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ABSTRACT The human hand needs a large number of sensors to measure kinematics owing to its large
number of degrees of freedom. Existing devices like data gloves and optical trackers are associated with
calibration, line of sight, and accuracy problems. In this paper, we attempt tomeasure the full hand kinematics
using Electromagnetic Tracking Sensors (EMTS) which are accurate, free of line-of-sight problems, and
require no calibration. However, EMTS provides output in the form of rotation groups which are defined on a
nonlinear manifold. Hence, linear operations required for experimental analysis such as linear dimensionality
reduction are not valid. Also, these sensors are expensive, utilize space in terms of cabling, and require a
reduced sensor layout. In this paper, we present measurement methods, test the utility of linear and non-linear
dimensionality reduction techniques on quaternions and exponential maps. We also performed sensor
reduction using a Gini feature selection based on random forest algorithm. The kinematic measurement
results show that EMTS yield superior posture reproduction with an error of less than 1 degree. Autoencoder,
a nonlinear dimensionality reduction technique, was successfully applied on quaternions which was tuned
to perform better than Principal Component Analysis (PCA) in reducing dimensions. The reduced sensor
layout with 8 sensors was able to predict full hand kinematics with a Root Mean Square Error (RMSE) of
5.1 degrees.

INDEX TERMS Hand kinematics, synergies, quaternions, Euler angles, Polhemus, electromagnetic tracking
sensor, data glove, PCA, autoencoders, neural networks, random forest algorithm.

I. INTRODUCTION
The hand allows us to manipulate objects with complex
contours with ease, owing to its unparalleled dexterity. The
strategy employed by the Central Nervous System (CNS)
for the control of such a large number of joints has always
intrigued researchers working in the fields of robotics
and neuroscience alike. This has led to a surge in the
development of advanced prosthetic hands, rehabilitation
methods, and assistive devices [1]–[4]. To understand how
the CNS controls the hand, human hand kinematics are
recorded while the participants perform different postures,
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activities of daily living, or grasp different objects [5]–[11].
Data-driven modeling using dimensionality reduction is
usually performed to extract neural correlates of control such
as postural synergies. Also, human hand movement data is
crucial in many other avenues like the sports and animation
industry. The success of these studies, however, relies on
the quality of data that is measured. Most of the existing
studies are performed using a data glove (Ex: CyberGlove)
[5], [6], [11]–[16], or camera-based trackers [10], [17], [18]
the latter considered to be the gold standard. Data gloves are
embedded with flex sensors, which provide an analog output
corresponding to the amount of flexion. The analog output
from these sensors is then converted to joint angles using
appropriate calibration routines [19]. But the absence of an
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appropriate ground truth forces the use of approximations
and computational techniques such as linear regression to
obtain the joint angles [11]. These methods could induce
error in measurement resulting in a lower quality of data
being collected. Also, the presence of a glove can induce
a sense of equipment awareness in the participants during
data recording, thereby reducing dexterity. A recent study
has demonstrated that fine motor skills reduce by 29%
when wearing gloves [20]. The output of the data glove is
dependent on the hand size of the participant and hence
calibration is necessary for each participant. Moreover, flex
sensors of these data gloves sometimes produce nonlinear
outputs for the actual joint angles [21]. Camera-based optical
trackers make use of one or multiple cameras and a set
of markers on the body to track its movements. These
systems are highly accurate, but it requires a line of sight
between the camera and markers during the entire recording
session. Since the hand movements are fine as well as
complex, it is rather challenging to establish a constant line
of sight between the markers and cameras. Some studies have
also developed customized IMU-based gloves to measure
hand kinematics [22]–[25]. These devices are extremely
inexpensive and serve well for measurement in clinical
practice and applications involving non-laboratory conditions
but do not possess the accuracy and resolution like the optical
trackers or EMTS.

The drawbacks of data gloves, optical trackers and IMU’s
can be addressed by electromagnetic tracking sensors. These
systems are highly accurate and miniaturized which leads
to lower sensor awareness during data capture for the
participant. EMTS provide a significant advantage over data
gloves and optical trackers in the sense that they do not
require any calibration procedures, nor do they have a line-of-
sight problem. However, electromagnetic (EM) interference
caused due to presence of metallic components in the
experimental space could produce inaccurate measurements.
Such errors can be reduced by making sure that the
experimental space has minimum metallic objects that could
cause EM interference. Some of the commercially available
EMTS are Polhemus, NDI Aurora, and Ascension MiniBird.
While only a few pieces of literature are available that discuss
the utility of EMTS in measuring hand kinematics [26], [27],
a thorough analysis and methods for recording, performing
dimensionality reduction, and selection of an optimal number
of sensors is scarce. The challenges associated with mea-
surement and analysis will be discussed in the subsequent
sections. The methods presented in this paper can also be
applied to IMU’s in which sensor fusion algorithms are used
to convert the accelerometer, magnetometer, and gyroscope
data into orientation data in the form of quaternions or Euler
angles.

A. PROBLEM OF NONLINEAR REPRESENTATION OF
ORIENTATION
The first problem associated with EMTS is the represen-
tation of orientation. Data gloves provide analog output

in response to the deflection of bend sensors which are
later calibrated to obtain joint angles. Optical trackers
provide the spatial positions (3 d.o.f) of the markers in
real-time and the joint angles are calculated using forward
kinematic techniques. EMTS provide both spatial positions
and orientations (6 d.o.f) of the sensors. But computing
joint angles using forward kinematics involving only spatial
positions requires a large number of sensors. This is not
feasible as the EMTS’s provide options for up to only
16 sensors. Hence one has to resort to orientations for
computing kinematics. EMTS and IMU’s provide orientation
output using the following 3 representations viz. rotation
matrices, Euler angles, and quaternions. These orientation
outputs belong to a special class called rotation groups.
The angular measurements obtained from data glove and
optical trackers parametrize motion in a linear Euclidean
domain unlike rotation matrices, quaternions, and Euler
angles which are defined on the surface of a hypersphere [28].
These representations are susceptible to problems like
singularities, antipodal symmetry, and gimbal lock and must
be carefully handled. Also, since these representations are
defined on a nonlinear domain, Euclidean operations like
averaging, linear filtering might not be valid [28]. Apart
from this, it is not straightforward to perform important
operations like dimensionality reduction using linearmethods
like PCA, which is the basis of most of the experimental
research on hand kinematics [29]. In this paper, we attempt
to measure full-hand kinematics involving a full thumb
reconstruction of 4 participants performing postures and
object grasps. Quaternions are used as an initial joint angle
parametrization method to avoid singularities and gimbal
lock. Relative orientations between joints are computed using
quaternion operations and joint angles are computed by
converting relative quaternions to Euler angles as the last
step for visualization and animation. Since the relative joint
orientations involve small angular changes, the computed
joint angles from relative quaternions are completely free
of orientation discontinuities and gimbal lock by selecting
a suitable coordinate system. We also present methods to
perform sensor to body segment alignment and methods
to benchmark sensor values. For Euclidean operations, like
filtering and computing RMSE, the quaternions are converted
to exponential maps, a linear representation of orientation.

B. PROBLEM OF PERFORMING DIMENSIONALITY
REDUCTION WHILE REPRESENTING ORIENTATION
USING ROTATION GROUPS
Neuroscience research has hypothesized that a simplified
set of motor primitives are responsible for controlling the
complex biomechanical structure of the fingers. As a result,
natural flexural patterns of its joints depict a coordinated
activation. Previously, PCA has been successfully applied
on hand kinematics obtained using data glove and optical
tracking systems [5], [6], [8], [11]–[18]. As mentioned
earlier, these measurement systems parametrize motion in
a linear Euclidean domain, unlike rotation groups that
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are used while using EMTS. Dimensionality reduction
using PCA performed on data obtained from data glove
and optical trackers have shown that the first 3 principal
components (PCs) account for around 80% of the variance
indicating that fewer joint parameters can control the entire
range of movement (ROM) of fingers without reducing the
degrees of freedom (d.o.f) [16]. The results showed that the
first and second principal components involve themovements
of the proximal interphalangeal joint (PIP) and metacar-
pophalangeal joints (MCP) of the fingers, while the third
PC involves the thumb movements. Previously, it has been
hypothesized that applying PCA directly on quaternions is
not desirable since quaternions are defined along a nonlinear
manifold whereas PCA is strictly a linear algorithm [29].
Because of this, animators have explored the possibility of
performing a linear dimensionality reduction on exponential
maps [29], [30]. As described earlier, exponential maps are
a linear representation of quaternions in the tangent space.
A comparison of dimensionality reduction on different joint
angle representations using functional principal component
analysis (fPCA), which is a linear method, has shown that
exponential maps and quaternions fare better than Euler
angles to reconstruct postures using reduced dimensions [31].
But the efficiency of the fPCA algorithm depends on the
continuity in data. In the case of discontinuities (due to
quaternion antipodal symmetry, singularities of exponential
maps), fPCA appeared to perform poorly. Other than fPCA,
we haven’t found any literature that addresses the application
of dimensionality reduction techniques directly on quater-
nions when analyzing movements. Recently, a nonlinear
dimensionality reduction using autoencoders has been shown
to provide superior reconstruction using latent dimensions
when compared to that performed using PCAwhenmeasured
using a data glove [5]. In this paper, we first test if PCA on
hand kinematics using exponential map data representation
produces the same result as previously reported for data
gloves and optical trackers. We then test the performance of
autoencoders in reducing dimensions using quaternions. The
performance of the quaternion autoencoder is compared with
exponential map PCA by examining its ability to reconstruct
postures from reduced latent space.

C. PROBLEM OF SENSOR COST AND REQUIREMENT OF A
LARGE NUMBER OF SENSORS/CABLES
Thirdly, EMTS are expensive compared to other devices and
require a cable per sensor resulting in system bulkiness.
Hence a reduced sensor setup is necessary that will record
the full hand kinematics with minimum sensors and still
measure kinematics as accurately as possible. Considering a
large number of joints and the requirement of a large number
of sensors, the problem of the cost of the sensors and time
for setup needs to be addressed. Previously, dimensionality
reduction using PCA has been used to identify the first few
PCs (also known as Synergies) that explain the maximum
variance and identify the joints that contribute to the PCs [32].
Hence, these joints represent maximum variance in the data

and will be able to reconstruct data with reasonable accuracy.
While such a method would help in identifying joints that
portray coordination while explaining maximum variance,
the method would be participant-specific and cannot be
generalized since the synergies are different for different
participants. However, synergies acquired from data recorded
during ADL can be clustered to obtain a set of synergies that
are representative of the global population [33]. While this
approach provides promising results, it is not always possible
to obtain a cluster of synergies that would contain synergies
from all participants [34]. This could especially be true
while performing unconstrained hand postures like American
Sign Language (ASL) letters or numbers. Prediction of hand
kinematics based on contact parameters of objects to be
grasped has also been performed previously using Neural
networks [35]. Apart from PCA, an inverse kinematics-based
approach has also been used previously to obtain a reduced
set of sensors [36], [37]. In this study, we utilize a data-driven
technique using random forest algorithm to rank the sensors
using the kinematic data of all participants. Gini importance
score (a default random forest feature selection algorithm) is
utilized to select the optimal set of sensors. Using the selected
set of sensors, the orientation of other joints is predicted by
training a simple neural network with a single hidden layer.
The RMSE between the predicted and original kinematics
using the full sensor setup is presented.

The overall methodology followed in the paper is depicted
in the flowchart in Figure 1:

FIGURE 1. Methodology employed in the paper for the measurement of
finger kinematics and analysis for dimensionality reduction and sensor
reduction.

II. JOINT ANGLE REPRESENTATIONS
Rotation matrix and Euler angles are the most commonly
used joint angle parametrization methods in biomechanics,
aerospace, andmechanical engineering applications. Both are
very intuitive for visualizing or animating postures in real-
time. But both have their limitations in terms of ambiguities,
computational requirements, and singularities. Quaternions
on the other hand are free of all these problems and provide
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an efficient and compact way of representing orientation data.
In this study, rotation matrices are not utilized since they
require 9 values per sensor to represent orientation in 3D
space. The 2 modes of joint angle representation viz. Euler
angles and quaternions available for motion capture using
EMTS are discussed in the next section. Also, a linear form
of quaternions called the exponential map is also discussed,
which is been extensively used in this study.

A. EULER ANGLES
Euler angles represent the orientation of any rigid body in
3D space by 3 consecutive rotations about 3 orthogonal axes.
If x, y, and z are 3 orthogonal axes, as the object rotates, the
angles made by the new x, y, and z axes with respect to the
x,y,z axes are the Euler angles. Since Euler angles are defined
as consecutive rotations, the output depends on the choice of
order or sequence of rotations. Euler angles are suitable only
for measurements involving small angular changes. This is
due to the singularity that occurs when the measured angle
exceeds 180 degrees. The resulting measurements jump to
−179 degrees instead of 181 degrees and so on, resulting
in a discontinuity in data. The second problem associated
with Euler angles is the gimbal lock where 2 axes lock up
when the second angle approaches 90 degrees. This reduces
rotational d.o.f because of which information is lost. Hence
it becomes difficult to compute hand kinematics using Euler
angles alone. Apart from this, it is difficult to perform some
calculations using only Euler angles. It is not possible to add,
subtract or multiply Euler angles as such operations will not
consider the effect of interaction between the axes. Hence
differentiation, averaging, etc. which are operations that are
crucial for experimental research are not straightforward.
Hence, in this study, Euler angles are used only to animate
hand postures and visualize temporal angular variation which
is obtained by converting quaternions to Euler angles in the
last step.

B. QUATERNIONS
Problems associated with Euler angles and rotation matrices
can be resolved by using quaternions as the first joint angle
parametrization method and Euler angles can be obtained
from quaternions whenever it is necessary to visualize
or animate postures. Quaternions were first described by
Hamilton in 1860 and takes the following form (1):

q = qw + qx i+ qyj+ qzk (1)

where (qw, qx , qy, qz∈R) and i2 = j2 = k2 = ijk = −1.
The first quaternion component qw forms the scalar part of
the quaternion and qx , qy, qz form the vector part. For a
quaternion to represent pure rotation (no translation), the
quaternion should be a unit quaternion. A unit quaternion of
the form shown in (1) can be constructed from a rotation of
an angle θ about an axis v using (2) as

qw = cos
(
θ

2

)
; qv = q[x,y,z] = v[x,y,z]sin

(
θ

2

)
(2)

where [vx , vy, vz] form a unit vector that represents the
rotation axis and θ is the angle of rotation.

Thus, a unit quaternion can be used to represent the rigid
body rotations and the kinematics is defined along the surface
of a unit hypersphere (S3 ⊂ R4). Hence, all operations
on quaternions are performed considering this shape of the
surface and are not based on Euclidean geometry. Unlike
Euler angles, they are free of orientation ambiguities and
gimbal lock and provide smooth interpolation between any
2 orientations.

Multiplying 2-unit quaternions (q1 ⊗ q2) causes q2 to be
rotated further by an angle defined by q1. To rotate back q2
to q1, one can use expression (3) by applying the quaternion
conjugate operation.

qrelative1=q
conj
1 ⊗ q2 (3)

where ⊗ indicates quaternion multiplication.
Quaternions are easy to interpolate and average and are

hence suitable for experimental analysis [28].

C. EXPONENTIAL MAPS
Exponential maps are a linear reparameterization of quater-
nions on a tangent space. Exponential map representation can
be obtained from a quaternion using a logarithmic map and
is not directly obtained as an output format by the EMTS.
Logarithmic mapping translates the quaternions defined on
a hypersphere to a 3-dimensional tangent plane defined at
the identity. The vectors in the tangent plane are linear.
These vectors can then be mapped back to the corresponding
quaternion using the exponential map, hence the name [39].

The logarithmic map for a general arbitrary quaternion
q = (qw, qv) is defined using the expression (4) as

lnq =
(
ln |q| ,

(
1
‖qv‖

arccos
qw
|q|

)
qv

)
(4)

Since we use unit quaternions to represent rotations,
in expression (4), ln |q| = 0. Thus, we get a vector in R3

(called a pure vector or quaternion with zero scalar part)
which is linear and encodes the information of the axis
(direction of lnq) as well as an angle (magnitude of lnq) using
a 3-element vector.

Also, because lnq is a pure vector of the form v =[
0, vx , vy, vz

]
, we can define the quaternion as an exponential

of the pure vector using the expression (5)

q = ev =
[
cos

(
θ

2

)
, sin

(
θ

2

)
v
‖v‖

]
(5)

where θ = ‖v‖
The transformation between the logarithmic map and the

exponential map is shown in Figure 2.
The expression (5) maps a pure vector v in tangent space

to a unit quaternion on the hypersphere that represents a
3D rotation by an angle θ=‖v‖ about an axis v. In this
paper, we will call the linear vector (R3) in tangent space
as the exponential map format. Since the exponential map is
parametrized in R3, it is susceptible to singularities similar
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FIGURE 2. Representation of mapping between a quaternion and an
exponential map.

to Euler angles. The singularity occurs because rotation by
2nπ(where n = 1, 2 . . .) about any axis represents a
rotation of 0 degrees, and any point in R3, distant at 2π
from the origin maps back to identity in S3. Nevertheless,
the mapping can be made singularity-free if the vector in
R3 is restricted to operate in a sphere of radius 2π [39].
In the case of measuring hand kinematics, we convert relative
quaternions between any two phalanges to an exponential
map representation. Since the relative angles are small, the
singularities are very far from the actual operating region.
Hence exponential maps also provide smooth and continuous
angular variations. In this paper, exponential maps are used
wherever linear operations are to be performed which is not
possible using quaternions. The quaternions are converted
to exponential maps, linear operations are applied, and the
exponential map is then converted to quaternions. One could
prefer to completely rely on exponential maps. But the
disadvantage with the exponential map is that it is not
possible to compose rotations, unlike rotation matrices and
quaternions which can be used to rotate a vector to a new
orientation [39].

III. MATERIALS AND METHODS
A. TERMINOLOGIES AND HAND MODEL
To compute the full hand kinematics (joint angles), the
hand is modeled as a 21 d.o.f manipulator with 15 joints.
The d.o.f’s mentioned are used only for plotting and
animating hand posture data for visualization purposes. For
dimensionality reduction and prediction, all d.o.f at a joint
are considered. Each finger and the thumb are modeled
to have 3 joints. The joints of the fingers are the MCP,
PIP, and distal interphalangeal joint (DIP). The joints of
the thumb are the Carpometacarpal joint (CMC), MCP, and
interphalangeal (IP) joint. The CMC of the thumb is modeled
to have 3 d.o.f, its MCP and IP joints with 1 d.o.f each.
For the fingers, all MCP joints are modeled to have 2 d.o.f
and PIP/DIP joints have 1 d.o.f each. The movements of
the CMC joint comprise flexion-extension (pitch), abduction/
adduction (yaw), and thumb rotation (roll). The MCP and IP
joint of the thumb have only flexion-extension movements.
In the case of the fingers, all MCP joints comprise flexion-
extension and abduction-adduction movements. The PIP

and DIP joints have only flexion-extension movements.
To compute the full hand kinematics with the joint d.o.f
mentioned earlier, we make use of 16 EMTS placed on
the dorsal side of the hand. The sensor positioning, sensor
numbering, and joint d.o.f’s are depicted in Figure 3a. The
finger movement types and sign convention are depicted in
Figure 3b.

B. DETAILS OF ACQUISITION INSTRUMENT
Sixteen EMTS (Model: LibertyMicrosensors, Polhemus Inc.,
Colchester, VT, USA) were used for data acquisition. The
system can transmit data at an update rate of up to 240 Hz.
The microsensors were placed on the dorsal side of the hand
at approximately the center of all the phalanges of the fingers.
For the thumb, sensors were placed on the metacarpal,
proximal and distal segments each. The microsensors that
were used are 1.8 mm in diameter and have a resolution of
1.27 microns. They have a static position accuracy and static
angular orientation accuracy of 0.76 mm and 0.15 degree
respectively. All the sensors are capable of providing position
as well as orientation data as output. Each sensor was
configured only to provide 4 valued quaternion orientations
as the output. Hence the recorded data had 64 dimensions
(16 sensors x 4 channels). The microsensors were attached
to the hand using surgical tapes. Before performing the
actual experiment on hand, a sensor validation procedure was
performed. To validate the static angles, we used Polhemus
liberty standard sensors. Standard sensors are EMTS similar
to microsensors in terms of working, except they are packed
in a rugged casing with mounting holes. Since they comewith
screw holes in their casing that can be used for mounting on
3D printed surfaces they can be used for accurate validation.
Microsensors and standard sensors are shown in Figure 4.

C. COMPUTATION OF JOINT ANGLES FOR VISUALIZATION
To compute the angles for all joints, the quaternions q1
and q2 measured across any joint were converted to relative
quaternions using (3). The relative quaternion was then
converted to Euler angles using the ‘‘XZY’’ rotation sequence
indicating a roll, yaw, and pitch respectively. The corre-
sponding components of Euler angles were used to represent
rotation, abduction-adduction, and flexion-extension angles
wherever applicable.

During the process of converting quaternions to Euler
angles, gimbal lock could still occur if the second angle
approaches 90 degrees. However, this is addressed in the cur-
rent setup by aligning yaw movement to abduction/adduction
by the appropriate orientation of the source box. Since none
of the abduction adduction angles of the fingers or the thumb
approaches 90 degrees, gimbal lock is completely avoided.

D. FILTERING
To filter the data, the relative joint quaternions were converted
to exponential map format, and a linear 2nd order zero-lag
Butterworth filter was applied. A cut-off frequency of 5 Hz
was used to remove any effect of physiological tremors [38].

VOLUME 10, 2022 42677



P. Shenoy et al.: Methods for Measurement and Analysis of Full Hand Angular Kinematics Using EMTS

FIGURE 3. Hand model utilized in this study (a) Sensor location, numbering scheme, and degrees of freedom (b) Type of joint movements and
sign convention.

FIGURE 4. Micro and standard sensors.

The filtered exponential map was then converted to relative
quaternions. Since the exponential map does not incur a
singularity, the conversion to and from quaternions is one to
one [39].

E. VALIDATION OF STATIC JOINT ANGLES
To validate the joint angles computed from the sensors,
standard sensors were mounted on two different 3D printed
models of fingers and one model of the thumb. Standard
sensors were selected for validation purposes as they can
be accurately mounted on the 3D printed finger replicas.
The microsensors on the other hand are difficult to mount
accurately on 3D printed surfaces. The 3D printed finger
models with attached sensors were placed in the lower
left quadrant of the source box as shown in Figure 5a.
The angles for the joints were selected to mimic actual
finger flexion (design A), thumb movements (design B),
and finger abduction-adduction (design C) as illustrated in
Figure 5b. The relative quaternion was computed using (2)
and then converted to Euler angles using the XZY rotation
sequence indicating rotation, yaw, and pitch respectively.
The corresponding components of Euler angles were used
to represent roll, abduction-adduction, and flexion-extension
angles wherever applicable.

F. PARTICIPANTS
Four right-handed male volunteers of age 27 ± 3.1 years
(mean ± S.D) were recruited for the study. Written informed
consent was obtained from them. There were no previous
upper extremity disorders or injuries reported by any of
the individuals. The institutional ethics committee at IIT

Madras approved the experimental procedures (IEC/2020-
03/SKM/02/10).

G. EXPERIMENTAL DESIGN
The experiment involved performing simple hand postures
and object manipulations. The participants were comfortably
seated on a wooden chair. The source box reference
frame was positioned with X-axis pointing away from the
participant and Y-axis pointing towards the left. To avoid
magnetic interference, the experimental space had minimum
metallic components. Also, care was taken that no metallic
components were placed in a sphere of 3x radius where x is
the distance from the source box to the sensors mounted on
the hand. The participants had to perform 2 types of tasks.
In the first task, the participants had to perform 26 postures
shown on a monitor screen placed in front of them. These
postures included eight Bharatanatyam postures, ten ASL
letters, and eight ASL numbers. In the second experiment, the
participants had to grasp ten different objects placed in front
of them. In both the experiments, the participants had to start
from the predefined start position, perform the posture/grasp
and hold the position static till the trial was completed. Each
trial lasted for 5 seconds (from the predefined start position
to end) and 3 trials per posture/object were performed. The
trial was repeated if the posture could not be performed
within the stipulated time. The quaternion data was recorded
at 100 Hz using a custom LabVIEW program. The data
analysis was performed in MATLAB. The data collected was
utilized to compute joint angles, visualize postures, perform
dimensionality reduction and sensor reduction.

H. SENSOR TO SEGMENT ALIGNMENT
The data obtained from the sensors is the orientation of the
sensor with respect to the global frame (source box frame)
and not the orientation of finger segments with respect to
the global frame. To align the sensors with respect to the
segments and hence the segments with respect to the global
frame, a sensor-to-segment alignment has to be performed.
This process is called bore-sighting. Upon bore-sighting, the
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FIGURE 5. (a) Placement of hand and 3D printed replicas along with the source box (b) Finger replicas used for validation.

FIGURE 6. (a) Positioning of hand for sensor to segment alignment (b) 3D printed setup to reduce parallax error during bore-sighting.

reference frames of all sensors are set to zero in the bore-
sighted position. However, since the hand model includes
the 3 d.o.f of the CMC joint, upon bore-sighting the hand in
the conventional reference position (all fingers and thumb in
adducted position), thumb CMC rotation becomes zero and it
becomes difficult to reconstruct the thumb posture correctly
because the initial value of thumb rotation is lost. Hence,
we propose a 2 stage bore-sighting process for the fingers
and the thumb separately before the commencement of the
experiments. In the first step, the sensors on the 4 fingers
and the wrist are bore-sighted by placing them in a position
such that all the sensor’s frame of reference aligns with the
source box reference frame. This is achieved by placing the
hand on the reference box placed on the experiment table.
The reference box is aligned with the source box by placing
it in a guideway mounted on the experiment table. Markings
are made on the reference box for placing the hand to ensure
alignment with the source box. Step 2 involves the bore-
sighting of only the thumb. For this, the thumb is placed such
that all the 3 sensors on the thumb are parallel to the source
box frame. Also, the thumb is rotated about the CMC joint
so that the thumb orientation is identical to the other fingers
during the bore-sighting procedure (Figure 6a). To align the
thumb with the global frame without any parallax errors,
a 3D-printed thumb guide was used. The thumb guide is

placed in the same guideway which was previously used to
align it with the source box (Figure 6b). Using this 2-stage
approach, all the movements of the 4 fingers & the thumb
can be accurately captured

I. HEMISPHERIZATION
Before performing any analysis on the kinematic data,
it is essential to hemispherize quaternions due to their
antipodal symmetric representations. A given orientation can
be represented by 2 quaternions: q and -q. Upon performing
certain operations like averaging or PCA, such discontinuity
can cause accuracy issues hence this must be addressed in the
first step [29]. For a given array of quaternion Q of size Nx4,
the mean is first computed (described in the next section).
A dot product between each sample in the array and the
mean of the array is performed. If the dot product is negative,
the quaternion is flipped by negating all the components
of the quaternions. All the quaternions are then made to lie
on the side of the hemisphere where the mean lies. Upon
running the hemispherization process, we kept a check on the
number of quaternion samples that need flipping. We found
that all the samples lay on the same side of the hemisphere
and none of the quaternions required flipping. This indicates
that all quaternions were constrained to operate within
a single quaternion hemisphere resulting in smooth and
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continuous data. The pseudo-code for the same is presented
in Algorithm 1.

Algorithm 1 Quaternion Hemispherization.
Input: A quaternion column array Q of dimension

Nx4. Each quaternion qi in the array is a
unit quaternion

Output: Q, a hemispherized quaternion array
Compute column mean µ
for i = 1, 2..N
d = qi · µ
if d < 0
qi = −qi

end if
end for

J. COMPUTING AVERAGE
Averaging ofmeasurements is very important in experimental
analysis. Unlike Euler angle representations, quaternions can
be easily averaged. The averaging algorithm is based on the
eigenvector decomposition of a quaternion array [40]. The
4 x 1 eigenvector corresponding to the largest eigenvalue
obtained from the covariance matrix of a quaternion array
(of size N x 4) is considered as the average quaternion.
However, it has been shown previously that direct averaging
of quaternions also yields superior results when the noise is
low [28]. However, upon direct averaging, the quaternions
no longer represent rotation as they do not lie on the unit
hypersphere. Hence a renormalization is necessary. In this
work, we use Markley’s algorithm to compute the average
wherever necessary. The pseudo-code for computing average
is presented in Algorithm 2.

Algorithm 2 Quaternion Averaging (Markley’s Algorithm).
Input: A quaternion column array Q of dimension

Nx4. Each quaternion qi in the array is a
unit quaternion

Output: Average quaternion qµ
C =

(
QTQ

)
→size(4x4)

[e, v] = eigen decompsoition (C) (e = eigen vectors of C,
v = eigen values of C)
emax = eigen vector corresponding to the maximum
eigen value
qµ = emax

K. DATA VISUALIZATION
The results of the experiment are demonstrated through 3D
hand model visualizations, temporal joint angle variations,
and box plot analysis.

L. DIMENSIONALITY REDUCTION
To perform the dimensionality reduction using PCA for
each participant separately, orientation data in exponential

map format was utilized as suggested in [29]. The postural
data of all 3 trials for all postures were utilized. Thus, the
dataset consists of 54000 rows (36 movements x 3 trials x
500 sample points) and 60 columns (15 joints x 4 valued
quaternions). The mean for all quaternion block columns
(each of size 54000 x 4) was computed using Markley’s
algorithm. Every sample point from a block column (column
containing 4 valued quaternions) was rotated about the block
column mean using quaternion conjugate multiplication
(similar to centering the data about zero in regular PCA).
The centered data were mapped to the tangent space
using logarithmic mapping resulting in a linearized data
matrix (exponential maps) of size (54000 x 45). Standard
PCA was performed on the data matrix and analyzed for
Eigen postures, explained variance and reconstruction error.
To compute the reconstruction error, exponential maps were
converted to quaternions. RMSE error between original
quaternion data matrix Q and a quaternion matrix Qr recon-
structed using k principal components was computed using
expression (6).

(RMSE) =

√∑n

i=1

1
n

∥∥∥ln(Qconji ⊗ Qri )
∥∥∥2 (6)

The complete details of the algorithm can be found
in [29]. A pseudo-code for the same is provided
in Algorithm 3.

To perform nonlinear dimensionality reduction, autoen-
coders were utilized. For this purpose, the data of each
participant was split into 80% train and 20% test data.
Two different autoencoder configurations were tested. The
first configuration with 1 hidden layer and linear activation
function was used for both the encoding side and decoding
sections (Figure 7a). This would replicate the linear PCA
process on quaternions using autoencoders and make the
results comparable with the results of PCA performed on
exponential maps. For the second configuration, a neu-
ral network with 5 hidden layers including a bottleneck
layer in between was used (Figure 7b). The purpose of
this configuration was to demonstrate the advantage of
autoencoder to better reconstruct postures from reduced
dimensions using nonlinear functions when using rotation
groups.

The second configuration was used on both quaternions
and exponential maps. As demonstrated in [5], a nonlinear
tanh activation function was used for the hidden layers and a
linear function was used for the bottleneck layer.

For quaternions, the input and output layers had 60 neurons
(15 joints x 4 valued quaternions). The second layer had
40 (2/3rd of input neurons) neurons and the third layer had
20 neurons (1/3rd of input neurons). For the bottleneck layer,
the performancewas tested by varying the neurons from 1 to 6
(similar to 6 PCs). For exponential maps, the input and output
layers had 45 neurons (15 joints x 3 valued exponential maps).
The second layer had 30 neurons (2/3rd of input neurons)
neurons and the third layer had 15 neurons (1/3rd of input
neurons). Reconstruction error for both cases was calculated
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FIGURE 7. Neural network parameters (EM- Exponential map, Q-quaternions) (a) 1 Hidden layer (HL) with all linear
activation functions (b) 5 hidden layers with linear activation function for the bottleneck layer and tanh activation
function for all other hidden layers.

Algorithm 3 PCA Using Exponential Maps.
Input: Datamatrix Q consisting of 15, 4-valued quaternion block columns.Qi represents a single block column vector,

qij is each quaternion sample in Qi
Output: Eigenvectors (Linear basis), percentage explained variance, and reconstructed quaternion matrix

using reduced dimension
fori = 1 : 15 quaternion block columns
Compute meanQiµusing Merkleys algorithm
forj = 1 : 108movements

Hemispherize all samples qij such that it lies on the side of the meanQiµ
xij = ln (Qconjiµ ⊗ qij) // Rotate each quaternion qi about mean Qiµ to center data around zero and perform
alogarithmic map to get a linear vector xij

end for
end for
Arrange the linearized vectors xij as blocked columns for each joint to form a single linear matrix X.
C =

(
XTX

)
→ size(45× 45) // Compute covariance matrix of X

[E,V ] = eigendecompsoition (C) (E = eigen vectors of C,V = eigen values ofC)
Return E and percentage explained variance computed using V
P=X Ek // Project linearized data into Eigenspace using first k principal components
R= EkP // Reconstruct linearized vectors using first k principal components. Each block column in R is Ri with each sample
in a block column being rij
fori = 1 : 15 block columns
forj = 1 : 108 movements
qij = Qiµ ⊗ exp(rij) //Convert each linear reconstructed vector to quaternion using exponential mapping and rotate
back from the mean position
end for

end for
Arrange the reconstructed quaternions qij as blocked columns for each joint to form a single reconstructed quaternion matrix
Qr .
Return Qr

using (1). Hyper tuning of parameters was not performed.
Although, the ratio of convergence of the autoencoder was
kept the same for both exponential map and quaternion
formulation for the sake of comparison.

M. SENSOR REDUCTION
In this section, an attempt is made to predict the full hand
kinematics using a limited set of sensors. The data matrix
used for this study consisted of posture data of all participants
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in exponential map format. While the data used in this study
is of only 4 participants, the entire dataset of all participants
consisting of 36 movements repeated 3 times results in a
total of 2,16,000 data points (54000 rows per participant x
4 participants) which should be enough training data for the
algorithms used.

There are 2 ways to perform sensor reduction. One way
is to predict the output joint orientations using the raw data
of a limited set of sensors. The second way is to predict the
output joint orientations (relative orientations) using a limited
set of joint orientations whose values have been obtained
previously, computed using 2 sensors. The first method is
not used in this study because the raw data of the sensors
is dependent on the orientation of the sensor with respect
to the source box. It is possible to orient the hand in such a
way that, when the raw quaternion values are converted to an
exponential map (for filtering or predictions), the exponential
map could lie in the singularity region and hence would result
in inaccurate readings.

To obtain an optimum number of sensors or joints,
a random forest classification algorithm was used to rank
features (joint variables in this case). A random forest
algorithm is a supervised learning algorithm that generates
a group of decision trees. A decision tree is a recursive
algorithm based on yes or no questions that split the data set
using the decision nodes until pure nodes or leaf nodes (with
variables belonging to only one class) are obtained. In other
words, the impurity is reduced. In the case of a random forest
algorithm, the data is sampled randomly both in columns and
in rows and divided into n number of data sets (bootstrapping)
based on which, the decision trees are built. Each tree then
splits the randomly selected data until a leaf node is obtained.
Once leaf nodes are obtained for all trees, the algorithm is
considered to have converged. When a new data point is
entered, a majority voting is performed based on the output
of all the decision trees to make a decision. A Gini impurity
index is computed based on the ability of a feature to reduce
the impurity at any decision node. If a condition based on a
particular feature decreases the impurity by a greater extent,
the feature is considered to be important. The Gini impurity
index at any node is calculated using (7).

Gini index = 1−
∑n

i=1
(P i)2 (7)

where Pi is the probability of classifying any element to a
distinct class (in this case postures and object grasps).

Such a method has been previously used for the analysis
of spectral data [41], text data [42], [43], and image
analysis [44]. In this study, the features were ranked based on
their ability to classify the postures and objects grasped. Since
the trees are built on randomly selected rows and features, the
algorithm is less sensitive to the changes in training data and
hence has a lesser chance of overfitting. The inbuilt random
forest algorithm of the python package Sklearn was utilized.

The input data matrix consisted of 216000 rows and
45 columns (15 joints with 3 valued exponential maps). The
labels include 36 postures. The model was trained using

80% training and 20% test data with 10-fold cross-validation.
Feature importance was then computed using the default
Gini algorithm based on the mean decrease in impurity. The
disadvantage of ranking based on amean decrease in impurity
is that the algorithm favors columns with high cardinality
(like columns that contain extremely unique categorical
entries) [45]. Since in our data, none of the columns do
contain categorical entries with unique values, the problem
of cardinality is not present. The second disadvantage of the
algorithm is its inability to rank appropriately, the features
that are correlated. In the case of correlated features, the
importance could be spread across similar features. In such
a case, where the ranks are similar, we test all such possible
sensor arrangements with similar importance scores. Since
the data contains 45 features, the algorithm outputs 45 scores
(3 for each joint). The scores of each joint are summed up
and the joints are ranked. The top 5 joints are selected (1/3rd

of the total joints) for the prediction of the remaining joints.
Once the joints are selected, a neural network is trained

to predict the remaining joints. The neural network was built
with an input layer with 15 neurons (5 joints x 3 value per
joint), one hidden layer with 20 neurons, and an output layer
with 30 neurons (10 predicted joints x 3 values per joint).
A batch size of 256 was selected. The hyperparameters are
first tuned using the data of a participant not involved in
the analysis. 5 different activation functions – sigmoid, tanh,
reLU, linear, and exponential were tested for 500 epochs
with a learning rate of 0.01. To test the performance of
the activation functions, a ‘‘variance accounted for’’ (VAF)
measure as demonstrated in [5] was utilized which is a
measure of reconstruction error (8). If the VAF is 1, then the
predicted and actual values are the same.

VAF
(
%
)
=

(
1−

var(y−ŷ
var (y)

)
×100 (8)

where y = original variable, ŷ = predicted variable
Once the best activation function was selected, the effect

of the learning rate was evaluated for the selected activation
function. Four different learning rates 0.001, 0.01, 0.025,
0.05 were selected based on which the number of epochs and
learning rate were decided. The predicted joint orientations
with reduced sensors are then compared with the actual
orientations measured using all sensors.

IV. RESULTS
A. JOINT ANGLE VALIDATION
The static joint angles of 3D printed replicas measured using
standard sensors are shown in Table 1.

It can be observed that the sensors produce accurate
measurements and the maximum error observed is 1 degree.
This error could also be due to slight variations in the 3D
printed surface especially near the region of mounting holes.
Hence, it can be observed that the joint angles computed using
quaternion could yield superior quality posture reproduction
which is not susceptible to gimbal lock and ambiguities while
measuring hand kinematics.
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TABLE 1. Validation results of static joint angles.

FIGURE 8. Reproduction of static postures. Quaternions converted to
Euler angles and reproduced using a hand model in SOLIDWORKS. Row 1-
Bharatanatyam Postures (P1 to P8), Row 2- ASL numbers (P9-P18), Row
3- ASL letters (P19-P26), Row 4- Objects to be grasped (O1-O10).

B. POSTURE VISUALIZATION IN 3D
The relative quaternions were converted to Euler angles
in the XZY sequence as described earlier. To convert
quaternions to Euler angles, the ‘eulerd’ function from
the MATLAB sensor fusion and tracking toolbox was
used. To plot the hand postures, a hand model was built
using SOLIDWORKS with 21 d.o.f. As can be seen from
Figure 8, quaternions help in producing superior quality
posture from EMTS’s avoiding all other problems like
singularities and gimbal lock. The reproduced static postures
of randomly selected participants from a randomly selected
trial are shown. The thumb CMC being a complex joint was
modeled as a simple combination of three, 1 d.o.f joints in
SOLIDWORKS to facilitate the thumb assembly. An ani-
mation (done using Matlab- Simulink) of all the postures
performed by a participant is presented in supplementary
material 1.

C. VISUALIZATION OF JOINT ANGLE VARIATION AND
RANGE OF MOVEMENTS (ROM)
The variation in the joint angle while performing a particular
posture P19 is shown in Figure 9. The abduction and
adduction joint angle variations are not plotted as these
angle variations are minimum for the selected posture. The
particular posture was selected to show distinct variation
in joint angles between PIP, DIP, and MCP joints. For the
selected posture, PIP joints show maximum variations (dash
lines) while MCP joints show minimum variation (dotted
lines). The thumb CMC flexion-extension joint angles are
negative because of how the sensor-to-segment alignment has
been performed.

It was demonstrated in section III (E) that the thumb
was aligned in a position similar to the fingers and then
bore-sighted. As a result, when the thumb is rotated to the
normal position after bore-sighting, the CMC hyperextends
and hence the angle is negative. Only in a few postures,
where there is excessive flexion of CMC joint (opposition
task) like while performing ASL-number 4, the thumb moves
significantly inside towards the little finger resulting in a
positive value. This is demonstrated as an inset image in
Figure 9.

As expected, the thumb rotation varies from 50 degrees
to 80 degrees as the thumb moves from adducted position
to the final posture. A box plot analysis to visualize the
ROM of each joint across all participants is presented in
Figure 10. Outliers, if any, for the joints are not plotted.
Data from all participants and all three trials are shown.
As can be seen from the graphs, the PIP joints (J5, J8, J12,
J16, J20) exhibit a higher range of movement followed by
MCP joints of the fingers (J6, J10, J14, J18). The thumb
CMC flexion-extension joint angles are negative because of
how the sensor-to-segment alignment has been performed as
explained in section 4.3. The thumb IP joint shows a greater
variation in the negative direction because of the requirement
of producing significant hyperextension while grasping some
of the objects (O1, O5, O6, and O8).

D. DIMENSIONALITY REDUCTION USING EXPONENTIAL
MAPS AND QUATERNIONS
The results of dimensionality reduction using exponential
maps and quaternions are discussed in this section. Scree
plot for PCA performed on exponential maps was plot-
ted separately for postures, objects, and combined data
(Figure 11). The first 3 PCs account for around 80%
variance in data which is in accordance with previous
results [11], [15], [16]. Hence PCA using exponential maps
provide a simple and computationally inexpensive way of
performing a dimensionality reduction when parametrizing
data using rotation groups. To interpret the information in
the latent dimension, the first 4 Eigen postures (derived from
eigenvectors) were plotted for all participants (Figure 12).
The maximum and minimum Eigen postures are computed
using (9) and (10). The Eigen postures are transformed from
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FIGURE 9. Variation in joint angles for P19. Abduction adduction angles of fingers are not plotted as the variation in those
angles are minimum.

FIGURE 10. Box plot analysis to visualize the active range of movements (T-Thumb, I-Index, M-Middle, R-Ring, L-Little).

exponential maps to quaternions and then scaled using (9)
and (10) to obtain the movements within the normal active
range of movements.

Eigenposturemax = Qsi ⊗ Qµi (9)

Eigenposturemin = Qsconji ⊗ Qµi (10)

where Qsi is the ith synergy or eigenvector and Qµi is the
mean posture.

Since all participants were trained with the same set of
postures, PC1-PC3 was similar for all participants. PC1 and
PC2 represent the PIP and MCP joint movements resulting
in opening and closing action through the flexion-extension
of the joints. PC3 involves the coordinated movement
of the index finger DIP joint and the thumb IP joint.
PC4 differs across participants. These results are also in
accordance with those obtained using data gloves and optical

trackers [10], [11], [15], [16]. Thus, exponential maps provide
a good representation of orientation with a larger tolerance
band for singularities and provide ease of performing
dimensionality reduction using PCA.

The reconstruction error for PCA and autoencoder is
shown in Figure 13. As can be seen from the graph,
an autoencoder with 1 hidden layer and linear activation
function on quaternions produces the same result as PCA
performed on exponential maps. The advantage of using
autoencoders is that a better dimensionality reduction can
be achieved by increasing the hidden layers and the use of
nonlinear activation functions. The 5 hidden layer autoen-
coder produces a reduction in RMSE by more than 5 degrees.
This was tested for both exponential maps and quaternions.
While quaternions produced slightly better performance,
both representations provide good dimensionality reduction.
The advantage of PCA is the ability to interpret the latent
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FIGURE 11. Explained variance computed using PCA on exponential
maps, separately for postures, object grasps, and combined dataset.

FIGURE 12. Eigen postures (PC1-PC4) plotted for all 4 participants
(P1-P4).

dimensions. In the case of PCA, the weights of the PCs can
be analyzed to obtain the Eigen postures which can be used
for prosthetic design [46], [47] as well as training to improve
hand function performance [48]. This is not possible with
autoencoders, particularly when using nonlinear activation
functions.

E. SENSOR REDUCTION FOR MEASUREMENT OF FULL
HAND KINEMATICS
The random forest algorithm trained on all participants
produced a classification accuracy of 100 %. Such a high
classification accuracy has been previously reported [5] while
classifying hand postures. No hyperparameter tuning was
performed since the accuracy was 100%. The normalized
joint importance score was then calculated using the Gini
algorithm (Figure 14). Based on the results, the top joints (T-
IP, I-MCP, I-PIP, M-MCP) were selected. The next 9 joints
were ranked similarly as they contribute equally in classifying
postures. To decide the 5th joint, combinations of selected
4 joints and one of next 9 joints (T-CMC, M-PIP, L-DIP,
L-MCP, L-PIP, R-PIP, I-DIP, R-MCP, and T-MCP) were
selected and RMSE was computed. The combination with

FIGURE 13. Comparison of reconstruction error for PCA (using the
exponential map) and autoencoder (using both exponential map and
quaternion representation).

FIGURE 14. Normalized joint importance scores computed using random
forest algorithm (Gini feature selection).

minimum RMSE was to be selected. The last 2 joints were
not selected due to a very low importance score.

The results of hyper-parameter tuning for a neural network
for prediction are shown in Figure 15a. For this purpose, the
first 5 joints were taken as input to the neural network. All
5 activation functions were run for 500 epochs with a default
learning rate of 0.001. Linear activation function yielded
lower prediction accuracy while exponential activation func-
tion overfitted the data with less test accuracy.Wewere free to
select any of the other three activation functions. We selected
a sigmoid function for the prediction. The plot of different
learning rates and their effect on performance is shown in
Figure 15b. While all learning rates converged well within
500 epochs, a learning rate of 0.01, 0.025, and 0.05 produced
similar and faster convergence compared to a learning rate of
0.001. A learning rate of 0.01 was selected and the number of
epochs was selected to be 250.

The results of different combination in terms of the RMSE
of test data of the first 4 selected joints and one of the
additional 9 joints is shown in Figure 16. Training data
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FIGURE 15. Hyper-parameter tuning of neural network (a) Percentage VAF for different activation functions (b) Effect of learning rate on network
performance.

FIGURE 16. RMSE for joints selected additional to selected top 4 joints.

accuracy was also the same as test data and no overfitting was
observed (also seen in Figure 15a). While all combinations
produced similar RMSE, the lowest RMSE was associated
with the PIP joint of the little finger. However, to measure
the orientation of the PIP joints, 2 sensors are required: one
placed on the proximal phalange and the other placed on the
middle phalange. Since a reference sensor is utilized already
due to the selection of MCP joints (Index and MCP), the
sensor on the proximal phalange of the little finger could be
used to measure the MCP orientation as well. Hence, 6 joints
were selected (T_IP, I_MCP, I_PIP,M_MCP, L_PIP, L_MCP)
and the RMSE in predicting the remaining joints is presented
as a red bar in Figure 16. The RMSE was 5.1 degrees.

A detailed analysis of predicted values was performed to
identify the postures and joints that performed poorly using
the decided sensor combinations. The RMSE for full dataset
data (test + train) was segregated based on postures/ object
grasp and RMSE is reported for each type of posture and
each joint as well. The results are depicted in Figure 17.
The values on the right-hand side of the plot depict the
average value of RMSE for each posture. As can be seen

FIGURE 17. RMSE for each joint (X-axis) for different postures (Y-axis
left). Average RMSE for each posture is displayed on the right Y-axis.

from Figure 17, the maximum RMSE was observed for
Posture 26 with maximum error at the index DIP.

Hence, the real-time visualization of that posture was
selected and is demonstrated in Figure 18. From the figure,
it is evident that the thumb CMC rotation has a larger
error initially while the error reduces as the final posture is
obtained. Similarly, the indexDIP shows a larger error, but the
error reduces and settles down towards the end of the posture.
The proposed sensor selection method using a random forest
algorithm provides an RMSE of about 5 degrees for the
postures and object grasps selected. Postures reconstructed
using such an RMSE could be used for applications involving
virtual reality applications in which such subtle changes in
postures are not evident. For other applications requiring
higher accuracy, an increase in sensor number would be
necessary for one or many of the following joints - thumb
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TABLE 2. Comparison of performance.

FIGURE 18. Visualization of real-time movement for original full set sensors (top row) and movement predicted using only 8 sensors measuring the
orientation of 6 joints (bottom row).

CMC, index DIP, Middle DIP, and ring PIP, which have
produced higher RMSE occasionally for some postures
(Figure 17). A comparison of the results with previous studies
is demonstrated in Table 2. While the method adopted in this
study produces better accuracy in predicting kinematics from
a reduced number of sensors, the study was performed on
only 4 participants and a thorough evaluation with a larger
number of participants is needed which we view as the future
scope for this study. This method can also be applied to
IMU’s that measure orientation using rotation groups like
quaternions.

V. CONCLUSION
In this paper, we presented methods for the analysis of finger
kinematics using EMTS that measure orientation in the form
of rotation groups. The sensors were observed to provide
good accuracy in terms of measured joint angles without the
need for calibration procedures or the presence of a line-
of-sight problem. Of the available joint angle representation
methods, we chose quaternions over Euler angles and rotation
matrices as an initial measurement method considering their
advantages. Based on the benchmarking results performed
on 3D printed finger designs, we saw that the sensors are
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accurate up to at least 1 degree. This is the instrument
accuracy and actual accuracy varies during the actual
experiment due to several factors. Some of the most common
factors are skin artifacts, artifacts due to movement of bones
and tendons called soft tissue artifacts, errors induced due to
incorrect sensor placement, and errors induced during sensor
to segment alignment (bore-sighting). Skin artifacts arise as
a result of the sliding of skin and hence the sliding of the
sensor over the bone during movement. Soft tissue artifact is
prominent near the wrist reference sensor due to the rising
and falling of tendons while performing different postures.
The area of location of the reference sensor must be therefore
carefully inspected before attaching the sensor. Tendon and
palm arch-induced errors are mostly induced in the rotation
values of the thumb CMC joint due to the error caused by
the rotation of the sensor. Upon ensuring minimum artifacts,
EMTS along with quaternions provide a reliable approach to
measure hand kinematics.

For dimensionality reduction on rotation groups, we pre-
sented the results of traditional PCA on exponential maps
and autoencoders directly on quaternions. While traditional
PCA has the advantages of ease and speed of computation
as well as the ability to interpret the latent dimensions to
make decisions while designing prosthetics or training for
rehabilitation, autoencoders can be configured to provide
better compression in the latent dimensions and hence
produce better reconstruction compared to PCA. Our results
are in agreement with those presented in [5]. While using
a single hidden layer with linear activation functions,
autoencoders on quaternions produce the same results as that
obtained using PCA on exponential maps. However, upon
using 5 hidden layers with nonlinear activation functions,
autoencoders with both quaternions and exponential maps
produced RMSE’s up to 5 degrees lesser than that obtained
using regular PCA or autoencoders with single hidden layers.
For sensor reduction, we presented the preliminary results
of a random forest algorithm to select optimal sensors and
predict orientations of other sensors using a simple 1 hidden
layer neural network. Based on the ranking algorithm, 6 joint
orientations measured using 8 sensors were selected (Thumb-
IP, Index- MCP, Index- PIP, Middle – MCP, Ring-MCP,
and Ring-PIP). The selected sensors produced an RMSE of
5.1 degrees. This could be further reduced by using more
neurons in the hidden layers or by adding more hidden layers.
While such accuracy can be acceptable for Virtual reality
studies, its applicability for synergy analysis must be studied.
Also, the method needs to be tested with a larger number of
participants. This will be taken up as a future study.

As an application, the methods used for measurement
and analysis in this study could also be applied to IMU
based hand kinematics measurement systems. Recently, these
devices have proven their ability to measure kinematics in a
non-laboratory environment with comparable accuracy while
being inexpensive. These devices are also programmed to
provide output data in the form of quaternions and Euler
angles. This way, the EMTS could also be used as a gold

standard to compare the performance of the IMU’s and hence
check their suitability for applications such as dimensionality
reduction and measurement of ROM that are necessary for
research in neuroscience as well as for clinical diagnosis.

SUPPLEMENTARY MATERIAL
The animation video of one participant performing postures
is attached with the article.

REFERENCES
[1] S. Li, X. Sheng, H. Liu, and X. Zhu, ‘‘Design of a myoelectric prosthetic

hand implementing postural synergy mechanically,’’ Ind. Robot: Int. J.,
vol. 41, no. 5, pp. 447–455, Aug. 2014.

[2] S. Fani, M. Bianchi, S. Jain, J. S. Pimenta Neto, S. Boege, G. Grioli,
A. Bicchi, and M. Santello, ‘‘Assessment of myoelectric controller
performance and kinematic behavior of a novel soft synergy-inspired
robotic hand for prosthetic applications,’’ Frontiers Neurorobotics, vol. 10,
p. 11, Oct. 2016.

[3] T. Geng, M. Lee, and M. Hülse, ‘‘Transferring human grasping synergies
to a robot,’’Mechatronics, vol. 21, no. 1, pp. 272–284, Feb. 2011.

[4] M. Santello, M. Bianchi, M. Gabiccini, E. Ricciardi, G. Salvietti,
D. Prattichizzo, M. Ernst, A. Moscatelli, H. Jörntell, A. M. L. Kappers,
K. Kyriakopoulos, A. Albu-Schäffer, C. Castellini, and A. Bicchi, ‘‘Hand
synergies: Integration of robotics and neuroscience for understanding
the control of biological and artificial hands,’’ Phys. Life Rev., vol. 17,
pp. 1–23, Jul. 2016.

[5] A. A. Portnova-Fahreeva, F. Rizzoglio, I. Nisky, M. Casadio,
F. A. Mussa-Ivaldi, and E. Rombokas, ‘‘Linear and non-linear
dimensionality-reduction techniques on full hand kinematics,’’ Frontiers
Bioeng. Biotechnol., vol. 8, p. 429, May 2020.

[6] I. De Feudis, D. Buongiorno, G. D. Cascarano, A. Brunetti, D. Micele, and
V. Bevilacqua, ‘‘A nonlinear autoencoder for kinematic synergy extraction
from movement data acquired with HTC vive trackers,’’ in Progresses
in Artificial Intelligence and Neural Systems. Singapore: Springer, 2021,
pp. 231–241.

[7] S. Tang, L. Chen, M. Barsotti, L. Hu, Y. Li, X. Wu, L. Bai, A. Frisoli, and
W. Hou, ‘‘Kinematic synergy of multi-DoF movement in upper limb and
its application for rehabilitation exoskeleton motion planning,’’ Frontiers
Neurorobot., vol. 13, p. 99, Nov. 2019.

[8] N. J. Jarque-Bou, A. Scano, M. Atzori, and H. Müller, ‘‘Kinematic
synergies of hand grasps: A comprehensive study on a large publicly
available dataset,’’ J. Neuroeng. Rehabil., vol. 16, no. 1, pp. 1–4,
Dec. 2019.

[9] M. K. Burns, V. Patel, I. Florescu, K. V. Pochiraju, and R. Vinjamuri,
‘‘Low-dimensional synergistic representation of bilateral reaching move-
ments,’’ Frontiers Bioeng. Biotechnol., vol. 5, p. 2, Feb. 2017.

[10] C. Della Santina, M. Bianchi, G. Averta, S. Ciotti, V. Arapi, S. Fani,
E. Battaglia, M. G. Catalano, M. Santello, and A. Bicchi, ‘‘Postural
hand synergies during environmental constraint exploitation,’’ Frontiers
Neurorobot., vol. 11, p. 41, Aug. 2017.

[11] N. Jarrassé, A. Ribeiro, A. Sahbani, W. Bachta, and A. Roby-Brami,
‘‘Analysis of hand synergies in healthy subjects during bimanual
manipulation of various objects,’’ J. NeuroEngineering Rehabil., vol. 11,
no. 1, p. 113, 2014.

[12] R. Vinjamuri, M. Sun, C.-C. Chang, H.-N. Lee, R. J. Sclabassi, and
Z.-H. Mao, ‘‘Temporal postural synergies of the hand in rapid grasping
tasks,’’ IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 4, pp. 986–994,
Jul. 2010.

[13] R. Vinjamuri, M. Sun, D. Crammond, R. Sclabassi, and Z.-H. Mao,
‘‘Inherent bimanual postural synergies in hands,’’ in Proc. 30th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc., Aug. 2008, pp. 5093–5096.

[14] E. Todorov and Z. Ghahramani, ‘‘Analysis of the synergies underlying
complex hand manipulation,’’ in Proc. 26th Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc., vol. 2, Sep. 2004, pp. 4637–4640.

[15] M. Santello, M. Flanders, and J. F. Soechting, ‘‘Patterns of hand motion
during grasping and the influence of sensory guidance,’’ J. Neurosci.,
vol. 22, no. 4, pp. 1426–1435, Feb. 2002.

[16] M. Santello, M. Flanders, and J. F. Soechting, ‘‘Postural hand synergies for
tool use,’’ J. Neurosci., vol. 18, no. 23, pp. 10105–10115, Dec. 1998.

42688 VOLUME 10, 2022



P. Shenoy et al.: Methods for Measurement and Analysis of Full Hand Angular Kinematics Using EMTS

[17] P. H. Thakur, A. J. Bastian, and S. S. Hsiao, ‘‘Multidigit movement
synergies of the human hand in an unconstrained haptic exploration task,’’
J. Neurosci., vol. 28, no. 6, pp. 1271–1281, Feb. 2008.

[18] C. R. Mason, J. E. Gomez, and T. J. Ebner, ‘‘Hand synergies during reach-
to-grasp,’’ J. Neurophysiol., vol. 86, no. 6, pp. 2896–2910, Dec. 2001.

[19] J. Zhou, F. Malric, and S. Shirmohammadi, ‘‘A new hand-measurement
method to simplify calibration in CyberGlove-based virtual rehabilita-
tion,’’ IEEE Trans. Instrum. Meas., vol. 59, no. 10, pp. 2496–2504,
Oct. 2010.

[20] A. Roda-Sales, J. L. Sancho-Bru, M. Vergara, V. Gracia-Ibáñez, and
N. J. Jarque-Bou, ‘‘Effect on manual skills of wearing instrumented gloves
during manipulation,’’ J. Biomech., vol. 98, Jan. 2020, Art. no. 109512.

[21] N. J. Jarque-Bou, M. Atzori, and H. Müller, ‘‘A large calibrated database
of hand movements and grasps kinematics,’’ Sci. Data, vol. 7, no. 1, p. 12,
Dec. 2020.

[22] A. Mohan, G. Tharion, R. K. Kumar, and S. R. Devasahayam,
‘‘An instrumented glove for monitoring hand function,’’ Rev. Scientific
Instrum., vol. 89, no. 10, Oct. 2018, Art. no. 105001.

[23] J. Connolly, J. Condell, B. O’Flynn, J. T. Sanchez, and P. Gardiner, ‘‘IMU
sensor-based electronic goniometric glove for clinical finger movement
analysis,’’ IEEE Sensors J., vol. 18, no. 3, pp. 1273–1281, Feb. 2018.

[24] P.-C. Hsiao, S.-Y. Yang, B.-S. Lin, I.-J. Lee, and W. Chou, ‘‘Data glove
embedded with 9-axis IMU and force sensing sensors for evaluation of
hand function,’’ in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Aug. 2015, pp. 4631–4634.

[25] C. K. Mummadi, F. P. P. Leo, K. D. Verma, S. Kasireddy, P. M. Scholl,
and K. Van Laerhoven, ‘‘Real-time embedded recognition of sign language
alphabet fingerspelling in an IMU-based glove,’’ inProc. 4th Int. Workshop
Sensor-Based Activity Recognit. Interact., Sep. 2017, pp. 1–6.

[26] M. M. Rahman, K. Mitobe, M. Suzuki, C. Takano, and N. Yoshimura,
‘‘Analysis of dexterous finger movement for piano education using motion
capture system,’’ Int. J. Sci. Technol. Educ. Res., vol. 2, no. 2, pp. 22–31,
2011.

[27] M. M. Rahman, A. B. M. A. Hossain, M. M. Rana, and K. Mitobe, ‘‘Hand
motion capture system in piano playing,’’ in Proc. Int. Conf. Informat.,
Electron. Vis. (ICIEV), May 2013, pp. 1–5.

[28] J. H. Challis, ‘‘Quaternions as a solution to determining the angular
kinematics of human movement,’’ BMC Biomed. Eng., vol. 2, no. 1, p. 5,
Dec. 2020.

[29] M. P. Johnson, ‘‘Exploiting quaternions to support expressive inter-
active character motion,’’ Ph.D. dissertation, Dept. Media, Arts Sci.,
Massachusetts Inst. Technol., Cambridge, MA, USA, 2003.

[30] J. Tilmanne and T. Dutoit, ‘‘Expressive gait synthesis using PCA and
Gaussian modeling,’’ in Proc. Int. Conf. Motion Games. Berlin, Germany:
Springer, Nov. 2010, pp. 363–374.

[31] H. Du, M. Manns, E. Herrmann, and K. Fischer, ‘‘Joint angle data
representation for data driven human motion synthesis,’’ Proc. CIRP,
vol. 41, pp. 746–751, Jan. 2016.

[32] N. Wheatland, S. Jörg, and V. Zordan, ‘‘Automatic hand-over animation
using principle component analysis,’’ in Proc. Motion Games, Nov. 2013,
pp. 197–202.

[33] N. J. Jarque-Bou, J. L. Sancho-Bru, and M. Vergara, ‘‘Synergy-based
sensor reduction for recording the whole hand kinematics,’’ Sensors,
vol. 21, no. 4, p. 1049, Feb. 2021.

[34] V. Gracia-Ibáñez, J. L. Sancho-Bru, M. Vergara, N. J. Jarque-Bou, and
A. Roda-Sales, ‘‘Sharing of hand kinematic synergies across subjects in
daily living activities,’’ Sci. Rep., vol. 10, no. 1, p. 6116, Dec. 2020.

[35] M. C. Mora, J. L. Sancho-Bru, and A. Pérez-González, ‘‘Hand posture
prediction using neural networks within a biomechanical model,’’ Int.
J. Adv. Robotic Syst., vol. 9, no. 4, p. 139, Oct. 2012.

[36] M. Schröder, J. Maycock, and M. Botsch, ‘‘Reduced marker layouts for
optical motion capture of hands,’’ in Proc. 8th ACM SIGGRAPH Conf.
Motion Games, Nov. 2015, pp. 7–16.

[37] M. Schröder, T. Waltemate, J. Maycock, T. Röhlig, H. Ritter, and
M. Botsch, ‘‘Design and evaluation of reduced marker layouts for hand
motion capture,’’ Comput. Animation Virtual Worlds, vol. 29, no. 6,
p. e1751, Nov. 2018.

[38] S. Schreven, P. J. Beek, and J. B. J. Smeets, ‘‘Optimising filtering
parameters for a 3D motion analysis system,’’ J. Electromyogr. Kinesiol.,
vol. 25, no. 5, pp. 808–814, Oct. 2015.

[39] F. S. Grassia, ‘‘Practical parameterization of rotations using the exponential
map,’’ J. Graph. Tools, vol. 3, no. 3, pp. 29–48, Jan. 1998.

[40] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, ‘‘Averaging
quaternions,’’ J. Guid., Control, Dyn., vol. 30, no. 4, pp. 1193–1197,
Jul. 2007.

[41] B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert,
W. Petrich, and F. A. Hamprecht, ‘‘A comparison of random forest and
its Gini importance with standard chemometric methods for the feature
selection and classification of spectral data,’’ BMC Bioinf., vol. 10, no. 1,
p. 213, Dec. 2009.

[42] H. Park, S. Kwon, and H.-C. Kwon, ‘‘Complete Gini-index text (GIT)
feature-selection algorithm for text classification,’’ in Proc. 2nd Int. Conf.
Softw. Eng. Data Mining, Jun. 2010, pp. 366–371.

[43] W. Shang, ‘‘Research on the algorithm of feature selection based on Gini
index for text categorization,’’ J. Comput. Res. Develop., vol. 43, no. 10,
p. 1688, 2006.

[44] S. Deepa and R. Umarani, ‘‘Steganalysis on images using SVM with
selected hybrid features of Gini index feature selection algorithm,’’ Int.
J. Adv. Res. Comput. Sci., vol. 8, no. 5, pp. 1503–1509, May 2017.

[45] S. Nembrini, I. R. König, and M. N. Wright, ‘‘The revival of the Gini
importance?’’ Bioinformatics, vol. 34, no. 21, pp. 3711–3718, Nov. 2018.

[46] W. Chen, C. Xiong, and S. Yue, ‘‘Mechanical implementation of
kinematic synergy for continual grasping generation of anthropomorphic
hand,’’ IEEE/ASME Trans. Mechatronics, vol. 20, no. 3, pp. 1249–1263,
Jun. 2015.

[47] M. K. Burns, K. Van Orden, V. Patel, and R. Vinjamuri, ‘‘Towards a
wearable hand exoskeleton with embedded synergies,’’ in Proc. 39th Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2017, pp. 213–216.

[48] V. Patel, J. Craig, M. Schumacher, M. K. Burns, I. Florescu, and
R. Vinjamuri, ‘‘Synergy repetition training versus task repetition training in
acquiring new skill,’’ Frontiers Bioeng. Biotechnol., vol. 5, p. 9, Feb. 2017.

PRAJWAL SHENOY received the B.Tech. and
M.Tech. degrees in mechanical engineering.
He is currently pursuing the Ph.D. degree in
biomedical engineering with the Department of
Applied Mechanics, Indian Institute of Tech-
nology Madras, India. He is also an Assistant
Professor with the Department of Mechatronics
Engineering, Manipal Institute of Technology,
MAHE, Manipal. His research interests include
the analysis of human hand kinematics and

the application of computational techniques in analysis of human hand
movements.

VIGNESH SOMPUR received the B.Tech. degree
in mechanical engineering from the Sardar Val-
labhbhai National Institute of Technology, Surat,
India, in 2017. He is currently pursuing the dual
M.S. and Ph.D. degree in neuro-robotics with
the Indian Institute of Technology Madras. His
research interests include robotics, neuroscience,
and design of mechanisms particularly addressing
the design of prosthetic hands.

VARADHAN SKM received the Ph.D. degree
in the area of kinesiology from Pennsylva-
nia State University, State College, PA, USA.
He is currently an Associate Professor with the
Biomedical Engineering Group at the Depart-
ment of Applied Mechanics, Indian Institute of
Technology Madras, India. His research interests
include motor control, use of experimental and
computational techniques in understanding neural
control of movement, application of engineering

in rehabilitation, and applications of noninvasive techniques in biomedical
movement analysis.

VOLUME 10, 2022 42689


