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ABSTRACT Nuclei detection is a fundamental task for numerous downstream analysis of histopathology
images. Usually, it requires a large number of labeled images for fully supervised nuclei detection to achieve
optimal performance. However, the process of collecting sufficient and high-quality ground truth labels
is extremely labor intensive. To alleviate this problem, in this paper, a novel semi-supervised learning
framework is proposed for nuclei detection, which optimizes the detection network with the involvement
of unlabeled image reconstruction. Specifically, we reconstruct unlabeled images from their detection maps
representing detailed information about individual location of candidate nucleus, which will aid in regular-
izing the training process of the detection network by encouraging spatial consistency between original and
reconstructed images. Moreover, to further facilitate image reconstruction, we adopt an adversarial learning
scheme using image and instance level discriminators for the classification of original and reconstructed
images t. In this way, the capability of the detection network is successfully enhanced by taking advantage
of both labeled and unlabeled images, thus leading to more accurate nuclei detection results. Extensive
experiments show that we compare favorably with previous studies in various settings, which highlights the
effectiveness of our proposed framework.

INDEX TERMS Nuclei detection, semi-supervised learning, histopathology image analysis.

I. INTRODUCTION
Histopathology image analysis serves as the gold standard
in the diagnosis of many diseases such as cancer [1]. Com-
monly, histopathology images are visualized with hema-
toxylin and eosin (H&E) stain, which can highlight the
shape of nuclei [2], [3] and help pathologists to evaluate
disease at the cellular level. It is well known that a single
histopathological image may contain thousands of nuclei,
and the histological characteristics of nuclei are quite critical
in disease diagnosis, prognosis, and subsequent therapeu-
tic approaches for patients [3]. Therefore, nuclei detection
has become a core step in histopathological image analysis.
Recent years have witnessed a growing interest in applying
computational methods for systematic and objective analysis
in histopathology images. These methods can relieve labor
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intensity and enhance the efficiency since manual exami-
nations require plenty of skills and experience of patholo-
gists [4]. Furthermore, automatic detection and analysis of
nuclei enable new perspectives to disease characterization,
which cannot be gathered from manual assessments of tissue
specimens.

Given the importance of cell-level information, researchers
have been dedicated to exploring automatic methods to
efficiently and accurately detect nuclei from histopathol-
ogy images [5], [6]. Previous cell nuclei detection meth-
ods heavily depend on hand-crafted features, which have
limited representation capabilities and tend to be sensitive
to several changes such as cell morphology [7]. Recently,
deep learning methods have attracted a great deal of interest
in automatic nuclei detection. These methods typically use
multi-layer convolutional neural network (CNN) that can
automatically obtain discriminative feature representations
for nuclei detection [8]–[10]. In comparison with previous
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methods, these deep learning based approaches have remark-
able abilities to handle the variety of appearances of nuclei
images and demonstrate significantly better detection results.

Despite the achievements of deep learning methods for
nuclei detection, they usually require extensive amounts
of labeled data to obtain satisfying performance [1], [3].
However, labeling nuclei is an extremely tedious and time-
consuming job, as there are massive amounts of nuclei in each
histopathology image. In consequence, it is very challenging
to label every nucleus spreading over the images, which
imposes high requirements on the involvement of expert
pathologists [11]. Hence, there is an urgent need to develop
semi-supervised learningmethods for nuclei detection, which
can exploit available unlabeled data to alleviate the need for
effort-consuming labeling.

Recently, the value of reconstruction-based strategy has
been recognized for semi-supervised learning approaches in
various image analysis tasks [12], [13]. The key idea is to
develop a framework attempting to effectively utilize unla-
beled images during training by incorporating unsupervised
reconstruction loss functions. For example, Chen et al. [12]
adopt a semi-supervised method that performs unlabeled
image reconstruction with combined reconstruction and seg-
mentation loss for accurate medical image segmentation.
In ultrasound image analysis, Zhang et al. [13] integrate
the knowledge of unsupervised image reconstruction with
the supervised lesion classification task, which shows high
efficiency in improving breast diagnostic accuracy.

Inspired by the aforementioned studies, in this paper,
a novel semi-supervised framework is proposed for nuclei
detection in histopathology images. Aside from supervised
training part with a portion of labeled images, we effectively
incorporate unsupervised image reconstruction into the train-
ing of detection network as well. Importantly, as opposed
to performing reconstruction directly from feature maps,
we conduct image reconstruction from the pixel-wise detec-
tion results, i.e., detection maps. They are obtained to rep-
resent more detailed information on individual location of
candidate nucleus. We hypothesize that this location-aware
image reconstruction will aid in regularizing the training
process of the detection network by encouraging spatial
consistency between original and reconstructed images, and
therefore successfully enhance the capability of the detection
network. Besides, we also introduce an adversarial learning
scheme to help minimize the difference of the original and
reconstructed image on both image and instance (local nuclei
regions) levels. In this way, our overall framework will pre-
dict more accurate results by simultaneously utilizing super-
vised and unsupervised knowledge for the nuclei detection
task.

In general, we summarize the main contributions of
this paper as follows: (i) we introduce an efficient semi-
supervised learning framework based on location-aware
image reconstruction, which enforces spatial consistency
between original and reconstructed images to facilitate nuclei
detection, (ii) we adopt an adversarial learning scheme using

image and instance level discriminators to further decrease
the discrepancy between original and reconstructed images,
(iii) experimental results on publicly available histopathol-
ogy dataset demonstrate the proposed framework can
achieve remarkable improvements for semi-supervised nuclei
detection.

The organization of this paper is as follows. A review
of previous works is given in Section II. The proposed
semi-supervised nuclei detection framework is described in
Section III. Experimental results and analysis are presented
in Section IV. We discuss the potential future work and con-
clude the paper in Section V and VI.

II. RELATED WORK
Automatic nuclei detection is the problem of determining
the locations of nuclei without accurately delineating their
boundaries [14]. Numerous research efforts [7], [15]–[20]
have been dedicated to nuclei detection over the last years.
Most of the early studies for nuclei detection involve cus-
tomized feature extraction and morphological processing.
The performances of these methods depend heavily on dif-
ferent manual features such as gradients, morphology and
shapes [15]–[17]. With the advancements of feature learning,
deep CNN has recently been employed for this problem to a
large extent [7], [8], [10], [18]–[20]. Some of these methods
take small image patches as input and conduct model infer-
ence in a sliding windowmanner. For example, Xu et al. [18]
use a stacked sparse auto-encoder for high-level repre-
sentation learning of patches from breast histopathology
images in nuclei detection. Similarly, Xie et al. [19] intro-
duce a structured regression CNNmodel (SR-CNN) to detect
nuclei by predicting the probability of nucleus centroid.
Sirinukunwattana et al. [8] further improve SR-CNN with a
spatial-constrained layer to identify the position of nuclear
center. Depending on patch-based inference, these methods
may result in heavy computational costs for large histopathol-
ogy images.

As an alternative approach, fully convolutional neural net-
work (FCN) [21] and its variants have been successfully
adopted for nuclei detection. They do not require fixed
size of input images and can avoid repeated inference for
overlapping patches to improve their efficiency. For exam-
ple, Xie et al. [10] propose a FCN-based detection model to
directly output probability maps with higher values near cell
centers. Zhou et al. [7] develop a sibling FCN architecture for
simultaneous nuclei detection and fine-grained classification.
Li et al. [20] present a position of interest (POI) detection
network by considering the information of nuclei positions,
which has shown compelling performance for fully super-
vised nuclei detection.

Although great success has been obtained by the afore-
mentioned deep learning methods, they heavily rely on
large quantities of labeled data and in consequence require
tremendous time and labor efforts for pathologists. Com-
pared to fully supervised approaches, semi-supervised meth-
ods show better capabilities to reduce manual labeling efforts
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by exploiting unlabeled data for improved detection per-
formance. For example, for the task of signet ring cell
detection, Li et al. [22] propose an efficient self-training
(ST) approach by generating pseudo labels for unlabeled
images and then re-training the detection models with these
pseudo labels. Although promising nuclei detection results
are obtained by this strategy, it may underestimate the side
effects of pseudo labels. Given that the pseudo labels may
be incorrectly predicted, the potential of ST will be limited
for improvements from unlabeled images [12]. Instead of
retraining the detectionmodel with pseudo labels, our method
leverages a location-aware reconstruction network that uti-
lizes unlabeled images to facilitate the training process of our
semi-supervised detection framework.

Recently, reconstruction-based strategy has received con-
siderable attention for various image analysis tasks. In natural
images, Lu et al. [23] perform image reconstruction as an
auxiliary task during training for depth completion. For med-
ical image analysis, Chen et al. [12] use a multi-task learning
approach including a segmentation network and a reconstruc-
tion network for semi-supervised medical image segmenta-
tion. Zhang et al. [13] adopt a reconstruction network using
unlabeled images for accurate diagnosis of breast cancer in
a semi-supervised way. Hou et al. [24] use an unsupervised
sparse autoencoder for nuclei detection and feature extraction
with unlabeled images reconstruction and achieve favorable
performance as well.

Compared with the aforementioned reconstruction-based
methods, our method is technically different. First, instead of
performing reconstruction from feature maps, we reconstruct
the unlabeled images from full sized detection maps. These
maps contain detailed spatial information of each candidate
nucleus, which can guide our semi-supervised framework
to efficiently learn spatial consistency, i.e., similarity of the
spatial distribution of nuclei locations, between original and
reconstructed images. Second, we further explore multi-level
adversarial learning to facilitate image reconstruction. To be
concrete, in addition to using a typical image-level discrimi-
nator to differentiate original images from the reconstructed
ones as a whole [25], we also design an instance-level dis-
criminator to focus on local nuclei regions with the guidance
of candidate nuclei locations. Under this setting, the outputs
of the reconstruction network are encouraged to be as close
as possible to the original images both globally and locally,
thus leading to better regularization for the learning process
of the whole semi-supervised framework.

III. MATERIALS AND METHODS
In this section, we first introduce the dataset used for nuclei
detection and thenwe present the architecture of our proposed
semi-supervised framework as well as the learning schemes
in details.

A. DATASET
In this study, extensive experiments are conducted on a pub-
lic cell nuclei dataset [8] to evaluate the performance of

the proposed framework. This dataset consists of 100 H&E
stained histopathology images of colorectal adenocarcino-
mas, which are obtained from the Department of Computer
Science, University of Warwick. Firstly, by using an Omnyx
VL120 scanner, 10 whole-slide images from 9 patients of col-
orectal adenocarcinomas were collected at the resolution of
0.55 µm/pixel. Then all images of this dataset were extracted
from the non-overlapping areas of these whole-slide images
with a common size of 500 × 500 pixels. The selected areas
contain artifacts and over-staining to represent real-world
challenges. Finally, experienced pathologists were invited to
conduct the manual annotation of nuclei in the 100 extracted
images, and a total number of 29 756 nuclei were marked at
the center for detection task. Visualization of histopathology
images and their corresponding labels can be seen in Figure 1.
For this dataset, we randomly split it into training, validation
and testing sets at a ratio of 7:1:2 by following previous
study [7]. That is to say, there are 70, 10 and 20 images in
our training, validation and testing sets, respectively. Similar
to [26], we keep testing set unchanged and randomly remove
the labels of a portion of training data to validate the effec-
tiveness of our semi-supervised framework.

FIGURE 1. Visualization of histopathology images and their
corresponding labels. Green dots in (b) and (d) represent the labels for
nuclei detection.

B. MODEL DESCRIPTION
The overall design of our semi-supervised framework is illus-
trated in Figure 2, which consists of a detection network,
a reconstruction network and multi-level discriminators.
Given a small number of labeled images with ground truth
labels, we aim to further improve the performance of the
detection network by taking advantage of unlabeled images
without extra labor efforts. Specifically, our method allows
both the labeled and unlabeled images being fed into a
detection network, which can be divided into supervised and
unsupervised learning parts respectively. For the supervised
part, given a labeled image X l , the FCN-based detection
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FIGURE 2. Overview of the proposed semi-supervised framework for nuclei detection.

network will output a probability map ŷl representing the
nuclei locations. By using a detection loss Ldet, we aim
to minimize the difference of its output ŷl and the ground
truth label y in a supervised way. For the unsupervised part,
our method incorporates unlabeled images into the training
process of the detection network as well. We first feed an
unlabeled image Xu into the detection network to generate a
probability map ŷu. Then ŷu is spatially sparsified to obtain a
full sized detection mapMD, which indicates individual loca-
tion of candidate nucleus in Xu. After that, the reconstruction
network performs a location-aware reconstruction of Xu by
generating Xurec from MD by using L1 loss. In this way, our
framework can be encouraged to learn spatial consistency
between original and reconstructed images, which will aid
in regularizing the training process of the detection network
for improved detection performance. In addition, we further
enhance image reconstruction with multi-level discrimina-
tors Dimg and Dins by using an image-level adversarial loss
Ladv_img and an instance-level adversarial loss Ladv_ins. Dimg
is designed to differentiate Xu and Xurec as a whole, and Dins
focuses on extracted local nuclei regions in Xurec and Xu,
denoted as Xurec_ins and X

u
ins respectively. The details of our

proposed method are given below.

1) NETWORK ARCHITECTURE
a: DETECTION NETWORK
Our detection network architecture is built on a widely
applied neural network U-Net [27]. As a variant of FCN,

it consists of one down-sampling path that encodes the input
to high-level features and one up-sampling path decoding
these features to the output of the same size as the input.
During the down-sampling path, we replace the conventional
convolution connections in U-Net with residual learning [28],
which helps to learn more powerful representations for nuclei
detection. The down-sampling process contains three residual
blocks and a 2 × 2 max pooling layer is used for reduc-
ing half between each block. In each block, we utilize a
stack of two 3 × 3 convolutional layers followed by batch
normalization (BN) and rectified linear unit (ReLU). In the
up-sampling path, we also employ the residual connections
instead of conventional convolution operations to benefit the
optimization process of the detection network. The difference
between the down-sampling and up-sampling path is that the
max pooling layer is replaced with a deconvolution operation.
Then we apply a 1 × 1 convolutional layer followed by a
softmax operation to obtain the probability map for nuclei
detection.

b: RECONSTRUCTION NETWORK
As illustrated in Figure 3, we propose an encoder-decoder
architecture with several inception blocks for image
reconstruction. Given the scale variation of nuclei, the
inception blocks are introduced for enough fusion of
multi-scale features from different receptive fields to bet-
ter learn representations of the input image. Similar to
GoogleNet [29], each inception block involves four branches
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FIGURE 3. Overall flowchart of the proposed reconstruction network.

and each branch is composed of one or more convolutional
layers of different kernel sizes, such as 1 × 1 or 3 × 3.
For the encoder part, the input image initially passes two
3 × 3 convolutional layers with 64 filters followed by a
BN and ReLU layer respectively, and then a 2 × 2 max-
pooling layer is used for down-sampling. After that, three
inception blocks with pooling operations are applied to obtain
high-level features. For the decoder part, we also utilize
three inception blocks but with deconvolution operations
to up-sample feature maps to a desired size. In addition,
for the purpose of aggregating information from the hierar-
chy of feature maps, high-resolution information from the
encoder part is copied and concatenated to corresponding
up-sampled output for successive learning. Finally, after
passing through a 1 × 1 convolution layer and a sigmoid
function, the network outputs a reconstructed image of the
same size as the input generated from an unlabeled original
image.

c: DISCRIMINATOR NETWORK
In order to further enhance the training process for image
reconstruction, we adopt multi-level adversarial learning by
an image-level discriminator Dimg and an instance-level dis-
criminator Dins. Similar to [25], both of them contain five
4 × 4 convolution layers with different number of filters
including 64,128,256,512 and 1, respectively. And each con-
volutional layer is followed by a leaky ReLU [30] with a
slope of 0.2 except the last one.

2) LOSS FUNCTION
a: DETECTION NETWORK
the goal of our detection network is to learn a mapping
relationship between a histopathology image and its nuclei
locations.We consider the scenario of using a labeled x l when
training the detection network in a supervised way. Formally,
for every pixel i in x l , the detection model outputs ŷli indicat-
ing its probability of being a nucleus, and the detection error

is calculated by binary cross-entropy as follows:

Ldet = −
1
N

N∑
i=0

(1− yi) log(1− ŷli)+ yi log ŷ
l
i, (1)

where yi is the ground truth label of pixel i, with yi = 0
being the background and yi = 1 being the nucleus. N
denotes the number of all pixels in the input image X l . Note
that the dataset only provides the coordinates of nuclei cen-
troids, and by following [20] we employ a 5× 5 rectangular
mask centered at each centroid as the ground truth label.
We do not apply Ldet for an unlabeled image Xu since there
is no ground truth label.

b: RECONSTRUCTION NETWORK
In addition to the above supervised learning part, we propose
to effectively feed unlabeled images into the training of
the detection network via location-aware adversarial image
reconstruction. It is noteworthy that if we reconstruct unla-
beled images from the high-level feature maps extracted
from the encoder of a detection network, it may be difficult
to fully explore intrinsic spatial association between recon-
structed and original images. This is more problematic for
accurate detection of nuclei in histopathology images, as the
reconstruction process may fail to focus on candidate nuclei
locations bothered by noisy background, given the fact that
nuclei are relatively small and often surrounded by massive
background pixels.

To encourage the reconstruction network to produce output
Xurec that is spatially consistent with the original image Xu,
in this study we first feed Xu into the detection network
and the output ŷu is then spatially sparsified to obtain a
full sized detection map MD indicating individual location
of candidate nucleus in Xu, which is completed by using a
9 × 9 max pooling operation with stride 1 and the ‘SAME’
padding scheme [31] to match the size of theMD and ŷu. After
that, the reconstruction network performs a location-aware
reconstruction of Xu by generating Xurec from MD. To match
Xu and Xurec, the reconstruction network is trained using L1
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loss defined as:

L1 =
1
N
||Xurec − X

u
||1, (2)

where N denotes the total number of pixels in Xu or Xurec as
mentioned before.

Intuitively, by leveraging the full sized detection map
MD, our proposed reconstruction strategy is able to capture
more detailed information for nuclei locations, and there-
fore provides spatial consistency constraint to the train-
ing of the detection network for improving the detection
performance.

c: DISCRIMINATOR NETWORK
To further help the reconstruction network to generate
Xurec that is as close to Xu as possible, we employ multi-
level adversarial losses with discriminators Dimg and Dins.
We employ Dimg to differentiate original images from the
reconstructed ones as a whole, and adopt Dins to focus on
local nuclei regions in Xurec and X

u, denoted as Xurec_ins and
Xuins respectively, with the guidance of candidate nuclei loca-
tions. Specifically, we consider location of each candidate
nucleus when the output of Xu or Xurec exceeds a prede-
fined threshold Tp. Then Xurec_ins and X

u
ins are obtained with

max pooling operations on these locations with the size of
p× p, followed by element-wise multiplication of Xurec and
Xu respectively. Finally, Xurec_ins and X

u
ins are fed into Dins for

instance-level differentiation. Accordingly, the multi-level
discriminator networks are trained by an image-level adver-
sarial loss Ladv_img and an instance-level adversarial loss
Ladv_ins, which are defined as:

Ladv = Ladv_img + Ladv_ins

= −(log(1− Dimg(Xu))+ log(Dimg(Xurec)))

−λ(log(1− Dins(Xuins))+ log(Dins(Xurec_ins))), (3)

where λ leverages the importance of adversarial losses.
We train both discriminator networks to minimize Ladv,
whereas the reconstruction network is trained to fool the
discriminators by maximizing Ladv.

3) OVERALL OBJECTIVE FOR OUR PROPOSED FRAMEWORK
Taken together, the overall loss of our framework can be
written as:

Ltotal = Ldet + αL1 + βLadv, (4)

where α and β denote the weights of corresponding losses,
respectively. We optimize our semi-supervised framework
with the loss Ltotal for better detection accuracy. In this man-
ner, our framework will enforce spatial consistency of candi-
date nuclei between original and reconstructed images, which
can positively influence the parameter optimization for the
detection network and vice versa. Collectively, our method
introduces location-aware image reconstruction while keep-
ing the detection network updated simultaneously to boost

nuclei detection accuracy. Moreover, the training process for
image reconstruction is further enhanced via a multi-level
adversarial learning scheme both globally and locally. Under
such semi-supervised setting, the detection network can be
trained not only on the well labeled images, but also on
unlabeled images with the involvement of location-aware
adversarial image reconstruction, leading to improved detec-
tion performance.

C. TRAINING DETAILS
During training, we adopt data augmentation such as rotation,
horizontal and vertical flipping to reduce overfitting [20].
The framework is implemented using PyTorch under Linux
with CPU Intel Xeon 4110 @ 2.10GHz and GPU NVIDIA
GeForce RTX 2080 Ti. For detection network, we update its
parameters using Adam strategy [32] with initial learning rate
0.01 and momentum {0.5, 0.999}, where the learning rate is
decayed to 0.001 at 30 epochs and 0.0001 for the remaining
40 epochs. For reconstruction network and two discrimina-
tors, we trained them by theAdam optimizer with the learning
rate of 0.1 and 10−5, respectively. We set the hyperparameter
values as: λ = 0.1 in (3) and α = 0.1, β = 0.005 in (4). For
nuclei local regions inDins, the pooling window value p is 11,
and the threshold Tp is 0.85. Similar to [33], to prevent the
reconstruction network suffering from initial noisy detection
maps, we pretrain the detection network with labeled images
before training the overall semi-supervised framework, and
then update both the supervised and unsupervised part jointly
to boost the detection performance.

IV. EXPERIMENTAL RESULTS
In this section, detailed experiments are carried out to assess
the proposed method and investigate its effectiveness in dif-
ferent settings.

A. EVALUATION CRITERION
To assess the detection performance of our method, common
evaluation criteria are adopted, such as precision (P), recall
(R) and F1 score (F1) [8]. They are defined as:

P =
TP

TP+ FP
, (5)

R =
TP

TP+ FN
, (6)

F1 =
2PR
P+ R

, (7)

where TP, FP, FN denote the number of true positives, false
positives and false negatives, respectively. Similar to [7], we
conduct non-maximum suppression (NMS) on the output of
our detection network to obtain final detection result. By fol-
lowing [20], if a detected location lies inside a region of
6 pixels around a nuclear center of the label, it is considered to
be TP. All detected locations outside these regions are viewed
as FP and the ones are not matched by any of these regions
are FN.

42744 VOLUME 10, 2022



C. Tian et al.: Semi-Supervised Nuclei Detection in Histopathology Images

B. EFFECTIVENESS OF THE PROPOSED
SEMI-SUPERVISED METHOD
To evaluate the effectiveness of our method, we train the
detection network in a purely supervised way only with
labeled images to serve as the baseline of our framework.
To explore how the baseline behaves when the number of
labeled images changes, we compare F1 scores of the cases
where 5, 10, 20 and 40 labeled images are used respectively.
As reported in Table 1, using only a small number of labeled
images indicates poor detection results. As the number of
labeled images increases from 5 to 40, the overall detection
performances become better, which is reasonable since the
detection error decreases with more labels.

TABLE 1. F1 score of the baseline and our method with different
numbers of labeled images.

In contrast to the purely supervised baseline, our semi-
supervised framework introduces obvious improvements on
F1 scores in each case with different number of labeled
images. In particular, for cases with less labeled images, our
method outperforms the baseline by a larger margin. For
example, with only 5 labeled images, the performance is
improved from 0.716 to 0.773, which confirms the effec-
tiveness of our semi-supervised method in lack of labeled
images. As shown in Figure 4, the precision-recall curve is
generated by using different threshold values for the detection

FIGURE 4. Precision-recall curve for nuclei detection.

output. It can be observed that the curve of our method
is always closer to the upper-right corner compared to the
baseline while using 5 and 20 labeled images, respectively.
That is to say, under the same number of labeled images, the
precision of our method is always higher than the baseline
given the same recall value. Meanwhile, given the same
precision value, the recall of our method is still higher than
the baseline. Besides, while using 5 labeled images, the area
under the precision-recall curve of our method is larger than
that of the baseline, which also exists in the case of 20 labeled
images. Taken together, it can be observed that our method
consistently outperforms the baseline with different number
of labeled images.

C. COMPARISON TO PREVIOUS WORK
We compare the proposedmethod against previous studies for
nuclei detection. For purely supervised learning, we introduce
the widely applied U-Net [27] and the start-of-the-art POI
[20], which are trained only on labeled images. Besides, the
unlabeled images are also utilized for improved performance
by semi-supervised self-training (ST) method [22]. For a fair
comparison, the ST algorithm is implemented with the same
architecture as our detection network described in Section III.
In detail, the pseudo labels of nuclei locations we use to
retrain the detection network are of high confidence, that is to
say, their predicted probabilities need to exceed a predefined
value θ to alleviate noises of large background regions to a
certain extent [34]. We assess the performance between our
method and ST with two different values of θ , i.e., 0.8 and
0.9, for cases with 5,10,20,40 labeled images.

As listed in Table 2, compared with U-Net, POI yields
better detection results in a purely supervised way. While for
semi-supervised learning, our method can improve the detec-
tion precision and recall substantially, leading to a higher F1
score and detection accuracy in contrast to POI in all cases.
Meanwhile, to achieve comparable performance with the
supervised methods, our method requires a smaller number
of labeled images in the training set. For example, with only
5 labeled images our method can acquire higher detection
accuracy than that of POI using twice the number of labeled
images. With 10 labeled images, our method (0.796) can
achieve 95.6% of the performance of POI (0.833) on F1 score
using 40 labeled images. These results demonstrate that our
method can take advantage of unlabeled images and requires
less labeled images for training to achieve a promising result.

We show the detection results using different values of θ
for ST in Table 2, and it can be observed that θ = 0.9 yields
slightly better results than θ = 0.8, accordingly we will refer
to STwith θ = 0.9 simply as ST in the next. It can be seen that
our method achieves consistently higher efficiency across dif-
ferent numbers of labeled images. For example, the precision,
recall and F1 score of ST are 0.756, 0.737 and 0.746 using
5 labeled images. In comparison, our method successfully
brings 1.1, 4.2 and 2.7 points of improvements respectively.
When there are 10 and 20 labeled images used, our method
can further improve the F1 score by 1.6 and 1.1 points,
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TABLE 2. Comparison with previous work using different numbers of labeled images.

respectively. When the number of labeled images further
increases to 40, the unlabeled images may provide limited
benefits in improving performance, as the ratio of labeled
images in training set is relatively high. However, our method
still manages to yield slightly better results than ST, which
along with the other results, suggests the effectiveness of our
method.

In addition, we further compare the proposed method
against other state-of-the-art semi-supervised learning meth-
ods including Mean Teacher (MT) [35] and
HydraMix [36]. Besides, we also compare with the other
recent reconstruction-based semi-supervised image classi-
fication method BIRAD-SSL [13] to further validate the
effectiveness of our method. To make the comparisons fair,
we reproduce this method by using the same architecture as
our detection network described in Section III. Table 2 dis-
plays that our method compares favorably against these
methods, demonstrating the strength of our method for semi-
supervised nuclei detection. Taken together, we can con-
clude that compared to the aforementioned methods, our
method can make better use of unlabeled images especially
when labeled images are scarce. The underlying reason is
that, our framework encourages spatial consistency between
original and reconstructed images via location-aware adver-
sarial reconstruction, which in turn positively influences
the parameter optimization for the detection network with
enhanced performance. We further provide some typical
results of detection for these approaches and our method
using 5 labeled images in Figure 5, and the magnified regions
show that our method successfully detects more nuclei that
cannot be well tackled by other approaches.

D. ABLATION STUDY
In this section, we present an ablation study to highlight the
contribution of the proposed location-aware reconstruction

FIGURE 5. Typical results of nuclei detection with sample test images,
where yellow dots are detected centers of the nuclei and blue circles
represent ground-truth areas. The magnified regions enclosed with a
black box clearly show that our method successfully detects more nuclei
that cannot be well tackled by other approaches.

and multi-level adversarial learning. In order to provide addi-
tional insight into their individual performance and their
combined effectiveness, we conduct the ablation experiments
with 5 labeled images and discuss the results in detail next.

We confirm the effectiveness of the components in the
proposed method and the results are summarized in Table 3,
where ‘‘Baseline’’ refers to a detection network trained only
using the labeled images and is abbreviated as ‘‘B’’. Based
on it, ‘‘B + Rec’’ denotes the incorporation of the unla-
beled image reconstruction but without multi-level adversar-
ial learning. Similarly, this pipeline adding the image-level
discriminator Dimg is denoted as ‘‘B + Rec + Dimg’’. It is
observed that ‘‘B + Rec’’ delivers a significant and consistent
improvement over the baseline on both precision and recall,
and obtains a remarkably higher F1 score of 0.763, which

42746 VOLUME 10, 2022



C. Tian et al.: Semi-Supervised Nuclei Detection in Histopathology Images

demonstrates the effectiveness of our location-aware image
reconstruction. Moreover, from the results in Table 3 we
can see that adversarial learning brings additional benefit
to detection performance. Especially, by incorporating both
Dimg and Dins, we further achieve 2.1 and 1.0 points of
improvements in recall and F1 score over the ‘‘B + Rec’’
respectively, which confirms that combining image-level and
instance-level discriminators is beneficial for detection task.
In Figure 6, we also provide some visualizations of detec-
tion results with and without the adversarial learning of our
method, and the magnified regions further highlight the effect
of using adversarial learning for the proposed method.

TABLE 3. Ablation study on the components of our framework.

FIGURE 6. Example results for nuclei detection. (a) represents the
detection result of our method without adversarial learning; (b) reflects
an image detected using our method with adversarial learning.

We also evaluate the effect of using feature maps as
the input of the reconstruction network based on the same
architecture described in Section III. Following previous
study [12], the high-level feature map is extracted from the
encoder of the detection network that has a smaller size of
62× 62 than the input image. In comparison, we achieve a
performance boost of 2.0 points by using a full sized detection
map as illustrated in Table 4, which verifies the benefits of
our location-aware reconstruction for nuclei detection. The

TABLE 4. Ablation study on the input of reconstruction network.

TABLE 5. Performance when choosing different size of local nuclei
regions.

TABLE 6. Performance when choosing different Tp.

reason is that the detection map we used contains more
detailed information for nuclei locations and thus our detec-
tion framework is developed to encourage spatial consis-
tency of candidate nuclei between original and reconstructed
images, giving rise to higher detection accuracy.

Further, we investigate the sensitivity of the hyperparame-
ters of the pooling window value p and the threshold Tp used
in Dins. Table 5 shows the detection results with different
settings of p, and it can be observed that when p = 11,
our method achieves the best performance on F1 score for
nuclei detection. Smaller size of local nuclei region leads
to poorer performance, which may be caused by insufficient
information for instance-level classification. Besides, as the
value is larger than 11, it shows no substantial benefit and a
too large region results in decreased performance probably
due to the background noises. We also discuss the effect of
the threshold Tp in Table 6, and our method reaches the best
F1 score when Tp = 0.85.

V. DISCUSSION
Automatic nuclei detection is critical for several histopathol-
ogy image analysis algorithms. However, obtaining the
ground truth for nuclei detection is extremely labor inten-
sive. To overcome this challenge, we develop a novel
semi-supervised framework by taking unlabeled image
reconstruction into account. As nuclei are often sparse in
a histopathology image and surrounded by massive back-
ground pixels, we propose to leverage the detection map
for image reconstruction and update the detection network
simultaneously. The advantage is that the reconstruction
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process only needs to particularly focus on candidate nuclei
locations without being bothered by noisy background.
Accordingly, our framework successfully enforces spatial
consistency of candidate nuclei between unlabeled original
and reconstructed images, which can positively influence the
parameter optimization for the detection network. In this
manner, our method is capable of simultaneously utilizing
both labeled and unlabeled images for improved nuclei detec-
tion performance.

Although our method achieves promising nuclei detec-
tion results with limited labeled images, there is still room
for further improvement. In terms of network architecture,
we employ the detection network with residual learning for
combination of features from different layers, and it can be
further extended by more sophisticated network components
such as self-attentionmechanism [37], which can capture rich
contextual relationships for better feature representations of
nuclei detection. In future work, one possible direction is to
explore the usage of our proposed framework in other related
image analysis tasks such as nuclei segmentation. In addi-
tion, although our FCN-based framework has already reduced
the computational cost to a certain extent compared with
patch-based nuclei detection methods [18], [19]. We realize
that further improvements in time efficiency are needed to
enhance the practicality of our method. The latest multi-focus
fusion schemes such as [38], [39] have achieved promising
results in reducing time complexity, which can be incorpo-
rated into the proposed framework in future work to enhance
the robustness and efficiency for nuclei detection.

VI. CONCLUSION
In this paper, a novel location-aware adversarial image recon-
struction method is proposed for semi-supervised nuclei
detection in histology images to deal with insufficient labeled
data. Aside from supervised training part with a portion of
labeled images, we effectively incorporate unlabeled image
reconstruction into the training of detection network as well.
Furthermore, we facilitate the training process for image
reconstruction via multi-level adversarial learning. In this
way, our framework is developed to encourage spatial consis-
tency between original and reconstructed images for enhanc-
ing the capability of the detection network. Experimental
results suggest that the proposed framework helps to enhance
the performance significantly, which demonstrates the effec-
tiveness of location-aware adversarial image reconstruction
in semi-supervised nuclei detection.
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