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ABSTRACT This paper presents a cloud energy storage (CES) architecture for reducing energy costs for
residential microgrid users. The former of this article concentrates on identifying an appropriate battery
technology from various battery technologies with the aid of a simulation study. The later part addresses
the economic feasibility of the storage architecture with three different scenarios namely grid connected
energy storage, distributed energy storage (DES) and CES. The performance of the proposed architecture
has been evaluated by considering five residential users with suitable battery technology identified from the
former part of the study. For the purpose of the analysis, PV and load profiles including seasonal effects
and grid price were taken from IIT Mumbai, India and IEX portal, respectively. In addition, this article also
examines the impact of increased number of users with CES. The value of this study is that the proposed CES
architecture is capable of reducing the cost of electricity experienced by the user by 11.37% as compared to
DES. With this, CES operator’s revenue can be increased by 6.70% in summer and 16.97% in winter in the
case of fixed number of users. Finally, based on the analysis and simulation results, this paper recommends
CES with Li-ion battery technology for residential application.

INDEX TERMS Cloud energy storage, distributed energy storage, lead-acid battery, lithium-ion battery,
sodium–sulfur battery, redox flow battery.

NOMENCLATURE
A. SUBSCRIPT
i User index
I Total number of users
t Time Index
T Set of time intervals

B. FUNCTION
ECgrid

i The electricity consumption per day of the ith

user (Rs/day)
ECDES

i Daily electricity cost of ith prosumer with DES
(Rs/year)

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wang.

ECCES
t The final cost experinced by the ith prosumer

with the use of CES with PV generation
(Rs/year)

ODESi The operation cost of the distributed energy
storage (Rs/day)

OCES The operation cost of the cloud energy storage
(Rs/day)

C. VARIABLES
1) DISTRIBUTED ENERGY STORAGE SIDE VARIABLES
PCi,t The amount of charged power to the storage by

the ith user for a time interval of delta t (kW )
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PDi,t The amount of discharged power to the storage by
the ith user for a time interval of delta t (kW )

2) CLOUD ENERGY STORAGE SIDE VARIABLES
PCt The amount of charge power of the cloud energy

storage at time (t) in (kW )
PDt The amount of discharge power of the cloud energy

storage at time (t) in (kW )

D. PARAMETERS
θt The price of sold electricity from the extra

PV power generation that is fed to the power
grid at time (t) in (Rs/kWh)

λt The price for purchaing electricity from the
power grid at time (t) in (Rs/kWh)

λD Discharging threshold price at t time (Rs/kWh)
λC Charging threshold price from grid at t time

(Rs/kWh)
1t The time interval
r The discount rate (%))
y The life of the system System (number of

years)
di,t The demand of user i at time t measured in t

(kW )
Ppvi,t The amount of power generated by the PV user

i at time t measured in (kW )
Gt The cost of purchasing power from the power

grid (Rs/kW )
SoCmin The minimum value of the state of charging
SoCmax The maximum value of the state of charging

1) DES SIDE PARAMETERS
IDESi The cost of investment per day for the DES of

the ith user (Rs/day)
Pcapi The power capacity of the distributed energy

storage of i user in (kW )
cP,DES The cost of investing in a Unit power (Rs/kW )
cE,DES Unit energy investment cost (Rs/kWh)
ηCi Charging efficiency
ηDi Discharging efficiency

2) CES SIDE PARAMETERS
ICES Daily investment cost of CES users (Rs/day)
Pcap CES users power capacity (kW )
Ecap CES users energy capacity (kWh)
Emin/Emax CES minimum/maximum energy state (kWh)
cE,CES Per unit energy cost (Rs/kWh)
cP,CES Per unit power cost (Rs/kW )

I. INTRODUCTION
Residential photovoltaic system combined with battery stor-
age systems can limit the reliance on grid supply and
minimize electricity consumption cost [1]–[3]. However,
these residential grids are facing various challenges, which

encourages researchers and energy experts to focus towards
the energy storage direction. The challenges which are
associated with the residential grids are the modulation in
frequency, voltage regulation, power quality, bidirectional
power flow, peak shaving, load demand shifting, emer-
gency services and the reliability of supply system with the
integration of high penetration of RE [4]–[7]. The storage
technologies have potential to offer assistance to these types
of uncertainties [8], [9]. In spite of this, the economic feasibil-
ity of this system is subject to successful utilization of battery
energy storage architecture to store surplus renewable gener-
ation at a residential scale. In addition, it supports the increas-
ing of RE penetration rate at residential grid. Nowadays, the
battery technology is dramatically developing, and batteries
are being associated with houses to maximum utilization of
onsite PV generation. The installation of battery technology
architecture i.e.distributed energy storage (DES) and cloud
energy storage (CES) play a significant role in reduction in
electricity cost [10]–[13].

The various applications of storage system include
to control the power generation by distributed energy
resource (DER) and on-site and off-site power genera-
tion [14]–[17]. In the high penetration RE scenario, the
energy storage system can provide an ancillary services for
maintaining not only the frequency but also the voltage with
in specified range for reliable power supply due to their
intermittency nature [18], [19]. Battery technology is one of
the reliable technology among the several storage technolo-
gies due to their inherent maturity. So, it is highly used in
stationary applications compared to other types of storage
in different case study [20]–[22]. Battery energy storage
technology also helps to develop a reliable supply system
for residential grid users. A PV system with storage can
store the extra power generation and can be used when there
is a shortage of power for maintaining the Demand-Supply
balance of the system [23]–[25]. It also enables the users to
reduce their electricity bill by charging the storage at the time
of low grid price and discharge the energy at time of high
price [26], [27]. In addition, it supports the minimization of
peak demand charges.

A. LITERATURE REVIEW
A lot of researchers are nowadays conducting the research
on energy storage system and have introduced various types
of battery technologies and their applications for maintaining
supply-demand balance in various sectors [28], [29]. These
literatures provide possible research gaps for future enhance-
ment in the battery technology. A brief discussion on different
storage technologies for stationary applications are presented
in [30]. A critical review of storage technologies such as super
capacitor, flywheel, superconducting magnetic and battery
can be found in [31], [32] and the modeling of the energy
storage was presented in [33]. The available storage technolo-
gies that can be implemented in present power system has
been illustrated in [10]. A comprehensive study of PV system
with andwithout storage has been discussed for the frequency
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control in [34], [35]. The above literature only addresses
the fundamental principle of battery technology, that has
not explored in detail. However, less literature focuses on
different technologies for the application in PV connected
residential grid with different storage architecture.

In the available literature on storage, DES architecture has
been implemented in distribution network to overcome the
challenges introduced by renewable integration [36]. Energy
storage model with distributed PV system have been dis-
cussed in [37] respectively. The seasonal user demand and
PV generation impact on storage size has been explained
in [38]. In addition, authors also discussed storage size, which
are required to balance intermittent RE generation. Further,
storage application for smoothing the demand in the residen-
tial grid has been discussed in [39], [40]. In the residential
grid, prosumers can install battery storage at their home to
reduce electricity cost by storing excess PV generation [41].
Apart from this, storage technologies can also be used for
peak demand shaving in the residential grid, as discussed
in [42]. The storage can be installed in the residential grid in
two manners, i.e. distributed energy storage and centralized
energy storage. However, themain challenges associatedwith
DES are the fixed size and high installation cost. To overcome
these challenges in [35], [43], centralize storage has been pro-
posed. In centralize energy storage, a single storage installed
by any third party is operated by the storage system owner.
Users have own PV system, they can used DES facility from
centralized storage and pay rent to storage operator [44], [45].

A lot of researchers are working towards the scheduling of
energy storage system with RE integration for the maximum
utilization of RE generation. The authors, in [46], proposed
a standalone centralized energy storage system with the help
of multiagent concept the utilization various generation fore-
casting. The technical feasibility analysis of the centralized
energy storage system for operating economic benefits is
presented in [47]. The economic results have been analyzed
using mixed-integer linear programming in [47]–[49] for the
centralized and distributed energy storage in the day ahead
electricity market. In [50] a linear programming model has
been developed to reduce the operating cost of storage by
optimizing the community energy. The energy storage man-
agement including charging-discharging scheduling has been
explored in following studies [51]–[53]. It has also been
found from the literature that various optimization techniques
have been utilized for solving energy storage scheduling
problems. Dynamic programming is used to minimize con-
sumer cost, considering storage sizing and aging parameter as
in [54]. The storage operation with utility operator has been
reported in [55]. Themultiple studies explored the scheduling
algorithm. A linear programming approach is used in [56]
at small scale for storage management. Sequential quadratic
programming subject to real-time price constraints is used to
maximize centralized storage-consumer benefits. Non-linear
programming is used to design the charging and discharg-
ing controller of the storage to minimize operation cost,
as in [57].

B. RESEARCH CONTRIBUTION
It has been inferred from the above discussion that the energy
storage technologies and their architectures are facing vari-
ous challenges at the distribution level of the grid. Battery
technology plays a significant role for residential users’ to
minimize the purchased electricity cost using by storing the
extra PV power generation. In the literature [35], [35], [43],
[58] DES and community energy storage architecture are
described. DES architecture increases the residential grid
network complexity when the number of DES installed at
individual prosumer houses. Thus, distribution operators are
facing some issues to manage the residential grid system.
In addition, distributed energy storage have a fixed capacity
storage and hence, difficult to completely store excess PV
generation. The centralized storage system is a sharing based
energy storage, which is installed in a residential community.
In this system, users can use fixed amount of capacity accord-
ing to what they need and consider paying the operator of
the storage the fee of this provided service. Here, the user
cannot take a decision based on the day ahead generation
and demand in the real-time situation. In existing literature,
the user has no option to sell unused storage space once
allotted by the storage operator.Thus, the unused space is
getting wasted and operators are facing some challenge to
manage other user’s demand. These are the main drawbacks
of this type of architecture. To mitigate these challenges, this
study proposes a cloud based energy storage architecture.It
is managed by a centralized operator, similar to commu-
nity energy storage. The price-driven theory has been used
to manage the charging/discharging strategies of CES. The
users’ are taken decision based on their real-time demand
and PV generation. They can update storage space based on
collected information of a previous day. This system known
as cloud energy storage system (CES). The economic scale
also support this type of architecture to reduce the user’s
electricity cost compared to DES architecture. Thus, many
studies are mandated to streamline the deployment of DES
concepts in the current available system. Therefore, this study
attempts to address DES challenge and introduce the CES
concepts in residential microgrid. The first part of this study
includes the literature gaps addressed by different battery
technologies and determines the suitable battery technology
for for residential application with the aid of of simulation.
Further, it also addresses the advantages of DES over CES
with the help of suitable case studies. The contributions of
this article are illustrated as follows:

1) Calculating one-day electricity cost for individual bat-
tery technology with DES and CES architecture, and
suggest suitable battery technology. A five residential
users’ data set profile was collected from IIT Mumbai,
India for tthe purpose of analysis.

2) The performance of the proposed model has been ana-
lyzed by considering seasonal PV profile, load pro-
files, and grid price with a selected battery storage
technologies for understanding the economic viabil-
ity of the architecture. Moreover, the analysis has
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been performed under three scenarios: a) grid con-
nected supply mode (b) Distributed energy storage
(c) Cloud energy storage and recommended suitable
storage architecture.

3) An analysis is performed to identify the impact of the
increased number of users with CES without altering
the of battery capacity.

4) Evaluating CES operator revenue with the increased
number of users with CES.

C. ARTICLE ORGANIZATION
This article work is structured as follows: Section II explains
the existing battery technologies in the literature and their
comparison; Section III discusses the energy storage archi-
tecture; Section IV presents the mathematical expression of
the system model considering different scenarios; Section V
presents the case study; Section VI illustrates the results and
discussion part of the article and recommends the best with
the best battery technology and architecture that are suitable
for residential users. Section VII concludes the paper.

II. BATTERY TECHNOLOGIES
Batteries convert electrochemical energy into electrical
energy or vice-versa. Mainly used battery technologies are
lead-acid battery, Li-ion battery, nickel-cadmium battery,
sodium sulfur and redox flow battery [16]. The applications
of the batteries varies according to energy density, discharg-
ing cycle and self-discharge rate. One of the main drawback
of the battery technology is the high installation, operation
and maintenance costs. The battery Life depends on the bat-
tery chemistry, number of cycles, operating temperature and
usage pattern [59], [60]. The different types of the battery
technology used for power system and other applications are
illustrated in [8], [61]–[63]. The four battery technologies are
described as follows:

A. LEAD-ACID (PB-A) TECHNOLOGY
The Pb-A is an early stage of battery technology, hence it is
easily available in the market [64], [65]. The different types
of Lead-acid technology are discussed in [66]. The battery
cell consists of an anode of lead dioxide while a cathode
of sponge lead which are divergent using a microporous
material. These electrodes buried in an aqueous sulfuric acid
electrolyte. The electrochemistry process [67] of batteries are
shown in (1) and (2).
At the positive electrode,

Pb+ SO2−
4 
 PbSO4 + 2e− (1)

At the negative electrode,

PbO2 + SO
2−
4 + 4H+ + 2e− 
 PbSO4 + 2H2O (2)

B. SODIUM SULFUR (NAS) TECHNOLOGY
NaS battery technology is composed of an anode of molten
sulfur and a cathode of molten sodium, which are divergent
using a solid beta alumina ceramic electrode [68], [69]. The

electrolyte passes only Na+ ions and dissolves with sulfur
from sodium polysulfide. The electrochemical process of
NaS battery is presented in (3). In the discharging state,
Na+ ions pass via the electrolyte and negative ions would
be flowing in the battery’s outer circuit, thus the delivering
voltage is 2V.

2Na+ 4S 
 Na2S4 (3)

C. LITHIUM-ION (LI-ION) TECHNOLOGY
Li-ion battery anode is graphite carbon while the cathode
is a lithiated metal oxide (e.g. LiMO2, LiCoO2 or LiNiO2)
[70]–[72]. The electrolyte is made up of organic carbonates
of lithium (LilPF6) [73]. In the charging mode, the lithium-
ion in the negative electrode becomes ions and emigrates over
the positive electrode. Where it recombines with the negative
ion, which are composited between carbon layers through
the external circuit [74].This process is reversed at the time
of discharge. The electrochemical process of this battery is
presented in (4) and (5).

C + xLi+xe− 
 LixC (4)

LiMO2 
 Li1−xMO2 + xLi+ + xe− (5)

D. REDOX FLOW BATTERY
Energy store in redox flow batteries in the electrolyte solu-
tion. The features of electrolyte solution is opposite to elec-
trode based conventional battery [75]–[77]. The reaction
process of flow batteries is dependent on the decreasing
oxidation reaction of the electrolytes. The electrolyte is oxi-
dized at the positive electrode and discharge at the negative
electrode [78], using this process electrical energy convert
into chemical energy. The chemical process of the electrolyte
provide the battery with the desired charging and discharging
conditions. The battery’s energy capacity is calculated by the
stored electrolyte in the external tank. While power capac-
ity is obtained through the active area of the cell compart-
ment [79]. These batteries have the potential to deliver energy
at a high rate,reaching amaximumof 10 hours [80]. The vana-
dium redox flow (VRB), SodiumNickel Chloride polysulfide
bromine (PSB), iron-chromium, and Zinc Bromine batteries
comes under the category of redox flow technology.

The comparison of various battery technologies from dif-
ferent literature [3], [81]–[86]. Among these technologies,
lead-acid technology is the oldest and full-fledged battery
technology. This technology requires frequent maintenance
to replace water because at the time of operation, large
amount of water gets wasted. Nowadays, Li-ion and NaS
technologies are becoming the leading battery technologies in
the area of high-power application. Li-ion battery may be an
option in this field for future development direction. Themain
challenges of Li-ion technology is that it is more expensive
due to the highmanufacture cost and special packing required
due to internal overvoltage protection. The NaS technology
requires heat energy management system due to the high
operating temperature and these causes’ reduction in overall
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TABLE 1. Technical specification of various battery technologies [3], [81]–[86].

efficiency. The redox flow battery batteries are generally used
when there is a requirement of of energy storage for a long
duration due to its non-self discharge characteristics. In this
technology, chemical production plant and pump plant are to
be separately established and that will increase the operating
and running cost [86].

The life cycle cost calculations of various battery storage
technologies have been described in [87], [88]. The technical
specification: life cycle, energy density, power density, self-
discharge, efficiency and operating temperature have been
presented in Table 1 based on [3], [81]–[84]. Li-ion batteries
have light weight and provide more energy density, much
higher compared to others. The storage efficiency is nearby
100%, so it is more appropriate for both PV energy storage
and portable device.

III. STORAGE ARCHITECTURE
In this article two type of energy storage architecture are
explored namely, distributed energy storage and cloud base
energy storage for rooftop PV residential user. For the dis-
tributed energy storage, individual users have access to their
own energy storage at their houses. While for the cloud
energy storage, installed in a community and users are uses
according their needs. A detailed description of the storage
architecture is presented as follows:

A. DISTRIBUTED ENERGY STORAGE (DES)
DES are installed by individuals in their houses having PV
units of distribution manner. This architecture supports to
overcome the problems of supply and demand mismatching
and voltage and frequency control [89]. The main challenge
of DES that it is less efficient for residential consumer, since
both generation and consumption patterns are random [88].
Moreover, it also fails to accommodate this high random
behavior due to the limited storage size. Due to the high
installation cost of PV with DES, the average per-unit price is
significantly high. Thus, it is economically not attractive [90]
and also it only offers less support to the local operator.
In addition, when the number of DES devices increases,
their coordination and management among each other also
increases [91]. The basic architecture of DES is shown in
Fig. 1.

FIGURE 1. Architecture of the DES.

B. CLOUD ENERGY STORAGE (CES)
The architecture in Fig.2 has three major sections: (1) storage
users, here users means that they do not have any storage at
their homes, and they are interested to the join storage oper-
ator service. These users would be booking the storage space
as per hid/her demand and pay rent as a storage service fee
to the operator; (2) storage operator: they invest in the CES
system and provide CES service on rent basis to interested
users. The rate of rent is decided based on the operator’s cap-
ital cost. Storage operator firstly collect users’ information
(e.g. Load, Prosumers PV generation) and accordingly sched-
ule the charging/discharging mechanism. When the excess
PV generation is not sufficient to meet user’s demand, the
storage operator can consider the direct purchase of the power
from from the local power grid for such energy users. The
operator would collect such a type of cost and would pay to
the grid; and (3) PV units, which are installed at the user’s
home.

During the real-time operation, it is possible to set the
instruction to charge/discharge the cloud storage battery. The
charging/discharging behavior of batteries are obtained from
PV generation, demand level and real-time electricity price.
Further, the users gives the instruction to the storage operator
that would be charging his/her cloud storage space from the
power grid considering the time when the price is low. The
operator collects this section of cost separately from users and
paid to the local grid operator. Users can discharge their space
whenever they need without paying any type of charges.

IV. PROBLEM DEVELOPMENT
The modelling of the system has been done by consid-
ering three scenarios. Scenario 1 is grid connected mode,
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FIGURE 2. Architecture of the CES.

all user are in a direct connection with the local power
grid and buy energy from the grid based on a fixed price.
Scenario 2 considers the user’s installed PV with stor-
age at his/her own home, i.e. distributed energy storage
system. Scenario 3 considers the CES with daily fixed
capacity storage with users having their PV power gen-
eration and demand. They can charge CES booked space
from the excess PV power generation and the power
grid.

A. SCENARIO 1 : GRID CONNECTED MODE
All users are linked to the local grid in this scenario. They
satisfy their demands from grid supplies and pay the grid for
the whole cost of energy use. Aside from that, users have
to pay a fixed service charge to the grid. The daily energy
consumption of individual users ECgrid

i has been defined
by (6).

ECgrid
i =

∑
t∈T

λt di,t1t (6)

B. SCENARIO 2 : PROSUMER’S WITH DISTRIBUTED
ENERGY STORAGE (DES) MODE
Energy storage supports prosumers for maximum the uti-
lization of rooftop PV. It is also helping to reduce the
dependency on the grid in the duration of peak demand.
In this model, prosumers have installed energy storage at
their premises. In (7) represent the overall energy cost of
individual prosumer’s ECDES

i .The electricity cost to pur-
chase from grid when PV generation does not sufficient
to meet prosumer demand is presented (9).The invest-
ment cost IDESi is present in (8). The operating cost ODESi
is defined in (11) subject to the constraints represented
from (12) to (17).

ECDES
i = IDESi + ODESi + Gi,t (7)

IDESi =
1
365

r

1− (1+ r)−y

×

(
cP,DESPcapi + c

E,DESEcapi

)
(8)

Gi,t =
∑
t∈T

λt

(
d+i,t − P

D
i,t

)
(9)

ODESi =

∑
t∈T

1t
[
λt
(
PCi,t − P

D
i,t + di,t − P

pv
i,t

)+
+ θt

(
PCi,t − P

D
i,t + di,t − P

pv
i,t

)−] (10)

Pi,tC ,PDi,t ,P
B,DES
i,t (ODESi ) (11)

Subject to 0 ≤ PCi,t ≤ P
cap
i (12)

0 ≤ PDi,t ≤ P
cap
i (13)

Emini ≤ Eti,t ≤ Emaxi (14)

Emini = SoCminEcapi (15)

Emaxi = SoCmaxEcapi (16)

Eti,t = Eti,(t−1t) +1t
[
ηC
(
PCi,t + P

pv
i,t

)+
−
PDi,t
ηD

]
(17)

C. SCENARIO 3 : PROSUMER’S WITH CLOUD ENERGY
STORAGE (CES)
Cloud energy storage gives prosumers additional flexibility in
terms of reducing demand peaks. Individual prosumers’ total
energy cost ECCES is calculated as follows: (18). The system
with a storage investment cost ICES is provided by (19).
All enrolled prosumers decide on the CES operating fee
OCES .The rental energy storage space price, which is paid
to the storage operator as a service fee, includes a set cost
determined by the CES operator as well as CES’s running
costs for scheduling the energy storage. The cost of charging
CES from the grid, as well as the surplus PV revenue included
in operation costs, are defined in (22)within the defined limits
in (23) to (28).

ECCES
i = ICES + OCES +

∑
i∈I

Gi,t (18)

ICES =
1
365

r

1− (1+ r)−y

×

(
cP,CESPcap + cE,CESEcap

)
(19)

Gi,t =
∑
t∈T

λt

(
d+i,t − P

D
i,t

)
(20)

OCES =
∑
t∈T

1t
[
λt
(
PCt − P

D
t + dt − P

pv
t
)+

+ θt
(
PCt − P

D
t + dt − P

pv
t
)−] (21)

PCt ,P
D
t ,P

B,CESOp
t (OCES ) (22)

subject to 0 ≤ PCt ≤ P
cap (23)

0 ≤ PDt ≤ P
cap (24)

Emin ≤ Ett ≤ Emax (25)

Emin = SoCminEcap (26)

Emax = SoCmaxEcap (27)

Ett = Et(t−1t) +1t
[
ηC
(
PCt + P

pv
t
)+
−
PDt
ηD

]
(28)
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FIGURE 3. Seasonal residential users demand.

D. THE SCHEDULE OF CHARGING AND DISCHARGING OF
STORAGE
To assure gaining further advantage from storage, a schedul-
ing process based on the price is involved with the process to
charge and discharge the energy storage. Therefore, the oper-
ational strategy of consumer can be formulated as presented
from (29) to (31).

Xi,t =
Emaxi − Eti,(t−1t)

1t.ηC
−

24∑
t=1

Ppvi,t (29)

PCi,t = min
(
Pcap,Xi,t

)
(30)

PDi,t =



0, λt ≤ λD

min
(
Pcap,

Eti,t−1t − Emini

1t
.ηC , d+i,t

)
,

λt > λD

(31)

V. CASE STUDY
A. SYSTEM PARAMETER
The basic overview of different battery technologies has been
explained in section II with each technology having different
economic cost (Rs/kWh). The investment cost of different
batteries has been taken from [2] for the economical and
management analysis purpose. In the analysis, summer and
winter seasons’ impact is embedded, and the analysis demon-
strates the calculated one-day total electricity consumption
cost (Rs.). The seasonal analysis for energy storage reflects
the feasibility of the system. The simulations have been done
for seven user having their own PV systems and storage
installed at their premises. In this study the simulation has
been considered for 24 hours with 1 hour duration because
PV, price and demand data are available with 1 hour interval.
In the scenario of CES, all prosumers used in cloud base
storage to store excess pv generation. The user’s installed PV
capacity, energy, and power capacity are presented in Table 2.

The demand pattern data of users has been taken from IIT
Bombay, India [92].The hourly sample frequency of collected
data for different days of the year 2017. The demand profile
of users in summer shown in Fig.3a is high as compared to
winter as shown in Fig.3b. The 2017-05-11 for the summer
season and 2017-12-12 for winter season days have been

TABLE 2. User PV, energy, and power capacity.

chosen randomly for the analysis. The generalized PV gener-
ation profile are based on ‘‘ninja renewable’’ [93] accounting
for the same day and location.The 72.91◦longitude angle
and 9.13◦latitude angle for the location of solar PV. The PV
system power rating and energy storage capacity have been
assumed with respect to the demand profile. The seasonal PV
generation peak varies according to their installed capacity
as presented in Fig.4. The installed PV systems rating and
their energy rating (kWh) and the inverter rating (kW) are
presented in Table 3. For scenario 3, the storage capacity
(9 kWh) is equal to the sum of individual user’s storage
capacity installed in scenario 2, and the inverter rating is taken
as 2 kW. The forecasted electricity price has been taken from
the IEXweb portal [94] for both seasons (winter and summer)
as demonstrated in Fig. 5.

B. CHARGING/DISCHARGING THRESHOLD PRICE
STRATEGIES
CES users would be charging/discharging the booked storage
space based on their demand and PV profile [95]. If the PV
generation and store energy in their booked CES space do
not meet the demand, then the user sends the information to
the CES operator for the charge of the storage space from the
electric grid supply and they pay the electricity cost to the
operator and consequently, the operator pays the electric
grid utility. In addition, if the grid price is high compared
to the anticipated/planned value, then the user would take
the electric supply from the storage. For this model users
decide charging (λC ) /discharging (λD) thresholds price. The
λC/λDthresholds values are decided based on daily electricity
price. Here, authors choose the value of λC representing the
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FIGURE 4. Seasonal PV profile.

FIGURE 5. Real-time price for summer and winter.

mean daily average electricity price and the minimum value
of electricity price in a day. Similarly, λD representing the
mean the daily average electricity price and the maximum
value of electricity price in a day. So, λC/λD represents
lower/higher electricity price compared to the price of sum-
mer and winter respectively. If we consider the threshold
value of λC/λD higher from the respective mean values in
scenario 2 and scenario 3, the electricity cost will increase.
Case 1: Storage is charged from the grid at a higher than
mean price to meet user demand, hence the cost of electricity
will increase. Case 2: In peak price period the user discharges
the storage at a threshold price to meet his demand. If the
grid price falls below the threshold price after some time, but
the price varies between the threshold value and the mean
value, there is some storage charge and the user takes the
supply from the grid, that means the price is higher than the
average price. Therefore, the user’s one day electricity cost
may increase.

Even when the authors consider the threshold price to be
less than the average price, the electricity cost may increase
as their storage charging/discharging process is frequent.
Case 1: User discharge in peak price duration is less than the
average price at the storage threshold value and if storage
is fully discharged to meet demand but peak price duration
is still in place, they need to Therefore, they will consider
purchasing electricity from the power grid at a higher price in
comparison to the average price, hence the cost of electricity
may increase. Case 2: If the user decides to charge the storage
space at the threshold price (below the mean price), in this
case the users one day electricity cost may be reduced. But
there is a risk, if the threshold price time interval is small and
the storage capacity is not fully charged in this period and the
user will discharge the storage in this period when the price
is high, at that time the storage does not meet their demand

TABLE 3. DES and CES parameter.

because the storage is not fully charged. Therefore, the user
will need to buy power from the power grid at a price that
is higher so he/she can meet his/her demand. higher price to
meet the demand. Therefore, the total cost of electricity for
the user may increase.

In both the cases if the charging/discharging threshold
price is below and above the mean price, the storage schedul-
ing is not working properly and this may impact the CES
service. Due to which, users will be less interesting to take
CES service, hence the profit of CES operator may also
decrease. In both cases, the user’s cost may increase and the
CES operator’s profit may be reduced.

For this study, a threshold value of price is assumed
to manage the discharging process. The threshold price is
2.5 Rs/kWh for summer season and 3.5 Rs/kWh for winter
season. If the user demand is increased, then the demand will
be met by either the storage or grid supply. If the grid price is
less than CES operator plan then demand to would be met by
the grid supply otherwise user will use storage facility.

Energy storage scheduling is directly influenced by sea-
sonal fluctuations in demand and PV generation. The amount
of space available for energy storage is obtain considering not
only the amount of PV power generated but also the demand
profile. In scenario 3, users give the information of required
storage space day ahead to CES operator. That means daily
storage space varies with respect to the prosumer’s PV gen-
eration and demand profile. Based on the prosumer’s infor-
mation, CES operator manages the CES space capacity for
reliable operation. The prior information of prosumers the
support the storage scheduling to reduce the users’ electricity
costs. The various required simulation parameters of DES and
CES are presented in Table 3. In addition, when the extra PV
power generation cannot able to fully charge to storage, then
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FIGURE 6. Grid connected user.

user’s charges some space of the storage from the power grid
given the price at that time is low. How much space charge
by user’s from grid is obtained based on next day excess PV
generation with respect to the demand.

C. OPERATION STRATEGIES
Energy storage technologies are under development. There-
fore, all technologies have different investment costs. The
impact of battery technology on residential user’s has to
be analyzed. Battery storage allows users to store surplus
generated energy by PV system and use it when they need.
The storage technologies and their characteristics affect the
overall performance of users and hence they have to be con-
sidered. The power generation from PV (Ppvi ) is calculated at
each instant and comparedwith the user’s power demand (Pdi )
and based on this decided whether users should use the PV
output immediately or store it in battery storage. If the Ppvi >

Pdi , then P
pv
i − Pdi is used for the battery charging. If the

battery is at the state of full charge (SOC 100%) during this
instant, then surplus Ppvi generation is lost. If Ppvi < Pdi , then
all PV generation is supplied to the user demand. If the Ppvi
does not meet the Pdi , then the left demand is to be satisfied
by the available energy in battery, but battery SOC should
greater than 20%. It has also been considered that even though
the users are connected to the grid and the demand has not
been met by Ppvi + Pbati the reaming unmet demand will be
met by the grid. Based on this methodology, user’s one-day
electricity is cost calculated. The grid supply unit (kWh) cost
has been calculated according to the grid price. The cost of
energy produced by PV system is calculated considering the
PV infrastructure cost, including the battery storage cost.

The targeted problem is a linear programming optimization
problem and solution to the problem can be attained as the

FIGURE 7. Different battery technology.

FIGURE 8. Distributed energy mode (DES).

flowchart in Fig. 6 to Fig. 9. The computer machine speci-
fications are Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz,
16.0 GB (15.8 GB usable), 64-bit operating system, and
x64-based processor.

VI. RESULTS AND DISCUSSION
Storage technologies have individual merits and demerits
in terms of cost, energy density, and self discharge rate.
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FIGURE 9. CES with increased number of users.

TABLE 4. One-day electricity cost (RS) with different technology in summer and winter seasons.

In scenario 1, the electricity usage is costly rather than PV
with storage scenario 2 and 3, while using storage with grid
and PV is more economical solution to reduce electricity
bills. In terms of the economic investment, CES is feasible
than DES. The price base scheduling phenomena is used for
this analysis. Price based scheduling means prosumer charg-
ing the storage from grid if grid price below the threshold
price.

A. ECONOMIC ANALYSIS OF STORAGE TECHNOLOGIES
The effect of battery technology on the residential user
energy management is analyzed as shown in Fig.7, and
results are presented in Table 4. The numerical value of
results are obtained based on daily demand. The total cost
of energy consumption in a day with battery technolo-
gies is shown in Fig.10a and Fig. 10b. Table 4 presents
the seasonal one-day electricity cost of users for sce-
nario 2 and scenario 3. From Table 4, it is observed
that Li-ion battery is an economical well performing
option for both seasons as compared to other battery
technologies.

B. ECONOMIC ANALYSIS OF STORAGE ARCHITECTURE
The energy storage system with grid tied PV have real time
scheduling given energy pricing system that is also on real
time. During the extra power phases of PV generation, the
batteries are charged up to its capacity and the remaining
energy is sent to the power grid. When a deficit energy
generation is experienced, such energywill be drawn from the
battery or grid depending on real-time pricing of electricity.
CES needs to respond to different users’ demand, and the
operator has to maintain SoC of storage with the scheduling
control that provides the service benefits to both operator and
users. Storage capacity allotted to between users must be such
that each user has required capacity and SoC of CES does not
exceed the limit. This management control provides benefits
to all the subscribers.

All themethodologies for economic analysis and reliability
depend on scheduling and real-time pricing level. Moreover,
a threshold has been set up for better management of storage.
The threshold of price decides on the charging/discharging
pattern of storage. The economic analysis has been performed
with Li-ion battery. The performance analysis depends on
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FIGURE 10. One-day total energy cost of five user with different battery technology.

FIGURE 11. Economic comparison of three scenarios.

the storage charging/discharging profiles of each prosumer.
The charging/discharging scheduling has been done based
on electricity price and demand. The economic comparison
analysis of storage architecture for both seasons are shown
in Fig.11. In this analysis, storage architecture is compared
based on one-day electricity cost of five users.The obser-
vation from analysis shows that CES is economically more
beneficial as compared to others.

1) WITH FIXED NUMBERS OF USERS IN SCENARIO 3
The obtained scheduling profile of storage with five users
are displayed in Fig. 12.The energy profile describing the
charge/discharge of aggregated DES and CES utilizers for
a day in each seasons (summer and winter) are shown
Fig.12a and Fig.12b, respectively. The storage capacity at
prosumers, homes is obtained through demand in scenario 2.
In scenario 3, the capacity of storage is obtained through
summing of individual prosumers’ storage capacity.

In scenario 1, the total cost of users is determined using
real-time grid price and their total consumed energy. Table 5
presents the one-day total electricity cost of users, including
operational as well as investment cost for different scenarios.
The user-5 daily demand is high as compared to others as
shown in Fig.13a and Fig.13b and thus their one-day elec-
tricity cost is high. In scenario 2, storage user electricity cost
decreases as compared to scenario 1. In the daytime, users
use PV generated power to meet their demand. Whenever the
demand is not meet by PV supply, the remaining demand is
supplied from the grid. If the PV generation is on excess, then
it will get wasted because DES facility is a fixed capacity
storage. In this scenario, storage cost includes in total invest-
ment cost. It is assumed that energy storage investment cost
has been scaled in 10 years and similar PV infrastructure cost
has been scaled in 25 year. In scenario 3, one-day electricity
cost value is more economically attractive. The overall cost
is also less than that of other scenarios. The PV infrastructure
cost has been handled by the user, and the storage installation
cost has been handled by the storage operator. All users have
to pay the operator of the storage a service cost to use the
energy storage facility. All type of charges from the user side
are included in services fee.

2) WITH INCREASED NUMBER OF USERS IN SCENARIO 3
In this case, the number of users is increased by seven
from five in scenario 3. The energy storage capacity did not
changes from the case of five users. The one-day electricity
cost of 7 users is presented in Table 6. The observation from
this table is that in scenario 3, the one-day electricity cost
of each user is less than the case of scenario 2. Table 7 and
Table 8 presents the demand met by grid, PV, and storage
in both summer and winter seasons for scenario 2 and sce-
nario 3, respectively of individual users. Table 9 and Table 10
presents the in both summer andwinter seasons for scenario 2
and scenario 3, respectively. In scenario 2, user 2, user 4,
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FIGURE 12. Seasonal Storage charging/discharging profile.

FIGURE 13. Seasonal storage profile for seven users.

TABLE 5. One day energy cost (Rs.) in different scenario with five users.

TABLE 6. One day energy cost (Rs.) in different scenario with increased number of users (seven).

and user 5 need to purchase power from grid to charge their
storage. But in scenario 3, any user does not required to
purchase energy from grid. The results from Table 7 and
Table 10 are obtained based daily PV generation and demand
profile for scenario 2 and scenario3.

3) COST OF CES USERS AND OPERATOR PROFIT
The mean value of one day energy cost of seven users is less
than that of five users in both seasons as shown in Fig. 14.
The total revenue of CES operator is presented in Table 11.
With the increased number of users case study, the operator’s
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TABLE 7. Demand (kW) met by the grid, PV, and storage for scenario 2.

TABLE 8. Demand (kW) met by the grid, PV, and storage for scenario 3.

TABLE 9. Storage charge from PV and grid for scenario 2.

TABLE 10. Storage charge from PV and grid for scenario 3.

TABLE 11. Seasonal CES operator revenue.

profit increases by 6.70% in summer and 16.97% in winter
as compared to the cases of fixed number of users. If the
more number of users are participating in scenario 3, then the
required storage size is to be increased. The storage capacity
will have to be decided according to the average demand of
the number users.

FIGURE 14. Mean value of one-day energy cost of five and seven users
with CES.

C. UNCERTAINTY ANALYSIS WITH SEVEN USERS
In the section VI-B of this article, only demonstrated the
deterministic forecasting (point forecasting) and not consider
meteorological and load uncertainties. Generally, in deter-
ministic forecasting assumed prediction errors are unrelated.
The results based on point forecasting are shown fromTable 6
to Table 10. If we consider uncertainty, then uncertainties
would impact the results. As per the reviewer’s suggestion,
authors have included meteorological and load data uncer-
tainty analysis using interval forecasting as shown Fig. 15.
First, the load and PV day ahead forecasting are run sepa-
rately based on historical data set. Then after, the observed
last 24 hours forecasting error (ε1 . . . . . . ε24) as per the
obtained data considering the variation between the actual
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FIGURE 15. Mean value of one-day energy cost of five and seven users
with CES.

data and forecasted data of load and power. The mean
(µl, µpv) and standard deviation (σl, σpv) are obtained respec-
tively. The µl and µpv are the mean value of actual data set
and forecasted values for last 24 hours respectively. Similarly,
the σl and σpv are the S.D. value of actual data set and
forecasted values for last 24 hours respectively. As shown
in Fig. 15, the new values of µN and σN are obtained from
two independent variables (the mean and S.D of the load
and PV error predictions, respectively). A normal proba-
bility distribution function (pdf) is obtained using new µN
and σN .Forecast errors (ε) are a random variable due to
uncertainty, the range of errors (ε) is [−∞,∞]. The range
of the normal distribution also varies between [−∞,∞].
The probability density function (PDF) of a random variable
accurately describes a standard distribution.The error (ε) is
a random variable distributed according to the PDF. There
usually a normal distribution is used. The error histogram bar
plots with normal distributions for the summer and winter
seasons are shown in Fig. 16. This figure represents only one
user’s PV and load prediction error histograms with normal
distributions, for the remaining other users can be obtained
in a similar way. In this study forecasting uncertainties of PV
as well as load data as lower and upper bound margin around
the predicted value at 95% confidential interval.

In ths study machine learning models are used, LSTM for
the load and PV forecasting from actual data. The forecasted
error data sample is only 24 so that, for the error forecasting,
Artificial Neural Network (ANN) model is used for error
forecasting. The performance measures, Mean absolute error
(MAE), Mean Squared Error (MSE), Mean Absolute Per-
centage Error (MAPE), Root Mean Square Error (RMSE)
have been used for analysis of the forecasting results as
demonstrated in Table 12 to Table 15. By using uncertainty
assessment process, the uncertainties of load forecasting and
PV forecasting with 95% confidence interval. The uncertain-

TABLE 12. Prediction performance measures on actual individual users
load data.

TABLE 13. Prediction performance measures on actual PV data.

TABLE 14. Prediction performance measures on individual users load
forecast error data.

TABLE 15. Prediction performance measures on PV forecast error data.

TABLE 16. Demand (kW) margin to be met by the grid, PV, and storage in
in 24 Hrs for scenario 2.

ties in morning and evening time is less as compared to day-
time duration. The increment and decrement uncertainties in
PV power forecasting depends on increment and decrement in
PV power respectively. The load uncertainty trends is varying
in relevance to the power consumption of the user.

The upper bound and lower bound margin on the total
demand, PV generation, how much demand is met from PV
power generation, how much demand is met from the storage
and grid, how much PV excess is fed to the grid are listed
in Table 16 and Table 17 for summer and winter seasons
respectively for scenario 2. The amount of energy purchases
from grid or from the PV system to charge the storage are
presented in Table 18 for both seasons. Similarly, Table 19
and Table 20 are presented for scenario 3. From these tables,
it is observable that the results can be vary between upper

43698 VOLUME 10, 2022



V. K. Saini et al.: CES Based Embedded Battery Technology Architecture for Residential Users Cost Minimization

FIGURE 16. Histogram with pdf for user 5.

TABLE 17. Demand (kW) margin to be met by the grid, PV, and storage in
in 24 Hrs for scenario 2.

TABLE 18. Storage charge margin from PV and grid in in 24 Hrs for
scenario 2.

TABLE 19. Demand (kW) margin to be met by the grid, PV, and storage
in 24 Hrs for scenario 3.

TABLE 20. Storage charging margin from grid and PV generation
in 24 Hrs in 24 Hrs for scenario 3.

and lower bound margin values. The obtained results may
support the decision-making for smooth battery management
operation.

TABLE 21. One day electricity cost margin (Rs.) for scenario 2 and
scenario 3.

The uncertainties also impact on one day electricity cost of
individual users. The one-day electricity cost varies between
upper and lower bound margin as presented in Table 21 for
both scenarios. The numerical results show the impact of PV
and load data uncertainties.

VII. CONCLUSION
This study proposed an CES architecture for the reduction in
electricity consumption cost as compared to DES architecture
for residential users. The first part of the article identified
a battery technology suitable for residential application with
help of simulation. According to the analysis, it is suggested
that Li-ion battery is more economical compared to other
options for a residential application. Furthermore, the energy
storage operation has been performed under three scenarios,
and one-day electricity cost of the users have been calculated.
It has been found that the one-day total electricity cost of
five users reduced by 11.37% with CES as compared to
DES. Thus, CES is more economical as compared to other
types of energy storage for residential microgrid application.
Additionally, this study, incorporated an analysis to identify
the impact of the increased number of users with CESwithout
altering the battery capacity. Results show that the mean
value of one-day electricity cost with the increased number
of users is reduced by 23.77% in summer and 16.47% in
winter in comparison to the case of fixed number of users.
With this, CES operator revenue is analysed and it is found
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that it increased by 6.70% in summer and 16.97% in winter in
comparison to the case of fixed number of users. In scenario 2
some users may be required power purchases from grid to
charge their storage but we obtained from results in scenario 3
any user does not need to purchases power from grid. Further-
more, the uncertainty analysis of PV power and load data are
analysed with lower and upper bound margin value of taken
around their forecasted value. This study also tried to fill the
gaps in the existing literature to explore research possibilities
in the energy storage area. In addition, this study can be
extended in the future by considering battery degradation cost
and power loss in network.
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