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ABSTRACT In recent years, computer-aided automatic polyp segmentation and neoplasm detection have
been an emerging topic in medical image analysis, providing valuable support to colonoscopy procedures.
Attentions have been paid to improving the accuracy of polyp detection and segmentation. However, not
much focus has been given to latency and throughput for performing these tasks on dedicated devices,
which can be crucial for practical applications. This paper introduces a novel deep neural network archi-
tecture called BlazeNeo, for the task of polyp segmentation and neoplasm detection with an emphasis
on compactness and speed while maintaining high accuracy. The model leverages the highly efficient
HarDNet backbone alongside lightweight Receptive Field Blocks and a feature aggregation mechanism for
computational efficiency. An auxiliary training strategy is proposed to take full advantage of the training
data for the segmentation quality. Our experiments on a challenging dataset show that BlazeNeo achieves
improvements in latency and model size while maintaining comparable accuracy against state-of-the-art
methods. We obtain over 155 fps while outperforming all compared models in terms of accuracy in INT8

precision when deploying on a dedicated edge device with a conventional configuration.

INDEX TERMS Semantic segmentation, polyp segmentation, deep learning, colonoscopy.

I. INTRODUCTION
Colorectal polyps, especially adenomas with high-grade dys-
plasia, carry high risks of progressing into colorectal cancer
(CRC) [10], which claims over 640,000 lives each year [3].
There are available procedures to screen and detect high-risk
polyps in an early stage, increasing the chances of successful
treatment. Polyp detection and removal in colonoscopy are
the most effective method to prevent colorectal cancer [14].
In practice, factors such as overloading healthcare systems,
low-quality endoscopy equipment, or personnel’s lack of
experience [2], [21] can severely limit the effectiveness of
colonoscopy. A review by Leufkens er al. [22] pointed out
that 20 — 47% of polyps might have been missed during
colonoscopies. Several types of image-enhanced endoscopies
and accessories have been proposed to alleviate these, yet
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they can be prohibitively expensive for practical applications,
especially in medical clinics with poorly equipped facilities.
On the other hand, computer-aided systems for colonoscopy
have shown a lot of promise and have attracted many
researchers in recent years. Several works have achieved very
good performance on benchmark datasets [9], [12], [39].
Polyp segmentation is a subset of medical image analysis
that has gained much attention recently. Traditional machine
learning methods for solving the problem are mostly based on
hand-crafted features [15], [35] to extract image information
such as color, shape, and textures. Since polyps have very
high intra-class diversity and low inter-class variation, such
approaches are often limited in representing and detecting
polyps. Deep neural networks, and especially U-Net [32]
have been the state-of-the-art methods for polyp segmenta-
tion in the last few years. These networks can learn highly
abstract and complex features, allowing them to achieve good
performances. At the same time, deep neural networks also
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come with a complexity trade-off, as models can be very large
(up to several hundred million parameters) and cause high
latency during inference.

Most of the existing research in endoscopy image analysis
has focused on the polyp segmentation problem, in which
lesion regions or polyps are segmented from the background
pixels. Those works attempted to improve the learning mod-
els to provide accurate segmentation of polyps. However, the
segmentation of polyps only does not provide information
about the type of polyps, i.e., benign (non-cancerous) or
malignancy (presence of cancerous cells). In our seminal
work [20], we have defined the problem of Polyp Segmenta-
tion and Neoplasm Detection (PSND), aiming at fine-grained
segmentation of polyps. This can be considered an exten-
sion of the polyp segmentation problem, providing richer
semantic information for the segmented regions. Particularly,
besides classifying image pixels as polyp or background,
the proposed formulation further identifies each polyp pixel
as non-neoplastic, neoplastic, or undefined. In general, non-
neoplastic polyps are typically benign, while neoplastic
polyps have a risk of developing cancer. Our newly devel-
oped UNet-based neural network architecture, NeoUNet, has
obtained state-of-the-art performance in solving this problem
in terms of accuracy. However, attention has not yet been paid
to the model size and speed, which is challenging for practical
deployment.

In this paper, we further improve on our previous works on
Polyp Segmentation and Neoplasm Detection with the pro-
posal of BlazeNeo, a novel deep neural network architecture
with an efficient learning mechanism. Our main contributions
are:

e A new deep neural network architecture -called
BlazeNeo designed with a lightweight encoder-decoder
and an efficient feature aggregation for polyp segmenta-
tion and neoplasm detection. The design aims at reduc-
ing the model size and therefore improving inference
speed;

o An auxiliary training strategy to fully exploit informa-
tive features in the training data for maintaining high
accuracy while reducing model size;

« Extensive experiments on the newly collected NeoPolyp
dataset and comparisons to existing models. Moreover,
we measure model latency and throughput on dedicated
hardware in a setting similar to real-life deployments of
polyp segmentation and neoplasm detection.

The rest of the paper is organized as follows. We provide

a brief review of related works in Section I, including a
brief description of the polyp segmentation and neoplasm
detection (PSND) problem originally formulated in [20]. The
BlazeNeo architecture is presented in Section III. Section IV
showcases our experimental studies. Finally, we conclude the
paper and highlight future works in Section VI.

Il. RELATED WORK
In recent years, many computer vision tasks have seen
massive improvements through the advancements of

43670

convolutional neural networks (CNNs). AlexNet [19] and
VGG [36] are among the first successful CNNs for image
classification problems. However, these early models still
suffer from degradation when increasing network depth.
Many works have attempted to modify the network archi-
tectures to improve learning capability aiming at improving
network performance. Skip connections, first introduced in
ResNet [11] in 2016, helped alleviate the degradation and
smoothed out the loss landscape. ResNeXt [43] combined
the idea of skip connections with a multi-branch design first
proposed by the authors of Googl.eNet [37]. More recently,
Tan and Le [38] employed neural architecture search to pro-
duce EfficientNet, a family of neural networks with varying
levels of the trade-off between accuracy and latency. Mean-
while, HarDNet [4] is a model highly focused on optimizing
inference latency and memory traffic.

Many CNN architectures have been designed for the
semantic image segmentation task, especially in medical
images. Among the earliest was the work by Long et al. [27],
who adopted several well-known architectures using transfer
learning. In the same year, U-Net [32] became a break-
through model in medical imaging, achieving highly promis-
ing results for medical image segmentation. Later works
such as UNet++ [47], DoubleUNet [17] and Coupled
U-Net [39] further improved and alleviated limitations in
U-Net. ColonSegNet [16] was a lightweight encoder-decoder
architecture that uses residual connections with squeeze-and-
excitation networks as the main components. ColonSegNet
achieved a high inference speed but with significant sacri-
ficing accuracy. DDANet [40] was another encoder-decoder
design that leverages the strength of residual connection
and squeeze-and-excitation modules. DDANet incorporated
a single encoder followed by two dual decoders. The first
decoder is used for the segmentation mask, while the sec-
ond one acts as an autoencoder model that reconstructs the
grayscale image and helps strengthen the feature representa-
tion of the encoder. Attention-UNet [29] proposed attention
gates as a filter mechanism for selecting useful salient fea-
tures. Despite the dominance of UNet-based approaches, the
development of non-UNet models in medical segmentation
has also remained active. DeepLabV3 [6] is a prominent
architecture that utilizes atrous convolutions for dense feature
extraction. Fan et al. [9] enhanced an FCN-like model with
parallel partial decoder and reverse attention to form PraNet,
a network that achieved state-of-the-art performance on
many benchmark datasets. HarDNet-MSEG [12] employed
an encoder-decoder structure with HarDNet as the encoder
backbone, achieving good performance on the Kvasir-SEG
dataset and very high inference speed. Meanwhile, Trans-
Fuse [46] combined a CNN with the Transformer architecture
using a fusion module called BiFusion.

Many deep learning methods are also specially designed
for the polyp segmentation and detection problem.
Qadir et al. [30] proposed a framework that incorporates
a CNN architecture for labeling segmentation masks for
polyps. The framework allows medical doctors to receive
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FIGURE 1. PSND [20] as an extension of polyp segmentation, which further discriminates whether a polyp

is neoplastic or non-neoplastic. For a given input image shown on the top right corner, expected outputs for
polyp segmentation and PSND are depicted in the middle and the bottom images on the right, respectively.
The black color denotes background pixels, white color denotes polyp regions; green and red colors denote

1
Ld

non- tic and plastic polyps, respectively.

pre-annotations from a model trained in a semi-supervised
manner. In [33], the authors proposed a model with
an Inception-ResNet backbone combined with several
post-learning methods to enhance polyp detection accuracy.
Shin et al. [34] used conditional adversarial networks to gen-
erate abnormal samples for training polyp detection models.
Liu et al. [24] applied different CNN backbones including
InceptionV3 [37], ResNet50 [11] and VGG16 [36] to the
SSD framework, whose accuracy was much higher than
other one-stage object detectors and comparable to the two-
stage Faster-RCNN. In [23], Li et al. compared the perfor-
mance of eight state-of-the-art deep learning object detectors
and demonstrated promising results in colonoscopic image
analysis.

There have been few attempts in the past for the problem
of polyp neoplasm detection [31]). It was only recently that
neoplasm detection was incorporated into polyp segmenta-
tion. Lan et al. [20] formally described the problem of polyp
segmentation and neoplasm detection (denoted as PSND) and
proposed NeoUNet, a UNet-based architecture that estab-
lished the baseline for the PSND.

Polyp Segmentation and Neoplasm Detection (PSND) has
been formulated as a type of fine-grained polyp segmen-
tation problem. Besides segmentation of polyps, this for-
mulation further classifies a polyp pixel into two classes:
non-neoplastic or neoplastic. In medical image analysis,
non-neoplastic polyps are considered benign, while neo-
plastic polyps may progress with a risk of cancer. During
a colonoscopy procedure, the doctor must decide immedi-
ately on the types of polyps, neoplasm or non-neoplastic, to
consider an optimal management strategy, i.e., removal or
resection during the endoscopy procedure or biopsy then
operation. This requires low latency from the detection
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model. While NeoUNet has obtained promising accuracy,
it has not yet addressed the inference speed to ensure smooth
operation in real applications. Moreover, practical deploy-
ments would have the neural network run on lightweight
systems embedded in endoscopic devices. This paper focuses
on building a light network architecture for fast inference
while improving polyp segmentation and neoplasm detection
accuracy.

ill. PROPOSED METHOD

Figures 1 depicts the PSND problem as a semantic extension
of the polyp segmentation problem. In practice, missed detec-
tion of polyps is often associated with small and flat regions.
This makes the problem challenging. Besides, in practice,
an ‘“‘undefined” class is labeled if there is not enough infor-
mation from the endoscopic image to categorize the risk of
neoplasm. This undefined subgroup is not a specific class
we want to predict since such predictions would not bring
any insight to the endoscopist. Therefore, the model only
needs to learn to discriminate between neoplastic and non-
neoplastic polyps. However, the undefined class still gives
supplementary information about polyp regions that can be
exploited to help the model gain more representation power
in the training phase.

We propose BlazeNeo model with three versions for pro-
cessing the outputs, as depicted in Figure 2. Inspired by
the lightweight model HarDNet-MSEG [12], our models are
developed with several improvements tailored for the PSND
problem. First, we use a simplified version of RFB [25] with
smaller kernel sizes and apply different feature aggregation
schemes. For the encoder layer, HarDNet-68 [4] is used as
the backbone.

43671



IEEE Access

N. S. An et al.: BlazeNeo: Blazing Fast Polyp Segmentation and Neoplasm Detection

SB-BlazeNeo

Encoder Block Encoder Block

64-d

Encoder Block

128-d

Encoder Block

-

ST-BlazeNeo

[ Encoder Block H RFB [ Encoder Block H RFB

320-d * 320-d *

Feature
Aggregation

[ Encoder Block H RFB [ Encoder Block H RFB

% Aggregation

640-d * 640-d *

[ Encoder Block H RFB [ Encoder Block H RFB

1024-d 1024-d

() (b)

BlazeNeo

Neoplasm Segmentation

Feature

{ Encoder Block H RFB
320d *
{ Encoder Block H RFB
640-d *
{ Encoder Block H RFB

1024-d

[ ——3p Max pooling — Conv 3x3 + Softmax

——p Conv 3x3 + Sigmoid

—p Flow of features J

FIGURE 2. Proposed architectures of our BlazeNeo: (a) Single-headed Binary BlazeNeo (SB-BlazeNeo) has one output branch that produces two binary
segmentation maps corresponding to neoplastic and non-neoplastic classes; (b) Single-headed Trinary BlazeNeo (ST-BlazeNeo) also has one output
branch that directly predicts a trinary segmentation map; (c) Multi-headed BlazeNeo (or BlazeNeo for short) contains two output branches that are
responsible for the two tasks: neoplasm segmentation treated as the main task, and polyp segmentation treated as the auxiliary task. Both branches
share the same architecture of the feature aggregation module, but they are trained separately without sharing their parameters.

The three BlazeNeo variants differ in how outputs
from the model are generated and processed. Inspired
by NeoUNet [20], Single-headed Binary BlazeNeo (SB-
BlazeNeo) solves two binary segmentation tasks correspond-
ing to neoplastic and non-neoplastic classes. The second
variant, Single-headed Trinary BlazeNeo (ST-BlazeNeo),
predicts a trinary map for three classes in the neo-
plasm segmentation task. Finally, Multi-headed BlazeNeo
(or BlazeNeo for short) uses two output branches. The main
output branch is used for the neoplasm segmentation task, and
the auxiliary branch is for the polyp segmentation task. The
following subsections describe our design, model’s architec-
ture, and training strategies in detail.

A. LIGHTWEIGHT ENCODER: HarDNet

HarDNet (Harmonic Densely Connected Network) [4] is an
improvement over DenseNet [13]. The primary goal of HarD-
Net’s design is to lower latency by reducing memory traffic.
The authors argued that the connection pattern of Dense
Blocks, in which each layer has skip connections toward
every proceeding layer in the block, causes ineffective mem-
ory access during runtime that severely hinders performance.
HarDNet reduces the number of skip connections to form
a pattern similar to the harmonic wave function, as well as
scaling channel width according to a layer’s influence level.
We illustrate the difference between the two architectures
in Figure 3.

Inside a HarDNet block, each layer is indexed from the
input layer 0. A layer [ receives a skip connection from layer
[ —2"if 2" divides [ (n > 0,1 — 2" > 0). Given the initial
growth rate k and a compression factor m, layer I’s channel

width is equal to k x m*, where x = max{v | [ : 2"}.
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HarDNet

FIGURE 3. lllustrations for DenseNet block and Harmonic DenseNet
(HarDNet) block. Each of the layers is a 3 x 3 convolution. The value on
each layer denotes the number of output channels.

Chao et al. [4] further proposed HarDNet-68 for detection
of small objects. While most CNNs focus on stride-16 to
enhance classification ability, HarDNet-68 distributes most
of the layers on stride-8 to aid small-scale object detec-
tion, as shown in Figure 4. Experiments in [4] show that
HarDNet-68 is not only 30% faster than ResNet-50 [11]
but also more accurate than ResNet-101 [11] when used as
backbone for SSD [26] in the object detection problem.

Our BlazeNeo also uses HarDNet-68 as the encoder
backbone. For an input colonoscopy image I with size
h x w, five levels of features {f;,i =1, 2, 3,4, 5} with res-
olution [//2i=1, w/2i=1] are produced from the encoder.
Wau et al. [41] showed that low-level features (corresponding
to f1 and f>) contribute less to the performance while being
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FIGURE 4. An overview of HarDNet-68 architecture. Following each
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22 x22

11 x 11

computationally expensive due to their size. Therefore, our
BlazeNeo discards f1 and f>, using only the last three feature
maps for the decoder module to accelerate its inference speed.

B. PARALLEL PARTIAL DECODER

In all three variants of our BlazeNeo, the decoder module
consists of a Receptive Field Block (RFB) series. Three last
feature maps of the encoder are independently passed through
the RFB blocks and then fused by the feature aggregation
blocks.

1) RECEPTIVE FIELD BLOCK

Polyps can appear in various scales on endoscopic images
depending on their actual size, their distance to the
colonoscopy camera, or the angle between them and the cam-
era. This is a challenge for CNN architectures, in which the
receptive field size is often fixed. Several studies have sug-
gested different mechanisms to create more robust receptive
fields, including the Inception block [37], ASPP block [5],
and Deformable Convolution block [8]. Conceptually, these
proposals are similar in that they all use multiple convo-
lutional branches with different kernel sizes, merging the
outputs to form adaptive receptive fields. However, they also
have their own limitations. The Inception block samples all
the kernels of each branch at their center, ignoring crucial
edge details due to small sampling coverage. Meanwhile, the
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FIGURE 5. Structure of the Receptive Field Block (RFB).

ASPP and Deformable Convolution blocks do not differenti-
ate between different pixel positions, making it difficult for
the model to focus on segmentation targets.

The Receptive Field Block (RFB) [25] has been proposed
to address these limitations. RFB also uses the multi-branch
convolution approach, with improvements inspired by the
human visual cortex. In addition, it highlights the importance
of the region nearer to the center and elevates the insensitivity
to small spatial shifts.

The RFB module used in PraNet [9] and HarDNet-
MSEG [12] is modified with a larger kernel size and larger
dilation rate, which makes it more computationally expen-
sive. Our BlazeNeo instead uses a simplified version of RFB
(see Figure 5) as proposed in [25] for faster inference.

2) FEATURE AGGREGATION

A high polyp miss rate is often associated with small and flat
polyps (whose perimeters are below 10mm) [18]. In order to
detect these polyps, it is important to obtain high-resolution
features from multiple image scales. Feature fusion (or aggre-
gation) is a well-studied technique to achieve this capability
for CNNs, in which feature maps from different scales are
fused to form a multi-scale feature map. Figure 6 demon-
strates four feature aggregation schemes, in order of increas-
ing complexity [45].

Long Skip Connection (LSC) illustrated in Figure 6a is
an early aggregation scheme used by segmentation networks
such as UNet [32], UNet++ [47], and Attention UNet [29].
Given feature maps X1, X2, X3, higher-level feature maps are
upsampled and fused with their adjacent low-level features
by a long skip connection, gradually restoring the spatial
information. Each fusion module includes a concatenation
layer and a convolutional layer with kernel size 3 x 3.

LSC is a well-tested and straightforward technique, but it is
not without limitations. Zhang [45] proposed three alterations
to produce higher-quality features, as described below.

Iterative Deep Aggregation (IDA) depicted in Figure 6b
produces finer feature maps by using multiple iterative con-
volutions for a single scale.

Inspired by DenseNet, Dense Iterative Aggregation (DIA)
introduces dense skip connections to the iterative convolu-
tions in IDA (see Figure 6¢). This addition ensures maximum
information flow and reduces overfitting.
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FIGURE 6. Different feature aggregation schemes as shown in [45].
(a) Long skip connection (LSC); (b) Iterative Deep Aggregation (IDA);
(c) Dense Iterative Aggregation (DIA); (d) Dense Hierarchical
Aggregation (DHA).

Dense Hierarchical Aggregation (DHA) further enhances
semantic information by re-combining the output with
high-level feature maps, as shown in Figure 6d.

From these observations, in our BlazeNeo, we propose
to apply feature aggregation to the outputs of RFB mod-
ules at different scales. We examine variants with each of
the aforementioned aggregation schemes, namely BlazeNeo-
LSC, BlazeNeo-IDA, BlazeNeo-DIA, and BlazeNeo-DHA,
in section IV.

C. LOSS FUNCTION AND AUXILIARY TRAINING

We aim to exploit the information from data with the unde-
fined labels for training in a way similar to [20]. The intuition
is that while these data do not provide information for decid-
ing on neoplasm class, they still can provide some semantic
meaning from the data for the segmentation.

To training BlazeNeo, we propose the loss function Ly
consisting of two components: a main loss L4, associated
with the main task of neoplasm segmentation, and an aux-
iliary loss L, associated with the auxiliary task of polyp
segmentation. The total loss can be expressed as follows:

ﬁtotal = ﬁmain + Eaux (1)

The main loss L4, drives the model toward making
accurate class-specific segmentation. The pixels with unde-
fined labels are excluded when calculating £,,4i,. The aux-
iliary loss L4y, drives the model toward making accurate
foreground-background segmentation, in which all pixels
are used for training. Note that the auxiliary branch can be
omitted during inference, so it will not require additional
computing overhead.
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To investigate this training strategy, we iterate through
three different ways to incorporate it into BlazeNeo,
which creates three different variants: Single-headed Binary
BlazeNeo (SB-BlazeNeo), Single-headed Trinary BlazeNeo
(ST-BlazeNeo), and Multi-headed BlazeNeo (the final ver-
sion of BlazeNeo).

1) SINGLE-HEADED BINARY BlazeNeo

Our first variant, SB-BlazeNeo (Figure 2a), uses the same loss
formulation as the NeoUNet model proposed in [20]. The
final output layer produces two binary segmentation maps,
one for the neoplastic class and another for the non-neoplastic
class. Losses are calculated separately for each map and then
averaged. The main loss is a combination of Binary Cross
Entropy and Focal Tversky loss [1] as follows:

Emain — Eneo + Eﬂ()}’l

main main
— neo neo eo neo

= LcEPgins Cmain) + LFT Prgins Giain

on non non non
+£BCE(Pmain’ main) + LFT( main’® main) (2)
where P and P,” denote the prediction maps for the

H 3 3 . neo

neoplastic and non-neoplastic classes, respectively; Qmam
and G"" are ground truths; Lgcg and Lpy denote Binary

Cross ﬁ?{?ropy and Focal Tversky losses, respectively.

We choose the Focal Tversky loss for L, to alleviate
class imbalance due to the small amount of non-neoplastic
polyp pixels, as shown later in Figure 8.

The auxiliary loss is a combination of Binary Cross
Entropy and Tversky loss, which uses an auxiliary polyp
segmentation map inferred from the two binary class-specific
maps:

Laux = Lpcp(Ph? . Ghd?) + Lr(Phd?, GL’) — (3)

where PZZiy P and GZ%;V P denote the auxiliary polyp prediction
map and the corresponding ground truth, Lr7 is Tversky loss.

The auxiliary polyp prediction map P2o27 is inferred using
element-wise max:

P};Ziyp = max(Pﬁaoin’ an(gi'n “)

2) SINGLE-HEADED TRINARY BlazeNeo
While the method using binary map [20] yielded promis-
ing classification results, we found that a lighter model
can benefit from imposing an additional constraint on the
outputs. Specifically, when the model outputs two separate
class-specific maps for one image, it may make both maps
have high prediction values for the same pixel. Therefore,
a class constraint is needed to ensure that one class is cho-
sen for each pixel. In our second variant, ST-BlazeNeo
(Figure 2b), we use a 3-channel output map Ptmr':l.iry , denoting
the probabilities for the neoplastic, non-neoplastic, and back-
ground class, respectively. A softmax activation is used on the
channel dimension, meaning each pixel may only belong to
one class.
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The main loss is a combination of Categorical Cross
Entropy and Focal Tversky loss as follows:

17l 1ri y
Lunain = Lcce@P, 07 G

main ° ~ main
trinary trinary
+‘CFT(Pmain ’ Gmain ) &)
trinary . .
where G, ;. is the trinary ground truth.

Similarly, the auxiliary loss is a combination of Categorical
Cross Entropy and Tversky loss:

Laux = Locp(PROYP GPOPY 1 Lp(PPODP GPObPY - (6)

Here we apply element-wise max to the two channels of the
map P which correspond to the neoplastic and non-
neoplastic classes, to produce the auxiliary polyp segmenta-
tion map PZZiy P

3) MULTI-HEADED BlazeNeo

We further evolve the use of auxiliary loss by adding an aux-
iliary segmentation branch. Auxiliary training is the process
of jointly learning a side or auxiliary task to enhance the main
task’s performance [7], [44]. This idea is similar to multi-task
learning, except the auxiliary branch is not activated in the
inference phase.

The auxiliary branch uses an identical (with separate
weights) feature aggregation module but outputs a binary
segmentation map instead of a 3-channel multi-class map.
The main loss and auxiliary loss are calculated exactly as
in Eq. (5) and Eq. (6), respectively. However, there is no
conversion between multi-class and polyp segmentation maps
as in Eq. (4). Instead, the main loss is calculated with the 3-
channel multi-class map, and the auxiliary loss is calculated
with the output map from the auxiliary branch. Intuitively,
we believe the model will benefit from adding an auxiliary
network branch since it strengthens the supervised signal and
betters the optimization process during training the model.
Figure 2c¢ describes how BlazeNeo incorporates the auxiliary
branch for training in our BlazeNeo.

IV. EXPERIMENTS
A. BENCHMARK DATASET
We use the NeoPolyp dataset as introduced in [20] to train and
benchmark the proposed BlazeNeo. The dataset consists of
7,466 annotated endoscopic images captured directly during
endoscopic recording and includes all four lighting modes:
WLI (White Light Imaging), FICE (Flexible spectral Imaging
Color Enhancement), BLI (Blue Light Imaging), and LCI
(Linked Color Imaging). NeoPolyp is split into a training
set of 5,966 images and a test set of 1,500 images. Some
examples of the NeoPolyp dataset are shown in Figure 7. For
comparison with baseline models, we also use the NeoPolyp-
Clean dataset, which does not contain any polyps with unde-
fined class labels. This dataset consists of 5,277 training
images and 1,353 test images.

In practice, most non-neoplastic polyps are small, and
the endoscopists can immediately remove them without the
need to capture images or to take a biopsy for lesions less
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than 5Smm for post-checking. Due to that reason, neoplastic
polyps take up a majority of the polyps present in NeoPolyp
(see Figure 8). The number of neoplastic, non-neoplastic,
and undefined polyps are 5113, 3185, and 1031, respectively.
However, if we look at the pixel-wise level as shown in
Figure 8b, we can observe a strong data imbalance between
the three classes. The number of neoplastic polyp pixels takes
up to 80% of all polyp pixels in the dataset. Meanwhile, these
numbers for non-neoplastic and undefined classes are 13%
and 7%, respectively. This data imbalance, combined with the
inherent challenges of PSND, makes it a difficult benchmark
for models to overcome.

B. EXPERIMENT SETUP

Our experiments include several ablation studies to verify the
effectiveness of each component in BlazeNeo, a comparison
against several polyp segmentation methods, and benchmarks
on the NVIDIA Jetson AGX Xavier developer kit,! which
closely resembles real deployments. The Jetson device is
configured to run at MAXN power mode.

We oversample non-neoplastic polyps to account for class
imbalance in the NeoPolyp dataset, as addressed by [20].
Images containing non-neoplastic polyps are duplicated such
that P, & Pueo, Where Py, and P,,, are the number of
pixels containing in non-neoplastic and neoplastic polyps,
respectively.

The models are trained using Stochastic Gradient
Descent (SGD) with Nesterov momentum and an initial
learning rate of 0.001. The learning rate is adjusted according
to a combination of linear warmup and a cosine annealing
schedule.

Images used for training are at 3 different scales: 256 x 256,
352 x 352 and 512 x 512.

During training, augmentations including random scaling,
rotation, horizontal/vertical flip, motion blur, and color jitter-
ing are added to improve generality. These augmentations are
performed on-the-fly with a probability of 0.5.

BlazeNeo and other baseline models are implemented in
Python 3.7 using the PyTorch framework.

C. EVALUATION METRICS

Commonly used metrics Dice score and IoU score are
employed to measure the model’s output quality. They are
evaluated in three classes: neoplastic polyp, non-neoplastic
polyp, and generic polyp (same as polyp segmentation). Dice
and IoU are calculated pixel-wise on the entire test set (micro-
averaged). Equations (7) and (8) describe how these metrics
are calculated.

2%y . ubs
Dice. = CZ‘EI i ©)
Dier Ui D e Vi
. uSv©
IOUC — Zlé[ 11 (8)

Dier Ui+ Dier Vi — Dier Ui Vi

1 https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
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FIGURE 7. Some examples from the NeoPolyp dataset. The first row displays original images from the dataset. The second row shows the ground truths
for polyp segmentation. The last row shows the ground truths for neoplasm segmentation, where some polyps are undefined and marked by yellow
color. From left to right, the color modes are WLI, BLI, LCI, FICE, and FICE, respectively.

B Neoplastic polyp
B Non-neoplastic polyp
O Undefined polyp

34%
55%

(a) Polyp-wise distribution

B Neoplastic polyp

il

B Non-neoplastic polyp
O Undefined polyp

(b) Pixel-wise distribution

FIGURE 8. Data distribution of polyp class labels in the NeoPolyp dataset. In the pixel-wise distribution on the right, percentages are calculated on

polyp pixels only (not including background pixels.).

where i € I denotes a prediction pixel within the entire test
set. u{ = 1 if the model predicts pixel i to have class ¢, and
0 otherwise. Similarly, v{ = 1 if the ground truth map states
that pixel i has class ¢, and O otherwise. For neoplastic and
non-neoplastic class evaluation, / does not include undefined
neoplasm pixels.

We also evaluate each model’s inference speed using the
number of processed frames per second (FPS). This metric
is measured by running each model with a batch size of
1 on 100 colonoscopy images. When not specified otherwise,
FPS is measured on a Google Colaboratory instance with an
NVIDIA Tesla V100 GPU.

Finally, we log each model’s number of parameters and
floating-point operations (measured in GFLOPs) to evaluate
their size and complexity.
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V. RESULTS AND DISCUSSION

A. ABLATION STUDY

1) THE EFFECTIVENESS OF DIFFERENT OUTPUT
ARCHITECTURES

Firstly, we compare our three BlazeNeo variants shown in
Figure 2 to evaluate the effectiveness of different output
architectures. Table 1 shows performance metrics for each
variant on the NeoPolyp test set. Here we use the same DHA
feature aggregation scheme for all three of BlazeNeo. The
final BlazeNeo model with multi heads achieves the best
results on all metrics. Notably, this final variant outperforms
the other two variants by over 6% in IoU score for the non-
neoplastic class. This shows the effectiveness of the auxiliary
branch, which helps anchor segmentation performance and
makes use of undefined labels. We also see that ST-BlazeNeo
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FIGURE 9. Dice scores and FPS for different BlazeNeo variations, with and without auxiliary training. Red triangles denote results with auxiliary training,

while blue circles are those without auxiliary training.

TABLE 1. Performance metrics on the NeoPolyp test set for the three variants of BlazeNeo using the same DHA feature aggregation scheme.

Model \ Diceseg IoUseg  Dicenon IoU,on  Dicepneo  IoUpneo
SB-BlazeNeo 0.866 0.764 0.683 0.518 0.862 0.758
ST-BlazeNeo 0.874 0.777 0.671 0.505 0.865 0.762

BlazeNeo 0.901 0.820 0.728 0.572 0.888 0.800

outperforms SB-BlazeNeo, which justifies our use of trinary
output in the final variant.

2) THE EFFECTIVENESS OF DIFFERENT FEATURE
AGGREGATION SCHEMES

This experiment investigates the use of four different
feature aggregation schemes in BlazeNeo: Long Skip
Connection (LSC), Iterative Deep Aggregation (IDA),
Dense Iterative Aggregation (DIA), and Dense Hierarchical
Aggregation (DHA).

Table 2 shows performance metrics for each model vari-
ation on the NeoPolyp dataset. We can see that BlazeNeo-
DHA produces the highest Dice and IoU scores for all
classes. This is what we expected, as DHA is the most
complex aggregation mechanism that preserves a lot of high-
resolution features. However, this improvement comes at
a cost as BlazeNeo-DHA is also the slowest variation at
only 81.5 FPS, compared to the fastest BlazeNeo-LSC at
88.6 FPS. Interestingly, the nested IDA aggregation scheme
performs worse than basic LSC in the segmentation task.
This is alleviated in DIA and DHA with the use of skip
connections.
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3) THE EFFECTIVENESS OF AUXILIARY TRAINING

This experiment looks into the effectiveness of enabling and
disabling auxiliary training for each variation of BlazeNeo,
namely BlazeNeo-LSC, BlazeNeo-IDA, BlazeNeo-DIA, and
BlazeNeo-DHA.

Figure 9 shows that auxiliary training generally improves
output quality. In fact, without auxiliary segmentation learn-
ing, BlazeNeo-DIA and BlazeNeo-DHA achieve even lower
accuracy than BlazeNeo-IDA. The non-neoplastic class ben-
efits the most from auxiliary training, improving BlazeNeo-
LSC, BlazeNeo-IDA, BlazeNeo-DIA, and BlazeNeo-DHA
by 3%, 1.9%, 4%, and 4.9%, respectively.

4) THE EFFECTIVENESS OF INCLUDING UNDEFINED POLYPS
This experiment examines the effectiveness of using unde-
fined neoplasm pixels via the auxiliary module. Table 3
shows performance metrics for BlazeNeo-DHA, the best-
performing BlazeNeo model, when trained on the NeoPolyp
dataset (which contains undefined polyps) and the NeoPolyp-
Clean dataset (which does not contain undefined polyps).
Results show that the addition of these undefined pixels leads
to improvements across the board, especially for the non-
neoplastic class.
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TABLE 2. Performance metrics on the NeoPolyp test set for BlazeNeo with different feature aggregation schemes.

Method | Diceseg IoUsey

Dicenon

IoUnon  Diceneo  IoUneo | FPS

BlazeNeo-LSC 0.897 0.814 0.709
BlazeNeo-IDA 0.890 0.803 0.715
BlazeNeo-DIA 0.897 0.814 0.719
BlazeNeo-DHA 0.901 0.820 0.728

0.550 0.884 0.792 88.6
0.557 0.887 0.798 84.6
0.562 0.888 0.800 84.0
0.572 0.888 0.800 81.5

TABLE 3. Performance metrics for BlazeNeo-DHA when training on NeoPolyp and NeoPolyp-Clean, measured on the NeoPolyp test set.

Training dataset ‘ Diceseg IoUseg Dicenon  IoUpon  Diceneo  IoUneo
NeoPolyp-Clean 0.900 0.818 0.714 0.555 0.884 0.792
NeoPolyp 0.901 0.820 0.728 0.572 0.888 0.799

B. COMPARISON WITH STATE-OF-THE-ART MODELS

1) QUANTITATIVE COMPARISON

We compare the performance of BlazeNeo-DHA, the
best-performing BlazeNeo model, with seven state-of-
the-art models for the polyp segmentation and PSND
problem: U-Net [32], ColonSegNet [16], DDANet [40],
DoubleUNet [17], HarDNet-MSEG [12], PraNet [9], and
NeoUNet [20]. We keep all default training settings of these
models as reported by the authors. Except for NeoUNet, the
models mentioned above do not handle undefined neoplasm
pixels during training. Thus, in the interest of a fair compari-
son, we use the NeoPolyp-Clean dataset for this experiment,
which does not contain undefined polyps. Results are shown
in Table 4.

We can see that while NeoUNet remains the most accu-
rate model, BlazeNeo is a close second, with a differ-
ence of less than 1% on most accuracy metrics. At the
same time, BlazeNeo is a much more lightweight and
faster model. Compared to NeoUNet, BlazeNeo achieves
higher FPS (81.5 versus 68.3), has half as many parame-
ters (17, 143, 324 versus 38, 288, 397), and lower GFLOPs
(11.06 versus 39.88). Notably, BlazeNeo-DHA is faster and
more accurate than HarDNet-MSEG, while NeoUNet is
slower than HarDNet-MSEG and U-Net. We attribute the
speed improvement of BlazeNeo over HarDNet-MSEG to the
different decoder designs, especially the use of the small RFB
module.

Although achieving a high overall dice score, our
BlazeNeo is not without limitations. The dice and IoU scores
of BlazeNeo are still low for the non-neoplastic class, and
both of them are degraded when the model is converted into
the INTS precision. The reason may be due to the small size of
non-neoplastic polyps. When the weights are converted into
integers ranging from —128 to 127 in the INTS8 precision,
the model seems to lose the capacity of representing detailed
information and, therefore, is easier to miss small objects in
the input images.

2) QUALITATIVE COMPARISON
Figure 10 shows output examples of BlazeNeo-DHA and
other baseline models. Overall, BlazeNeo-DHA produces
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the most accurate segmentation and classification results for
different types of polyps.

The first five rows of Figure 10 contain “‘easier” polyp
examples. BlazeNeo-DHA and NeoUNet perform quite well
in these examples, with similarly high accuracy. Mean-
while, PraNet, HarDNet-MSEG, DoubleU-Net, DDANet,
U-Net, and ColonSegNet produce predictions with less uni-
formity, with some polyps containing both neoplastic and
non-neoplastic regions. For larger polyps such as the 5th row,
PraNet cannot fully segment the area.

The last five rows in Figure 10 represent more challenging
examples, in which all models struggle to provide accurate
segmentation masks. This is because non-neoplastic polyps
are usually small in size and easier to be miss-detected.
BlazeNeo-DHA and NeoUNet produce fewer false positives
in these situations, while U-Net and ColonSegNet create the
most inaccurate masks.

The last two rows show two non-neoplastic polyps in BLI
and FICE modes. Contributing factors for these struggles
in enhanced color modes include their smaller proportions
in the training dataset. Furthermore, the endoscopist put the
camera scope close to the mucosa in these cases, making
the polyps’ surface look very clear and sharp such that one
can even observe small dots that are glandular holes on the
surface. Therefore, these polyps are easily confused with
angiogenesis in neoplastic lesions, which is why all models
failed in classifying them.

C. BENCHMARK FOR EMBEDDED DEVICE
In this experiment, we apply model compression techniques
via the NVIDIA TensorRT 7.1 toolkit [28] to BlazeNeo and
the baseline models. The compressed models are then bench-
marked on the NVIDIA Jetson AGX Xavier developer Kkit,
an embedded computation unit with an NVIDIA GPU spe-
cialized for edge Al deployments. This setup is more in-line
with deployment scenarios for polyp segmentation and PSND
models, i.e., embedded on-site into colonoscopy devices.
Three available precision modes are tested for compressing
each model: FP32, FP16, and INTS8. Each mode can be seen as
a different trade-off level between accuracy and speed. FP32
precision applies techniques such as layer/tensor fusion while
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TABLE 4. Performance metrics of different models on the NeoPolyp-Clean test set.

Method ‘ Diceseg IoUgeg  Dicenon  IoUpon  Diceneo  IoUneo ‘ FPS  Parameters GFLOPs
ColonSegNet [16] 0.738 0.585 0.505 0.338 0.732 0.577 44.9 5,010,000 64.84
U-Net [32] 0.785 0.646 0.525 0.356 0.773 0.631 69.6 31,043,651 103.59
DDANet [40] 0.813 0.684 0.578 0.406 0.802 0.670 46.2 6,840,000 31.45
DoubleU-Net [17] 0.837 0.720 0.621 0.450 0.832 0.712 432 18,836,804 83.62
HarDNet-MSEG [12] 0.883 0.791 0.659 0.492 0.869 0.769 77.1 17,424,031 11.38
PraNet [9] 0.895 0.811 0.705 0.544 0.873 0.775 55.6 30,501,341 13.11
NeoUNet [20] 0911 0.837 0.720 0.563 0.889 0.800 68.3 38,288,397 39.88
BlazeNeo-DHA (Ours) 0.904 0.825 0.717 0.559 0.885 0.792 81.5 17,143,324 11.06

(b) © (d ©® ® (® (0]
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FIGURE 10. Qualitative comparison of the proposed method with other baseline methods: (a) image, (b) ground truth, (c) BlazeNeo (Ours), (d) NeoUNet,
(e) PraNet, (f) HarDNet-MSEG, (g) UNet, (h) DoubleU-Net, (i) DDANet, and (j) ColonSegNet.

keeping parameters as 32-bit floating-point numbers. Hence,
this mode provides some speed-up while minimizing accu-
racy degradation. FP16 precision converts suitable parame-
ters to 16-bit floating-point numbers, greatly reducing model
size and latency but is subject to more degradation. Finally,
INTS precision mode quantizes model parameters to 8-bit
integers. This precision mode requires an additional calibra-
tion procedure to maintain model integrity, which attempts to
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replicate the original model’s output on a small calibration
dataset. Despite calibration, INTS8 precision is susceptible to
a lot more degradation. For this experiment, INTS calibration
is done on a randomized set of images.

Table 5 shows performance metrics in different preci-
sions for U-Net, PraNet, HarDNet-MSEG, NeoUNet, and
BlazeNeo-DHA. We can see a stark difference in FPS when
running models on the Jetson AGX Xavier compared to the
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TABLE 5. Performance metrics of state-of-the-art models in FP16, FP32 and INT8 precision levels on NVIDIA Jetson AGX Xavier.

Model ‘ Precision ‘ Diceseg IoUgseg Dicenon  IoUnon  Diceneo  IoUpeco ‘ FPS
ColonSegNet@FP32 FP32 0.745 0.594 0.528 0.359 0.728 0.572 9.4
UNet@FP32 FP32 0.800 0.667 0.537 0.367 0.781 0.641 10.7
DDANet@FP32 FP32 0.799 0.665 0.557 0.386 0.776 0.635 16.6
DoubleU-Net@FP32 FP32 0.840 0.725 0.627 0.456 0.835 0.717 10.6
HarDNet-MSEG @FP32 FP32 0.891 0.804 0.685 0.521 0.871 0.771 52.2
PraNet@FP32 FP32 0.849 0.738 0.571 0.400 0.844 0.730 37.0
NeoUNet@FP32 FP32 0.909 0.832 0.725 0.568 0.893 0.806 25.4
BlazeNeo @FP32 (Ours) FP32 0.906 0.828 0.721 0.563 0.887 0.796 53.3
ColonSegNet@FP16 FP16 0.746 0.594 0.528 0.359 0.728 0.572 26.3
UNet@FP16 FP16 0.800 0.666 0.537 0.367 0.781 0.641 35.5
DDANet@FP16 FP16 0.799 0.665 0.557 0.386 0.776 0.635 31.8
DoubleU-Net@FP16 FP16 0.840 0.725 0.627 0.456 0.835 0.717 229
HarDNet-MSEG @FP16 FP16 0.891 0.804 0.685 0.521 0.871 0.771 118.7
PraNet@FP16 FP16 0.850 0.740 0.572 0.401 0.845 0.731 95.1
NeoUNet@FP16 FP16 0.908 0.832 0.724 0.568 0.893 0.806 73.4
BlazeNeo@FP16 (Ours) FP16 0.906 0.828 0.721 0.563 0.887 0.796 121.9
ColonSegNet@INT8 INT8 0.672 0.507 0.456 0.295 0.633 0.463 41.6
UNet@INTS8 INT8 0.764 0.618 0.501 0.334 0.753 0.604 44.8
DDANet@INT8 INT8 0.770 0.626 0.492 0.326 0.748 0.598 46.4
DoubleU-Net@INT8 INT8 0.835 0.717 0.562 0.391 0.830 0.709 46.7
HarDNet-MSEG@INTS8 INTS8 0.810 0.680 0.594 0.422 0.799 0.665 143.7
PraNet@INT8 INT8 0.817 0.691 0.575 0.404 0.815 0.688 116.7
NeoUNet@INT8 INT8 0.848 0.736 0.638 0.468 0.848 0.737 100.3
BlazeNeo @INT8 (Ours) INT8 0.870 0.770 0.678 0.513 0.857 0.750 155.6
150 )K
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FIGURE 11. Comparison of models’ performance in different precisions. Red, green and blue markers denote INT8, FP16 and FP32

precisions, respectively.

Google Colab environment. At FP32 precision, the fastest
model (BlazeNeo) achieves only 53.3 FPS on the device,
while the slowest model in the Colab environment (PraNet)
without any compression still achieves 55.6 FPS. On the
other hand, Dice and IoU measures are hardly affected at
this precision level. In fact, U-Net and HarDNet-MSEG
see improvements up to 1.5% across all metrics after com-
pression. DoubleU-Net and ColonSegNet achieve a slight
improvement of about 0.5 — 1% after compression. DDANet
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suffers a little from compression, dropping by about 1.5% in
segmentation metrics. Finally, PraNet is most affected after
compression, dropping by 4.6% in segmentation metrics.

At FP16 precision, latency for all models are vastly
improved, the fastest being BlazeNeo (121.9 FPS) and
HarDNet-MSEG (118.7 FPS). In addition, accuracy metrics
for all models are within 0.01% of their FP32 counterparts.
This further shows that large neural networks do not require
high float precision to remain effective.
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FIGURE 12. Qualitative comparison of BlazeNeo-DHA models in different precisions: (a) image, (b) ground truth, (c) Pytorch, (d) TensorRT FP32,
(e) TensorRT FP16, (f) TensorRT INT8.
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TABLE 6. Accuracy metrics on the NeoPolyp-Clean test set for BlazeNeo-DHA models in different precisions.

Model ‘ Diceseg IoUseg Dicenon  IoUnon  Diceneo  IoUpeo

PyTorch (w/o compression) 0.904 0.825 0.717 0.559 0.885 0.792
TensorRT FP32 0.906 0.828 0.721 0.563 0.887 0.796
TensorRT FP16 0.906 0.828 0.721 0.563 0.887 0.796
TensorRT INTS 0.870 0.770 0.678 0.513 0.857 0.750

TABLE 7. Latency metrics for BlazeNeo-DHA models in different precisions. The latency is measured on Jetson Xavier AGX with power mode MAXN.

.. Host Latency (ms) GPU Compute (ms)
Precision - - - :
min max mean  median min max mean  median
TensorRT FP32 18.50 22.04 18.67 18.55 18.40 2194 1857 18.45
TensorRT FP16 8.10 10.24 8.20 8.15 7.99 10.13 8.09 8.04
TensorRT INT8 6.35 6.51 6.42 6.42 6.25 6.42 6.32 6.32

INTS precision gives the most speed gain out of the three
modes, but at great expense in terms of accuracy. BlazeNeo
runs at 155.6 FPS in this mode, whereas HarDNet-MSEG is
the second fastest model at 143.7 FPS. However, HarDNet-
MSEG also suffers the largest drop in accuracy at about 8.1%
on all metrics. This drop is a bit lower for PraNet (% 3.3%),
NeoUNet (=~ 6%) and BlazeNeo (~ 3.6%).

In every precision mode, BlazeNeo is consistently the
fastest model while being a close second in terms of accuracy
behind NeoUNet. BlazeNeo also displays its robustness to
compression techniques, incurring significantly less degra-
dation compared to models such as PraNet. Its small size
also gives the proposed model advantage in long-term deploy-
ment, as energy usage and equipment wear become factors.
In Figure 11, we visualize the performance of BlazeNeo in
terms of speed (FPS) and accuracy (dice score on polyp
segmentation task) compared to other existing methods.

It should be emphasized that high FPS is essential in real
scenarios because it helps endoscopists operate smoother and
detect lesions easier. According to endoscopists’ experience,
the ideal speed for colonoscopy should be at least 60 FPS.
In addition, the fast inference speed gives us the potential
to deploy the model on even more low-cost devices with
less computational power, such as NVIDIA Jetson TX1/TX2,
while still satisfying the minimal required FPS. This is impor-
tant because it allows us to deploy the application on a
large scale to many medical facilities, especially the poorly
equipped ones in developing countries.

For further discussion, we compare the performance of
the models quantitatively and qualitatively in different pre-
cisions.

Table 6 shows the accuracy of our BlazeNeo-DHA mod-
els in different precisions. One can observe that the mod-
els with FP32 and FP16 precisions give the same result,
which is lower than the original model by a mean margin
of 2.32%. The TensorRT INT8 model yields the worst accu-
racy, which is lower than the original model by a mean margin
of 5.75%.

With lower precision, a model can reduce latency, through-
put and increase power efficiency. To compare the speed
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performance of the models in different precisions, we present
detailed benchmarking results of them for 100 iterations on
the Jetson AGX Xavier with two metrics: host latency and
GPU compute time. Host latency is measured as the end-
to-end execution time from the CPU point of view, while
GPU computing time is the actual working time for GPU
calculation.

As shown in Table 7, the model in INTS8 precision has
the shortest latency compared to all other models, less than
one-third of the model in FP32 precision. However, we must
consider the trade-off between accuracy and speed for deep
learning inference. Therefore, the model in FP16 precision is
the best choice, which gives the best result in all precisions
and has a median latency.

For a more intuitive understanding of the loss in accuracy
of each compressed model, Figure 12 illustrates the sample
results of BlazeNeo-DHA models in different precisions.
As we can observe, the prediction result of models in FP32
and FP16 precisions are almost the same. In general, the INT8
compressed model loses the ability to segment some small
polyps compared to other modes. For segmented polyps, the
neoplasm prediction remains constant for every compression
mode in all examples. This demonstrates that BlazeNeo can
be quite robust to model compression and can be deployed in
high compression modes such as FP16 with confidence.

VI. CONCLUSION

This paper has proposed BlazeNeo, a novel neural net-
work architecture for the polyp segmentation and neoplasm
detection problem, with an emphasis on speed and deploya-
bility. BlazeNeo is an extremely lightweight and fast neural
network, thanks to the use of an efficient HarDNet back-
bone, a multi-level feature aggregation structure, and an
auxiliary training module to take advantage of undefined
labels. Our experiments show that BlazeNeo outperforms
all other state-of-the-art models in terms of inference
latency while providing competitive accuracy. We also
show that BlazeNeo can be robust against degradation
caused by compression techniques. In general, the pro-
posed model is highly suitable for lightweight deployments
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with real-time requirements. Our source code is available at
https://github.com/tofuai/blazeneo.

In future works, we will investigate recent advancements in
Transformer-based architectures to improve the performance
of the models. Especially, we will focus on lightweight archi-
tectures such as SegFormer [42] since they ensure both high
accuracy and fast inference speed which are crucial factors
for a real computer-aided system in colonoscopy.
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