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ABSTRACT Herein, a robust constant false alarm rate (CFAR) detector with ordered statistic of sub-
reference cells (OSS-CFAR) is proposed in multiple target situations. This detector can improve background
level estimation and reduce computational complexity using sub-reference cells. The detection performance
of the OSS-CFAR detector and of conventional CFAR detectors in multiple target situations are investigated
and compared using computer simulations and experimental data with sea clutter. The simulations and
experimental results show that the OSS-CFAR detector achieves robust detection performance with low
computational complexity, whereas conventional CFARdetectors suffer performance degradation inmultiple
target situations. At the clutter edge, the OSS-CFAR detector with appropriate parameters achieves an
acceptable false alarm rate compared to conventional CFAR detectors.

INDEX TERMS Constant false alarm rate detector, clutter edge, multiple target situations, ordered statistic
of sub-reference cells.

I. INTRODUCTION
Constant false alarm rate (CFAR) detectors are important for
use in modern radar systems because they automatically cal-
culate a detection threshold in unknown backgrounds (noise
plus clutter) to detect the presence of targets [1]– [7]. Cell
averaging CFAR (CA-CFAR) detector [8], [9] adaptively
calculates the detection threshold using the mean power of
the reference cells around the cell under test (CUT) and
multiplies it by a scale factor that depends on the required
false alarm rate. The CA-CFAR detector is based on two
assumptions [8]. First, the reference cells contain background
with the same statistics as the CUT, so that they are repre-
sentative of the background. Second, the reference cells do
not contain any targets, so that they only have backgrounds
of noise and clutter. Under these conditions, the background
statistics in the CUT can be estimated from the measured
range and Doppler reference cells in pulsed Doppler radar.

With real radar systems, since the targets on the ground
and the sea can be dense and the clutter is complex, the
background includes multiple targets and clutter edges. For
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example, when an airborne radar steers a highway, it is often
the case that there are tens of interfering targets, since the
signal of vehicle targets can be received from several tens of
kilometers on the ground. Unfortunately, in multiple target
situations, the CA-CFAR detector suffers from poor detection
performance due to the high detection threshold caused by
the targets in the reference cells. This is called the masking
effect. Moreover, at the clutter edge, the CA-CFAR detector
increases false alarms because there is a difference in power
distribution between the reference cells. Therefore, the detec-
tion threshold is often lower than the CUT which has high
power at the clutter edge [10].

To overcome these performance degradations in multiple
target situations and the clutter edge, several CFAR detectors
have been proposed. These are the smallest of cell aver-
aging CFAR (SOCA-CFAR) detector [11], the greatest of
cell averaging CFAR (GOCA-CFAR) detector [11], [12],
and the ordered statistic CFAR (OS-CFAR) detector [13].
The SOCA-CFAR detector and the OS-CFAR detector were
proposed to solve the masking effect caused by interfer-
ing targets in the reference cells. The performance of the
SOCA-CFAR detector and the OS-CFAR detector is bet-
ter than that of the CA-CFAR detector in multiple target
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situations, but the SOCA-CFAR detector and the OS-CFAR
detector still have false alarms at the clutter edge and poor
detection performances when many interfering targets exist
in the reference cells. The OS-CFAR detector requires prior
information about the number of the interfering targets in
order to remove all interfering targets from the reference
cells. This limitation degrades the detection performance in
the absence of prior information. The GOCA-CFAR detector
was proposed to avoid false alarms at the clutter edge. The
GOCA-CFAR detector achieves a good false alarm rate at
the clutter edge. However, the GOCA-CFAR detector shows
performance degradation in multiple target situations due to
the masking effect.

In recent years, to improve detection performance in mul-
tiple target situations and the clutter edge, many CFAR detec-
tors have been studied based on weighted iteration [14], [15],
machine learning [16], [17], variability index [18], and outlier
rejection based on the Grubbs criterion [19]. These studies
have improved detection performances in multiple target sit-
uations and the clutter edge. However, with themethods using
iteration [14], [15], [18], [19], since the convergence time
depends on the initial value and the number of iterations, the
convergence time can increase depending on the situation.
This limitation is critical for real-time radar systems. In addi-
tion, the machine learning method [16], [17] has performance
differences depending on the training data. If the detector
receives an input that differs from the previously learned data,
performance degradation occurs.

In this paper, a robust CFAR detector with ordered statistic
of sub-reference cells (OSS-CFAR) is proposed to improve
the detection performance in multiple target situations and
the clutter edge. To overcome performance degradation in
these cases, we grouped the reference cells into sub-reference
cells and set guard cells with the same range and the same
Doppler as the CUT. The detection performances of the
proposed OSS-CFAR detector and the conventional CFAR
detectors in multiple target situations and the clutter edge
were investigated and compared using computer simulations
and experimental data with sea clutter. Since the conventional
CFAR detectors, such as the CA-, SOCA-, GOCA-, and
OS-CFAR detectors, are commonly used in airborne andmar-
itime radars, these detectors are compared with the proposed
detector. In multiple target situations, the OSS-CFAR detec-
tor achieves robust detection performance with low compu-
tational complexity, whereas conventional CFAR detectors
suffer performance degradation. The computer simulation
results and experimental results show that the OSS-CFAR
detector is effective in multiple target situations and achieves
an acceptable false alarm rate at the clutter edge.

The contributions of our work are summarized as fol-
lows. First, we proposed a robust CFAR detector with low
computational complexity compared to the conventional
CFAR detectors in multiple target situations and the clutter
edge. Therefore, the OSS-CFAR detector can be applied
to radar systems that require real-time processing. Second,
we achieved good performance CFAR detector that does

not require prior information about the number of interfer-
ing targets in the reference cells. The OS-CFAR detector
requires prior information about the number of the interfer-
ing targets in the reference cells, but the OSS-CFAR detec-
tor does not require prior information. Although there are
several CFAR detectors that do not require prior informa-
tion, the OSS-CFAR detector has a clear advantage over the
others because it operates robustly in multiple target situ-
ations without any prior information. Finally, the proposed
OSS-CFAR detector is useful in practical multiple target
situations. We applied the proposed CFAR detector and the
conventional CFAR detectors to experimental data with mul-
tiple targets and sea clutter. The experimental results show
that the OSS-CFAR detector is effective in multiple target
situations with an unknown information about the number of
the interfering targets.

The remaining parts of this paper are organized as follows.
In Section II, we introduce the conventional CFAR detectors
and explain the relationships between the false alarm rate
and scale factor. The proposed OSS-CFAR detector is pre-
sented in Section III. We describe the detection scheme in
Section III-A, the false alarm rate in Section III-B, and the
computational complexity in Section III-C. In Sections IV
and V, the advantages of the OSS-CFAR detector in multiple
target situations and a clutter edge are verified and analyzed
using simulation results and experimental results. Finally,
we conclude this paper with a brief summary in Section VI.

II. CONVENTIONAL CFAR DETECTORS
In this section, the conventional CFAR detectors
(CA-, SOCA-, GOCA-, and OS-CFAR) are described. The
CFAR detectors can be performed in a one-dimensional
range axis or two-dimensional range Doppler map [8]. With
the aforementioned CFAR detectors, we assumed the two-
dimensional range Doppler map data as the input and passed
it through the square-law detector, allowing the signals
in the range Doppler map to have power values. Two-
dimensional windows of the CFAR detectors are provided
in Fig. 1. The red cell is the CUT, the yellow cells are
guard cells, and the blue cells are reference cells. The
bold lines in the figure indicate the boundary of the ref-
erence cells. Detection threshold calculations associated
with target detection are covered in detail in the following
subsections.

The power sample X (i, j) at i-th range axis and j-th Doppler
axis of range Doppler map in Fig. 1 is assumed to follow an
exponential distribution, which is commonly used to describe
the noise power distribution in radar systems. The probability
density function (PDF) could be expressed as

fX (x) =
1

2σ 2 exp
(
−

x
2σ 2

)
(1)

where x denotes the power of the sample and σ denotes
the distribution parameter. The detection scheme and the
false alarm rate of the CFAR detectors are described in the
following subsections.

VOLUME 10, 2022 42751



T. Jeong et al.: Robust OSS-CFAR in Multiple Target Situations

FIGURE 1. Two-dimensional window of the conventional CFAR detectors:
(a) CA-CFAR and OS-CFAR, (b) SOCA-CFAR and GOCA-CFAR.

A. CELL AVERAGING CFAR
TheCA-CFARdetector estimates the background level by the
sum of the powers in the reference cells, as shown in Fig. 1(a),
as

βCA =
∑

i,j∈REF

X (i, j) (2)

where REF denotes the area of the reference cells.
In the CA-CFAR detector, the false alarm rate Pfa,CA is

Pfa,CA = (1+ αCA)−N (3)

where N denotes the number of reference cells and αCA
denotes a scale factor [20]. The detection threshold is defined
as the product of the estimated background level and the scale
factor. Therefore, the detection threshold of the CA-CFAR

detector is

TCA = αCAβCA (4)

B. SMALLEST OF CELL AVERAGING CFAR
The SOCA-CFAR detector estimates the background level
by selecting the minimum of the two power sum values
calculated in the left and right reference cells, as shown in
Fig. 1(b), as

βSOCA = min(U ,V ) (5)

where U and V are as follows.

U =
∑

i,j∈REFLeft

X (i, j) (6)

V =
∑

i,j∈REFRight

X (i, j) (7)

where REFLeft and REFRight denote the area of the left and
the right reference cells, respectively. In the SOCA-CFAR
detector, the false alarm rate Pfa,SOCA is

Pfa,SOCA

=

(
2

(2+ αSOCA)
N
2

) N
2 −1∑
q=0

(N
2 − 1+ q

q

)
(2+ αSOCA)−q

(8)

where N denotes the number of reference cells and αSOCA
denotes the scale factor [11]. The detection threshold of the
SOCA-CFAR detector is

TSOCA = αSOCAβSOCA (9)

C. GREATEST OF CELL AVERAGING CFAR
The GOCA-CFAR detector estimates the background level
by selecting the maximum of the two power sum values
calculated in the left and right reference cells, as shown in
Fig. 1(b), as

βGOCA = max(U ,V ) (10)

where U and V are as (6) and (7), respectively.
In the GOCA-CFAR detector, the false alarm rate Pfa,GOCA

is

Pfa,GOCA
2

= (1+ αGOCA)−
N
2 − (2+ αGOCA)−

N
2

×

N
2 −1∑
q=0

(N
2 − 1+ q

q

)
(2+ αGOCA)−q (11)

where N denotes the number of reference cells and αGOCA
denotes the scale factor [11]. The detection threshold of the
GOCA-CFAR detector is

TGOCA = αGOCAβGOCA (12)
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FIGURE 2. False alarm rates of the conventional CFAR detectors according
to the scale factor when N is 16 and k is 12.

D. ORDERED STATISTIC CFAR
The OS-CFAR detector estimates the background level by
selecting the k-th sample in ascending order in the reference
cells as shown in Fig. 1(a), as

βOS = X(k), k ∈ 1, 2, · · · ,N (13)

where X(k) are as follows.

X(1) ≤ X(2) ≤ · · · ≤ X(N ) (14)

where N denotes the number of reference cells. A value of
k = 3N/4 is appropriate for practical application [13].

In the OS-CFAR detector, the false alarm rate Pfa,OS is

Pfa,OS = k
(
N
k

)
0(αOS + N−k + 1)0(k)

0(αOS + N + 1)
(15)

where 0(·) denotes the gamma function and αOS denotes the
scale factor [13]. The detection threshold of the OS-CFAR
detector is

TOS = αOSβOS (16)

E. RELATIONSHIPS BETWEEN THE FALSE ALARM RATE
AND SCALE FACTOR OF CONVENTIONAL CFAR DETECTORS
The relationships between the false alarm rate and scale factor
of the conventional CFAR detectors described so far are
illustrated in Fig. 2 as examples. In this figure, the number of
reference cells is 16 and the background level representative
value k of the OS-CFAR detector is 12.

In Fig. 2, the false alarm rate decreases as the scale fac-
tor increases for all CFAR detectors. This is because the
detection threshold increases as the scale factor increases.
Accordingly, the increasing detection threshold reduces the
false alarm rate due to noise or clutter. Using Fig. 2, it is
possible to obtain the required scale factor for the desired
false alarm rate. For example, if the desired false alarm
rate is 10−3, the scale factors of the CA-, SOCA-, GOCA-,

FIGURE 3. The shape of the two-dimensional window of the OSS-CFAR
detector.

and OS-CFAR detectors are 0.54, 1.573, 0.934, and 7.42,
respectively.

III. OSS-CFAR DETECTOR
In this section, we described the detection scheme and the
false alarm rate of the proposed OSS-CFAR detector. The
OSS-CFAR detector consists of three procedures: (1) defini-
tion of sub-reference cells, (2) estimation of the background
level for each sub-reference cell, (3) calculation of the detec-
tion threshold by selecting one of the estimated background
levels of the sub-reference cells. Details of the OSS-CFAR
detector are described in the following subsections. In addi-
tion, the computational complexity of the OSS-CFAR detec-
tor is analyzed and compared with that of the conventional
CFAR detectors.

A. DETECTION SCHEME OF THE OSS-CFAR
The shape of the two-dimensional window of the OSS-CFAR
detector is provided in Fig. 3. The red cell is the CUT, the
yellow cells are guard cells, and the blue cells are reference
cells. The bold lines in the figure indicate the boundary of the
sub-reference cells. There are 16 sub-reference cells, and all
of these sub-reference cells contain the same number of cells.
The reason the number of cells in the sub-reference cells is the
same is to ensure that the same number of samples are used
to estimate the background level of each sub-reference cell.
In the range Doppler map, cells with the same range and the
same Doppler as the CUT are set as the guard cells as shown
in Fig. 3. This is to ensure that the range and Doppler sidelobe
signals of the target in the CUT do not affect the estimation
of the background level. This setting of the guard cells can
reduce the effect of the sidelobe signals of a target in the CUT
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when estimating the background level, so the accuracy of the
background level estimation can be improved. The number of
cells in the m-th sub-reference cell NREFm is as follows.

NREFm = Nref_R × Nref_D (17)

Nref_R =
NR − 1

4
,Nref_D =

ND − 1
4

(18)

where Nref_R, Nref_D, NR, and ND are shown in Fig. 3 and m
denotes the sub-reference cell number as follows.

m = 1, 2, · · · , 16 (19)

The background level of each sub-reference cell is esti-
mated as follows.

βm =
∑

i,j∈REFm

X (i, j) (20)

where REFm denotes the area of the m-th sub-reference cell.
We can set the estimated background levels {β1, β2, · · · ,

β16} to form a new sequence in ascending order, denoted by
{β(1), β(2), · · · , β(16)}.

{β1, β2, · · · , β16} → {β(1), β(2), · · · , β(16)} (21)

where

β(p) ≤ β(q) when p ≤ q (22)

The η-th background level of the ordered list is called
the η-th ordered statistic of the OSS-CFAR detector. In the
OSS-CFAR detector, the η-th background level was selected
as the representative of the estimated background level, and
the detection threshold is

TOSS = αηβ(η) (23)

where αη denotes the scale factor, as described in the follow-
ing subsection.

B. FALSE ALARM RATE OF THE OSS-CFAR
In this subsection, the false alarm rate of the OSS-CFAR
detector is derived. If there is no target signal, the power of
each range Doppler cell X (i, j) is assumed to be independent
and identically distributed (i.i.d.) samples of an exponential
distribution denoted by (1). Because multiplying each range
Doppler cell by any non-zero value has no effect on the
detection probability and the false alarm rate in the proposed
algorithm, each range Doppler cell X (i, j) can be normalized
by dividing by 2σ 2 for convenience, which is the same man-
ner as [11]. In this case, the PDF of X (i, j) is given by,

PX (x) = e−x (24)

The summation of powers in the m-th sub-reference cell,
βm, is i.i.d. samples of an Erlang distribution [21]. If we
denote y = βm, its PDF PY (y) and cumulative distribution
function (CDF) FY (y) are given by,

PY (y) =
y(NREFm−1)e−y

(NREFm − 1)!
(25)

FIGURE 4. False alarm rates of the OSS-CFAR detector according to scale
factor when the number of cells in the sub-reference cell NREFm is 4.

FY (y) = 1− e−y
NREFm−1∑
q=0

yq

q!
(26)

β(η) is defined as the η-th ordered statistic of the i.i.d.
random variable set {β1, β2, · · · , β16}. If we denote z = β(η),
using [22], its PDF PηZ (z) is given by,

PηZ (z) =
M !

(M − η)!(η − 1)!
[FY (z)]η−1[1− FY (z)]M−ηPY (z)

(27)

whereM is the number of sub-reference cells, which is 16 in
Fig. 3.
The false alarm rate of the OSS-CFAR detector, Pfa,OSS,

is given by the following expression, whereXCUT is the power
of the CUT. To calculate the false alarm rate, it is assumed that
there is only noise in the CUT as well as in the reference cells.

Pfa,OSS =
∫
∞

0
Pr[XCUT ≥ αηβ(η)]P

η
Z (z) dz

=

∫
∞

0

(∫
∞

αηz
PX (x) dx

)
PηZ (z) dz

=

∫
∞

0
e−αηzPηZ (z) dz (28)

By substituting (25) and (27) into (28), Pfa,OSS is obtained
as below.

Pfa,OSS =
M !

(M − η)!(η − 1)!

∫
∞

0
e−αηz

·[FY (z)]η−1[1− FY (z)]M−ηPY (z) dz

=
M !

(M − η)!(η − 1)!(NREFm − 1)!

∫
∞

0
e−(αη+1)z

·zNREFm−1[FY (z)]η−1[1− FY (z)]M−η dz (29)

As can be seen in (29), Pfa,OSS depends only on the
parameters related to M , NREFm , η, and the scale fac-
tor αη. Therefore, the false alarm rate of the OSS-CFAR
detector is independent of the power parameters. Based
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TABLE 1. Comparison of computational complexity.

on (26) and (29), Pfa,OSS versus the scale factor αη can be
numerically calculated. For example, when the number of
cells in the sub-reference cellNREFm is 4, the results are shown
in Fig. 4. As a larger η is used, fewer false alarms occur with
the same scale factor αη. This is because the larger the η value
is, the larger the estimated background level selected for the
detection threshold.

C. COMPUTATIONAL COMPLEXITY
The computational complexity of the CFAR detectors is
important in the radar system because of the real-time pro-
cessing and implementation of the system. In this subsection,
we analyzed the computational complexity of the OSS-CFAR
detector and of the conventional CFAR detectors. Since the
detection threshold of the CFAR detectors is a scale factor α
times the estimated background level β, we only considered
the computational complexity for calculating the estimated
background level β.

We used big O notation, O(·), for analysis of the computa-
tional complexity. The comparison of the computational com-
plexity of the CFAR detectors is shown in Table 1. In Table 1,
N denotes the number of reference cells and M denotes the
number of sub-reference cells. The CA-CFAR detector needs
only N additions. The SOCA-CFAR and the GOCA-CFAR
detectors need N additions and one comparison operation.
Since the OS-CFAR and the OSS-CFAR detectors use a
sorting algorithm, it is necessary to know the computational
complexity of the sorting algorithm in order to analyze that
of the OS-CFAR and the OSS-CFAR detectors. Since most
sorting algorithms cannot perform better than O(K log2 K )
(on average) when sorting K samples [23], we assume that
the sorting algorithm needs on average O(K log2 K ) com-
parison operations when sorting K samples. Therefore, the
OS-CFAR and the OSS-CFAR detectors need O(N log2 N )
and O(M log2M ) comparison operations, respectively.
In the proposed OSS-CFAR detector, the number of

sub-reference cells M was set as 16. The number of the
reference cells N is normally larger than the number of sub-
reference cells M . Thus, the computational complexity of
the OSS-CFAR detector is lower than that of the OS-CFAR
detector, but higher than that of the CA-, SOCA-, and
GOCA-CFAR detectors. Since the computational complex-
ity of the OS-CFAR detector increases dramatically as the
reference window size increases, whereas the computational
complexity of the OSS-CFAR detector increases linearly as

TABLE 2. Reference window size and guard cell size of CFAR detectors for
multiple target situation simulations.

the reference window size increases, the OSS-CFAR detector
achieves higher efficiency at the same performance level.

IV. SIMULATION RESULTS AND ANALYSIS
In this section, we compared the detection performance in
multiple target situations and false alarm rate at the clutter
edge of the OSS-CFAR detector with that of the conventional
CFAR detectors using computer simulations.

A. DETECTION PERFORMANCE IN MULTIPLE TARGET
SITUATIONS
In this subsection, two multiple target scenarios were sim-
ulated on the range Doppler map, and the detection per-
formances of the OSS-CFAR detector and the conventional
CFAR detectors were investigated. Multiple target situations
usually occur when two or more targets are located close
together on the range Doppler map. In this case, due to
interfering targets, the measured background level is larger
than the actual background level. This masking effect causes
degradation of the detection performance of the conventional
CFAR detectors.
Scenario 1: We generated a 100 by 100 range Doppler

map (total 10,000 cells) with an exponentially distributed
background, and several independent targets were randomly
located on this range Doppler map. The expected power
levels of these targets were set equal in each scenario, and
the detection performance was analyzed while increasing the
signal-to-clutter ratio (SCR) from 8 dB to 30 dB. To make
it more realistic, the radar cross section (RCS) fluctuation
model of the targets was modeled as a Swerling case I using
Swerling target models [24]– [26] in each iteration.
Scenario 2: In the window of the CFAR detectors as shown

in Fig. 1 and Fig. 3, we randomly located several independent
interfering targets with interference-to-clutter ratios (ICR) of
20 dB in the reference cells. The detection performance was
analyzed while increasing the target power of the CUT from
8 dB to 30 dB SCR. As in Scenario 1, the RCS fluctuation
model of the interfering targets and the target in the CUTwere
modeled as a Swerling case I.

In Scenario 1, for all cells on the range Doppler map,
detection was performed using the CFAR detectors, and the
detection probabilities were calculated using the detection
results and location information of the targets. A total of 105

Monte Carlo trials were performed for Scenario 1.
In Scenario 2, detection was performed only in the CUT,

and the detection probabilities were calculated for eachCFAR
detector. A total of 107 Monte Carlo trials were performed for
Scenario 2.
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FIGURE 5. Detection probabilities in Scenario 1 for several independent targets: (a) 1,000, (b) 2,000.

FIGURE 6. Detection probabilities in Scenario 2 for several independent interfering targets: (a) 3, (b) 7, (c) 11, (d) 15, (e) 19, (f) 21.

The range and Doppler size of the reference window NR,
ND and the range and Doppler size of the guard cell for the
conventional CFAR detectors NGR, NGD for multiple target
situation simulations are as shown in Table 2. The desired
false alarm rate was 10−3. The background level representa-
tive value k of the OS-CFAR detector was set to 3N/4without
loss of generality.

The detection probabilities with the 1,000 and 2,000 tar-
gets in Scenario 1 (generates 10% and 20% targets in the
range Doppler map, respectively) are shown in Fig. 5(a)
and Fig. 5(b), respectively. In both cases, the SOCA-, CA-,
and GOCA-CFAR detectors exhibit performance degrada-
tion due to the masking effect. Since the SOCA-, CA-,

and GOCA-CFAR detectors use minimum-selection, aver-
age, and maximum-selection schemes, respectively, the per-
formance also degrades in the order of SOCA-, CA-, and
GOCA-CFAR. The OS-CFAR and the OSS-CFAR detectors
show good performance compared to the SOCA-, CA-, and
GOCA-CFAR detectors. In Fig. 5(b), the OSS-CFAR detec-
tor shows better performance than the OS-CFAR detector
owing to the serious masking effect as the number of targets
increases.

The detection probabilities with the 3, 7, 11, 15, 19,
and 21 interfering targets with ICR of 20 dB in Scenario 2 are
shown in Fig. 6(a), 6(b), 6(c), 6(d), 6(e), and 6(f), respectively.
In Fig. 6(a)–6(d), 3–15 interfering targets with ICR of 20 dB
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FIGURE 7. Detection probabilities of the OSS-CFAR detector with 21 interfering targets with ICR of 20 dB in Scenario 2 for
different parameters (a) NR = ND = 9, 13, and 17 cases with M = 16, (b) M = 8 and 16 cases with NR = ND = 9.

are simulated. The OS-CFAR and the OSS-CFAR detectors
provide good detection performances. However, the CA-,
SOCA-, and GOCA-CFAR detectors exhibit performance
degradation as the number of interfering targets increases due
to the serious masking effect. In order to demonstrate the
robustness of the OSS-CFAR detector to the high number
of interfering targets, 19 and 21 interfering targets are sim-
ulated. In Fig. 6(e), 19 interfering targets with ICR of 20 dB
are simulated. The detection performance of the OS-CFAR
detector degraded compared to that of the OSS-CFAR detec-
tor because the value N − k in the OS-CFAR detector, which
is an acceptable number of interfering targets, is smaller than
the number of interfering targets. In this case, N − k =
72 − 54 = 18, while the number of interfering targets is
19. As a result, the detection performance of the OS-CFAR
detector is expected to degrade. In order to achieve good per-
formance in multiple target situations, the OS-CFAR detector
requires prior information about the number of interfering
targets in the reference cells, but the OSS-CFAR detector
does not require prior information about that. Therefore, the
OSS-CFAR detector achieves robust detection performance
without prior information in practical multiple target situa-
tions. In Fig. 6(f), 21 interfering targets with ICR of 20 dB
are simulated. The detection performances of the OS-CFAR,
CA-CFAR, SOCA-CFAR, and GOCA-CFAR detectors are
degraded due to the masking effect. However, the OSS-CFAR
detector still has better detection performance than the other
detectors.

From the results in Fig. 5 and Fig. 6, it can be seen that
the OSS-CFAR detector has the best performance in multiple
target situations with a low computational complexity. In par-
ticular, overall, the OSS-CFAR detector with parameter η of
2 shows the best performance. Therefore, we recommend set-
ting the parameter η to 2 in practical multiple target situations.
Since the detection performance of the OSS-CFAR detec-

tor depends on the parameters NR, ND, and M , we analyzed
the detection probabilities with 21 interfering targets with
ICR of 20 dB in Scenario 2 for different parameters NR, ND,

and M , as shown in Fig. 7. The desired false alarm rate was
10−3. In Fig. 7(a), NR = ND = 9, 13, and 17 cases with
M = 16 are simulated. The detection probabilities of the
OSS-CFAR detector increase as NR and ND increase. With
the increase in the NR and ND, the corresponding detection
probabilities increase because the powers of the interfering
targets can be better averaged. That is, the effectiveness of
the interfering targets is reduced as NR and ND increase.
However, when NR and ND increase, the number of samples
to be averaged increases, which may extend the computation
time. Therefore, NR and ND should be appropriately selected.
In Fig. 7(b), M = 8 and 16 cases with NR = ND = 9 are
simulated. When NR and ND are fixed, the number of cells
in each sub-reference cell increases asM decreases. Accord-
ingly, since more interfering targets are included in each
sub-reference cell, the estimated background level increases,
thereby lowering the detection probability. As a result, inmul-
tiple target situations, a sufficiently largeM valuemust be set.
Nevertheless, since the computational complexity increases
as M increases, an appropriate value should be given for M .
Considering the trade-off between the detection performance
and the computational complexity, we recommend settingM
to 16 in practical multiple target situations.

B. FALSE ALARM RATE AT THE CLUTTER EDGE
In this subsection, the clutter edge was simulated and the
false alarm rates of the CFAR detectors were investigated.
This situation often occurs between the clutter region and the
noise region. We assume that the power of the clutter and
noise region is exponentially distributed with different mean
powers. Given the different statistics of the adjacent regions,
the samples in the reference cells are no longer i.i.d. if the
samples with different mean power levels are involved simul-
taneously. At the clutter edge, the false alarm rate decreases
if the CUT is located in a low power window, and the false
alarm rate increases if it is located in a high power window.
In general, the occurrence of false alarms in the high power
cells can be problematic to radar performance. In this case,
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FIGURE 8. False alarm rates in the clutter edge.

the CFAR detectors have higher rates of false alarms unless
appropriate signal processing methods are employed [19].
Therefore, in this subsection, the false alarm rate is analyzed
in the clutter edge cells which have the higher power.

In this scenario, [31×60] rangeDoppler cells are generated
for each iteration. The left-side cells ([31×30]) and the right
half cells ([31 × 30]) are assumed to have different mean
power levels. In this case, it is assumed that the left-side cells
have lower power than the right half cells by 20 dB. The
CFAR detection is performed on the 31st–37th Doppler cells,
which are the clutter edge cells with the higher power between
two different clutter regions. A total of 107 Monte Carlo trials
were performed.

Fig. 8 shows the false alarm rates in the clutter edge
with the reference window size and guard cell size (as
in Table 2) for the desired false alarm rate of 10−3. The
results show that the false alarm rate of the SOCA-CFAR
detector increases significantly at the clutter edge; the
CA-CFAR and the OS-CFAR detector are slightly increased;
the GOCA-CFAR detector works robustly. The false alarm
rates of the OSS-CFAR detector vary for different parameters
of η. The false alarm rate of the OSS-CFAR detector with η =
1, 2, 4, and 7 are significantly increased for the SOCA-CFAR
detector. However, as the parameter η increases, the false
alarm rate decreases.

Obviously, the OSS-CFAR detector with a larger η has
better false alarm rate. However, the OSS-CFAR detector
with a smaller η has better detection performance in multiple
target situations. Since there is a trade-off between detection
performance in multiple target situations and the false alarm
rate at the clutter edge, it is necessary to select appropri-
ately the parameter η according to the required performance.
In practical scenarios, the detection probability of multiple
targets is important for situational awareness, as ground and
sea targets are often dense. In particular, in the case of mili-
tary radar applications, since the missed detection of enemy
targets is directly related to the threat to our forces, increasing

TABLE 3. Parameters of the experimental radar.

TABLE 4. Position information and SCR of real and simulated targets in
Fig. 11(b).

the detection performance inmultiple target situations ismore
important than reducing the occurrence of the false alarm rate
at the clutter edge. Therefore, it is suggested to choose the
smaller parameter η.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we investigated the detection performances of
the OSS-CFAR detector and the conventional CFAR detec-
tors using the experimental data collected in the East Sea
(Republic of Korea) on December 4, 2020. The experimental
radar was mounted on the ramp door of a military transport
aircraft (Lockheed Martin C-130 Hercules) and operated in
the East Sea with four real targets (fishing boats with corner
reflectors, T1–T4), as shown in Fig. 9 and Fig. 10 [27]. The
direction of the radar antenna beamwas opposite to the direc-
tion of flight, as shown in Fig. 9(a) and Fig. 10. The distance
between the targets and the velocity of the targets in Fig. 10
were about 500m and 8–12m/s, respectively. The experimen-
tal radar operates in X-band and includes pulse compression
mode and Doppler processing mode with compensation for
the aircraft velocity. The range resolution and the Doppler
resolution are 30 m and 75.12 Hz, respectively. The detailed
parameters of the experimental radar are provided in Table 3.

A single snapshot of the range Doppler map from the col-
lected experimental data is shown in Fig. 11(a). In the figure,
there are four real targets from T1 to T4 with sea clutter.
To simulate a more severe multiple target situation, we added
six simulated targets (T5–T10) to this range Doppler map as
shown in Fig. 11(b). In order to simulate more realistically,
the power levels of the simulated targets were randomly set.
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FIGURE 9. Experiment setup: (a) Military transport aircraft and experimental radar, (b) Fishing boat with corner reflector.

TABLE 5. Detection results of experimental data with simulated targets.

That is, they were similar to the values of the real targets, and
the power shapes in the range Doppler map of the simulated
targets were simulated the same as for the real targets. The
position information and SCR of the real and simulated tar-
gets in Fig. 11(b) are shown in Table 4.

Detection results of the experimental data with additional
simulated targets are shown in Table 5. The reference window
size and the guard cell size of the CFAR detectors were set in
Table 2, and the background level representative value k of
the OS-CFAR detector was 3N/4. The desired false alarm
rate was 10−3.

The circle in Table 5 denotes that the corresponding target
is detected correctly, and ‘‘×’’ denotes that the correspond-
ing target was missed. The results show that the CA-CFAR
and GOCA-CFAR detectors performed the worst in mul-
tiple target situations due to the masking effect. The two

FIGURE 10. Experimental data acquisition of four real targets with real
sea clutter.

detected only six out of ten targets. The OS-CFAR and
SOCA-CFAR detectors exhibited relatively robust detection
performance in multiple target situations, but missed two
targets: T2 (weak power and many other targets nearby) and
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FIGURE 11. Snapshot of range Doppler map from collected experimental
radar data with (a) Four real targets (T1–T4), (b) Four real targets (T1–T4)
plus six simulated targets (T5–T10).

T7 (near the mainlobe clutter of the sea clutter). The pro-
posed OSS-CFAR detector achieved the best performance in
multiple target situations with sea clutter as it detected all
targets with different parameters of η. In other words, it was
confirmed that the OSS-CFAR detector works well even in
the sea clutter that follows a K-distribution rather than an
exponential distribution. Therefore, the proposed OSS-CFAR
detector is robust in practical multiple target situations with
sea clutter.

VI. CONCLUSION
In this paper, we proposed a robust CFAR detector with
ordered statistic of sub-reference cells in multiple target situ-
ations and the clutter edge. Estimating the background level
for each sub-reference cell and setting guard cells with the
same range and the same Doppler as the CUT, the accuracy
of the background level estimation can be improved since the
range andDoppler sidelobe signals of the target in the CUTdo

not affect estimation of the background level. In addition, the
computational complexity is low compared to that of the OS-
CFAR detector. This is achieved using the ordered statistic of
sub-reference cells since it only needs to sort by the number
of sub-reference cells.

The OS-CFAR detector requires prior information about
the number of interfering targets in order to remove all inter-
fering targets from the reference cells. The OSS-CFAR detec-
tor, in contrast, does not require prior information about that.
Therefore, the OSS-CFAR detector achieves robust detection
performance without prior information in practical multiple
target situations.

For verification of the proposed OSS-CFAR detector
results, Monte Carlo computer simulations were performed
in multiple target situations and at the clutter edge. As a
result, the detection performance of the OSS-CFAR detector
is improved in multiple target situations compared to the con-
ventional CFAR detectors with low computational complex-
ity. Moreover, experimental results show the effectiveness
and robustness of the OSS-CFAR detector when compared
to conventional CFAR detectors in multiple target situations
with sea clutter. At the clutter edge, the OSS-CFAR detector
with appropriate parameters achieves acceptable false alarms
compared to the conventional CFAR detectors. Therefore,
using the OSS-CFAR detector with appropriate parameter η
in multiple target situations will help detect multiple radar tar-
gets and recognize situations because it can improve detection
performance in practical scenarios.
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