by 85% and
95%, respectively for 20% reduction in TT . This significant
reduction in the ambulance drop-off and walk-in waiting time
is very important for patients with critical conditions and
life-threatening conditions. Furthermore, the reduction of the
ambulance drop-off time speeds up the return of ambulance
to its original hospital and the return to the stand-by condition
and ready to pick-up a new patient. As, a result the reduction
in TT does not only reduce the ambulance drop-off time
and walk-in waiting-time but also the response time since
ambulance availability at hospitals will increase, especially
at high arrival rates.

F. RESULTS OF MADINAH
Fig. 10 shows the Madinah central-area map with eight
hospitals (four large hospitals and four small hospi-
tals) and six ambulance centres. Each hospital has five
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FIGURE 7. (a). Variation of ambulance arrival rate (λa = λw ) and total capacity (
∑4

i=1 Mi ) versus time. (b). Average ambulance drop-off time
(T avg

WT _a) for dynamic arrival rate. (c). Average walk-in waiting time (T avg
WT _w ) for dynamic arrival rate.
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FIGURE 8. (a). Average ambulance response time (T avg
R ) with road congestion. (b). Average ambulance patient door-to-needle time with road

congestion. (c). Average walk-in patient door-to-needle time with road congestion.
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FIGURE 9. (a). Impact of treatment time reduction on the average ambulance drop-off time (T avg
WT _a). (b) Impact of treatment time

reduction on the average walk-in waiting time (T avg
WT _w ).

FIGURE 10. Madinah (central-area) map with highlighted hospitals and ambulance centres used in Anylogic simulation.

ambulance vehicles while each ambulance centre has three
ambulance vehicles. The eight hospitals are classified as
four large ones (Al-Madinah General, Alzahraa, Al-Abeer,

and Attba Al-Madinah Medical Centre) and four small ones
(Safa Al-Madinah, Aldar, Madinah National, and
Hamid Suliman). In this section, we include the time-varying
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FIGURE 11. (a). Average ambulance response time (T avg
R ) in madinah central area. (b). Average ambulance patient

door-to-needle time in madinah central area. (c). Average walk-in patient door-to-needle time in Madinah central
area.

arrival rate and capacity similar to that in Fig. 7(a). However,
the total capacity is twice that shown in Fig. 7(a) since the
capacity of large hospitals are 6, 4, and 3 at high arrival rate,

medium arrival rate, and low arrival rate, respectively, while
small hospitals have 4, 3, and 2 at high arrival rate, medium
arrival rate, and low arrival rate, respectively. In addition,
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we take into consideration the traffic congestion due to
accidents and short-term construction work as discussed in
Subsection (d). We consider three speeds (110 km/h for
circular road King Abdullah Rd, 80 km/h for other main
roads, and 50 km/h for the inner roads. Fig. 11 shows the
performance metrics versus time over one week. As in the
virtual city case, our proposed smart algorithm significantly
improves the three performance metrics. It is evident that our
smart algorithm reduces the average response time by more
than 50%, the average ambulance patient door-to-needle time
by more than 75%, and the average walk-in patient door-
to-needle time by more than 95%.

V. CONCLUSION
In this paper we proposed a novel smart ambulance sys-
tem which is shown to significantly improve the ambu-
lance performance metrics. The proposed system utilizes the
real-time information about the hospital loading and road
traffic conditions.

We analyzed the performance of the proposed system ana-
lytically and by simulation. The results showed good agree-
ment between the analytical results and simulation results.
We also compared the performance of the proposed smart
systems with that of traditional ambulance (without real-
time traffic information utilization) and the results confirmed
the superiority of our proposed smart algorithm. In addition,
we compared the performance of our algorithm with that
of one of the existing algorithms in the literature which
minimizes the ambulance drop-off time (Almehdawe’s algo-
rithm [18]) and we showed that our algorithm outperforms
Almehdawe’s algorithm. Furthermore, we took into consid-
eration the treatment time reduction due to the exchange of
data, image and video data between ambulance and emer-
gency department before patient arrival. The performance
superiority of our proposed smart algorithm is verified in
two environments (circular virtual city and the central-area
in Madinah, Saudi Arabia). From the obtained results, it is
apparent that smart ambulance is a very promising technology
that can revolutionize the emergency service.

We plan to extend this work to take into consideration
the different urgency levels of patients and the availability
of some specialists in specific hospitals. More consideration
of reducing the treatment time will be taken into account
by adopting smart diagnostic model. Such a model will be
responsible to provide emergency departments with initial
checkup of patients such as heartbeat rate, blood pressure
measure, glucose level, and body temperature.
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