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ABSTRACT In this paper, a filtering-error constrained adaptive iterative learning control scheme is proposed
to solve the angle tracking problem for a pneumatic artificial muscle-actuated mechanism. The adaptive
learning controller is designed by a novel barrier Lyapunov function, and the filtering error of pneumatic
artificial muscle system is ensured to be constrained during each iteration. The initial position problem of
iterative learning control is solved by utilizing time-varying boundary layer method. Fuzzy logic system is
applied to approximate the unknown nonparametric uncertainties in the pneumatic artificial muscle system,
whose optimal weight is estimated by using difference learning approach. The approximation error of fuzzy
logic system is tackled by robust control strategy. Simulation results show the effectiveness of the propose
angle tracking adaptive learning fuzzy control scheme.

INDEX TERMS Pneumatic artificial muscle systems, adaptive iterative learning control, barrier Lyapunov
function, initial position problem, fuzzy logic systems.

I. INTRODUCTION
Currently, by virtue of the excellent flexibility and compli-
ance, soft robots have been widely used in rehabilitation
robotics, prosthetic robots and the human-robot interaction.
With the development of soft robots, soft actuators earn
increasing interests as the formers’ important components.
Pneumatic artificial muscle (PAM) is a tube-like actuator and
can largely mimic the functions of human muscles by inflat-
ing and deflating pressurized air through servo valves [1], [2].
PAM actuator may be seen as one of the most promising soft
actuators for many advantages including rapid response, low
cost and high power weight ratio. These merits have fueled
the wide industrial applications for PAM actuators [3]–[6],
[8]–[10], [44]. For the sake of existing inherent hysteresis,
high nonlinearities and creep characteristics, the accurate
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modeling and control for PAM system is not an easy job,
and the applicability of some existing control algorithms is
limited. Therefore, in order to get better control performance,
it is of urgent need to introduce new control design methods
for decreasing the PAM-actuated mechanisms’ sensitivity to
dynamic uncertainties in practice.

Iterative learning control (ILC) is effective in handling
repeated control processes [11]–[17], [17], [19], [20]. The
ILC system can obtain excellent performances through grad-
ual iterative learning, with little system model knowledge
used [21]–[24]. Usually, PAM-actuated rehabilitation mech-
anisms are used to perform repeated tasks over a fixed period
of operation time. Thus, ILC is a potential suitable control
technique for obtaining accurate tracking. We will consider
two important aspects of ILC algorithm designs for PAM
systems in this work.

The first aspect is about the initial position problem of
PAM systems. Many traditional ILC theoretical algorithms
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can perform well under zero initial error condition, but they
perform poorly if this condition cannot be satisfied. More
specifically, error divergence probably happens even if the
initial error is very slight. Note that resetting the initial value
of system state/output exactly to that of reference trajectory
at each iteration is an impossible task in real applications.
Hence, the zero initial error condition is too strict to be
met in applications. The issue on how to develop iterative
learning controller under nonzero initial condition, which is
the so-called initial position problem of ILC, is a fundamental
problem in ILC area. In order to solve this problem of ILC,
some significant explorations and attempts have been made
in the past two decades [25]–[30]. Up to now, the docu-
ments discussing the ILC approach for PAM systems are very
few, and the documents have reported the result involving
initial position problem of ILC for PAM systems are even
fewer. In [31], a model-free discrete adaptive ILC method
is proposed for nonlinear PAM systems. In [32], alignment
condition is used to relax the initial position problem for
PAM systems whose reference trajectory is smoothly closed,
i.e., the proposed approach is suitable for the case that the
initial state of reference trajectory is equal to the final state
of reference trajectory. How to develop an effective control
scheme for PAM systems whose reference trajectory is not
closed is still unclear.

The second issue we will address in this work is about
system constraints of PAM systems during operations. Due
to the system specifications and safety considerations, there
exist the requirements of constraining the system output, the
system state, or the output tracking error in some situations.
Some related results have been reported in literature, such
as maximal output admissible set strategy [33], constrained
model predictive control [34], reference governor approach
[35], convex optimization strategy [36] and barrier Lyaponov
function design method [37], [38]. In recent years, the system
constrain problem in ILC design has attracted much inter-
est. By referring to the state/output constraint technique
in barrier adaptive control, the research results on barrier
adaptive ILC have been reported in literature since the early
2010s. In [39], Jin et al. proposed an output-constrained
adaptive ILC approach for a class of nonlinear systems which
meets alignment condition. In [40], Yan and Sun presented
an error-tracking iterative learning control method for a class
of nonparametric uncertain systems to tackle simultaneously
both the initial position problem and the state-constrained
problem. In [41], Yu et al. developed an adaptive ILC algo-
rithm for nonlinear uncertain systems with both state and
input constraints. In [42], Jin investigated the joint position
constrained ILC for robotic systems. Up to now, few literature
has addressed the system constraint problem in the adaptive
ILC for PAM systems.

Motivated by the above discussion, this work focuses on
the adaptive ILC algorithm design for the angle tracking of
PAM systems under nonzero initial errors with filtering error
constraint. The main results and contributions are given as
follows.

FIGURE 1. Control system structure of the PAM-actuated mechanism.

1) The filtering-error constraint in adaptive ILC for PAM
systems is implemented by using a new type of barrier
Lypunov function in ILC design.

2) Time-varying boundary layer and adaptive learning
fuzzy logic system are jointly applied to deal with the
initial position problem and uncertainties in PAM ILC
systems. An adaptive ILC law is developed to make the
angle tracking error converge to a tunable residual set as
the iteration number increases.

3) In many existing related results, the state dependent
control input gain in systemmodel is assumed to be state
independent, which is relaxed in this work.

The paper is organized as follows. Section II introduces
the control problem formulation and some preliminaries.
In Section III, we propose the filtering-error constrained
angle tracking adaptive learning fuzzy control scheme for
PAM systems under nonzero initial errors via using the tech-
niques of barrier Lyapunov function, time-varying boundary
layer, and fuzzy logic system. The convergence analy-
sis of closed-loop PAM systems is given in Section IV.
In Section V, some simulation results are illustrated to verify
the effectiveness of the proposed control scheme. Finally,
Section VI concludes this work.

II. PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
In this work, the angle trajectory tracking problem is con-
sidered for a PAM-acutated mechanism [2], which is used to
perform repeated tasks. The control system structure of the
mechanism is shown in Fig. 1.

As shown in this figure, the main components include an
computer, an air compressor, two proportional valves, two
PAM actuators and an angle sensor. Two PAM actuators
are parallel to each other. Through opening and closing of
two pressure proportional valves, the charging or discharging
of two PAM actuators are controlled by the computer. The
signals of deflection angles are transmitted to the computer
through an angle sensor. The two control variables of the
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PAM-actuated mechanism are presented as{
ul(t) = uo + αuu(t),
ur (t) = uo − αuu(t),

(1)

where t ∈ [0,T ], αu is the coefficient of voltage distribution,
uo is the preloaded voltage, u(t) is the control input, and ul(t)
and ur (t) are two input control voltages of pressure propor-
tional valves, respectively. Here, T represents the interval of
operation time at each iteration. The internal pressures of two
PAM actuators are given as{

P1(t) = P0 +1P(t) = α0ul(t),
P2(t) = P0 −1P(t) = α0ur (t),

(2)

where α0 is the proportional coefficient of the control voltage
and output pressure. P0 denotes the preload internal pressure
of actuators, 1P(t) represents the variation of pressure, and
P1(t) and P2(t) are two internal pressures of PAM actuators.
The relationship between the pulling forces and the internal
pressures of PAM actuators may be described as{

F1(t) = P1(t)(α1ε21 (t)+ α2ε1(t)+ α3)+ α4,
F2(t) = P2(t)(α1ε22 (t)+ α2ε1(t)+ α3)+ α4,

(3)

where F1(t) and F2(t) are two pulling forces of PAM actu-
ators, α1, α2, α3 and α4 are four parameters, ε1(t) = ε0 +

rl−10 θ (t) and ε2(t) = ε0 − rl−10 θ (t). Here, θ (t) denotes the
deflection angle of the mechanism, ε0 and l0 represent the
initial shrinking rate and the initial length of PAM actuators,
respectively. The drivingmoment of this mechanism is shown
as

Tp(t) = J θ̈ (t)+ bυ θ̇ (t) = F1(t)r − F2(t)r + dυ (θ, θ̇ , t),

(4)

where J is the moment of inertia, bυ is the damping coef-
ficient, r is the radius of pulley, and dυ (θ, θ̇ , t) denotes the
unknown external disturbances and unmodeled dynamics.
By substituting (1)-(3) into (4), we have

θ̈(t) = −J−1bvθ̇ (t)+ 2Jk0uor2(2α1ε0 + α2)l
−1
0 θ (t)

+2J−1k0αur[α1ε20 + α2ε0 + α3 + 2α2ε0
+α1(rθ(t)l

−1
0 )2]u(t)+ ds(θ, θ̇ , t) (5)

where ds(θ, θ̇ , t) = J−1dυ (θ, θ̇ , t). Let x1(t) = θ(t) and
x2(t) = θ̇ (t). Then, the state-space model of the PAM system
at the kth iteration may be got as follows:

ẋ1,k (t) = x2,k (t),
ẋ2,k (t) = uo,kh1x1,k (t)+ h2x2,k (t)+ [g1

+g2x21,k (t)]uk (t)+ ds(xxxk , t),

(6)

where h1 = 2J−1k0r2(2α1ε0 + α2)l
−1
0 , h2 = −J−1bv, g1 =

2J−1k0αur(α1ε20 + α2ε0 + α3), g2 = 2J−1k0αurα1(rl
−1
0 )2,

xxxk = [x1,k , x2,k ]T .
The control task of this work is to make x1,k (t) accurately

track its reference signal x1,d (t) over [0,T ], as the iteration
index k increases. For the sake of brevity, the arguments in

this paper are sometimes omitted when no confusion is likely
to arise.
Remark 1: In many results, the term α1(rθ(t)l

−1
0 )2u(t) in

(5) is assumed to be zero or bounded before controller design.
In this work, we give up this usual assumption.

B. FUZZY LOGIC SYSTEMS
All is well known, fuzzy logic system (FLS) or neural
network-based controller has become an important approach
for adaptive control [8]–[44], [44]–[47] and adaptive learning
control while the nonlinearity in nonlinear plants cannot be
linearly parameterizable as in [25], [48], [49]. A typical FLS
consists of four main components: knowledge base, fuzzifier,
fuzzy inference engine and defuzzifier. The fuzzy inference
mechanism uses the fuzzy IF-THEN rules to perform a map-
ping from an input vector χχχ = [χ1, χ2, · · · , χn]T ∈ U ⊆ Rn

to an output variable y ∈ R, where U = U1×U2×· · ·×Un,
with Ui ∈ R for i = 1, 2, · · · , n. Let F ji

1 be the fuzzy
sets defined on the universe of discourse of the ith input for
ji = 1, 2, · · · ,Ni, then the fuzzy logic system is characterized
by several if-then rules:

Rl : If χ1 is F j1
1 and χ2 is F j2

2 and · · · and χn is F jn
n , Then

y = Gl, (l = 1, 2, 3, · · · ,N ), where Gl is a fuzzy set defined
on R, ji ∈ {1, 2, · · · ,Ni}, the value of ji is dependent of l for
i = 1, 2, · · · , n, and N =

∏n
i=1 Ni is the total number of

rules.
Let µF ji

i
(χi) denote the membership functions of F ji

i .
By implementing the strategy of singleton fuzzification,
center-average defuzzifcation and product inference, the out-
put of fuzzy logic system can be formulated as

y(χχχ ) =

N∑
l=1

p̄l
n∏
i=1
µF ji

i
(χi)

N∑
l=1

[
n∏
i=1
µF ji

i
(χi)]

(7)

where p̄l is the point at which the fuzzy membership function
of Gl achieves its maximum value. Let

zl(χχχ ) =

n∏
i=1
µF ji

i
(χi)

N∑
j=1

[
n∏
i=1
µF ji

i
(χi)]

, l = 1, 2, · · · ,N , (8)

ppp = [p̄1, p̄2, · · · , p̄N ]T and zzz(χχχ ) = [z1(χχχ ), z2(χχχ ), · · · ,
zN (χχχ )]T , then (7) can be rewritten as

y(χχχ ) = pppTzzz(χχχ ). (9)

If Gaussian functions are adopted as the membership, then
the following lemma holds.
Lemma 1: For amy real continuous function f (χχχ ) defined

on a compact set � in Rn, there exists a FLS (9) and an
optimal parameter vector ppp∗ such that

sup
χχχ∈�

|f (χχχ )− ppp∗Tzzz(χχχ )| ≤ ε∗, (10)

with ε∗ being a arbitrary positive constant [43].
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III. CONTROLLER DESIGN
By letting e1 = x1,k − x1,d , e2 = x1,k − x2,d and x2,d = ẋ1,d ,
from (6), we have

ė1,k = e2,k ,
ė2,k = uo,kh1x1,k (t)+ h2x2,k (t)+ (g1

+g2x21,k (t))uk + ds(xxxk , t)− ẍ1,d .

(11)

Let sk = λe1,k + e2,k and

sφ,k (t) = sk (t)− φk (t)sat−1,1
(
sk (t)
φk (t)

)
, (12)

where

φk (t) = |sk (0)|e−µt , (13)

λ > 0, µ > 0 and sat·,·(·) represents the definition of
saturation function. For a scalar â, which is the estimation
to a scalar a,

sata,ā(â) :=


ā, if â > ā
â, if a ≤ â ≤ ā
a, if â < a,

where a and ā are the lower bound and upper bound of the
scalar a, respectively. For a vector âaa = [â1, â2, · · · , âm] ∈
Rm, sata,ā(âaa) :=

[
sata,ā(â1), sata,ā(â2), · · · , sata,ā(âm)

]T .
Without loss of generality, we assume

ds(xxxk , t) = d1(xxxk )+ d2(xxxk , t),

where d1(xxxk ) is continuous with respect to xxxk , and d2(xxxk , t) is
the noncontinuous remainder with unknown bound. Accord-
ing to (11), the time derivative of sk may be obtained as

ṡk = ce2,k + uo,kh1x1,k + h2x2,k + (g1 + g2x21,k (t))uk
+d1(xxxk )+ d2(xxxk , t)− ẍd . (14)

Let us choose a barrier Lyapunov function as

Vk (t) =
s2φ,k

2(b2s − s
2
φ,k )

2
. (15)

By defining $1,k = b2s + s2φ,k ,$2,k = b2s − s2φ,k and
calculating the derivative of Vk with respect to t , according
to (14), we have

V̇k (t) =
1
2
2sφ,k ṡφ,k
$ 2

2,k

+
1
2
s2φk (−2)$

−3
2,k (−2sφ,k ṡφ,k )

=
sφ,k ṡφ,k
$ 2

2,k

+
2s2φ,k
$ 3

2,k

sφ,k ṡφ,k

=
$1,k

$ 3
2,k

sφ,k [ṡk − φ̇k (t)sgn
(
sφ,k

)
]

=
$1,k

$ 3
2,k

sφ,ksφ,k
[
αe2,k + uo,kh1x1,k + h2x2,k + guk

+d1(xxxk )+ d2(xxxk , t)− ẍd − φ̇k (t)sgn
(
sφ,k

)]
. (16)

By using (12), we have

sφ,k φ̇k (t)sgn
(
sφ,k

)
= sφ,kµφk (t)sat−1,1

(
sk (t)
φk (t)

)
= µsφ,k (sk − sφ,k ). (17)

Substituting (17) into (16) yields

V̇k =
$1,k

$ 3
2,k

sφ,kg1
[
g−11 λe2,k + uo,kg

−1
1 h1x1,k + g

−1
1 h2x2,k

+g−11 (g1 + g2x21,k )uk + g
−1
1 d1(xxxk )+ g

−1
1 d2(xxxk , t)

−g−11 ẍd + g
−1
1 µ(sφ,k − sk )]

=
$1,k

$ 3
2,k

sφ,kg1[wwwTξξξ k + g
−1
1 (g1 + g2x21,k )uk ]

+
$1,k

$ 3
2,k

sφ,kg1(g
−1
1 d1(xxxk )+ g

−1
1 d2(xxxk , t)), (18)

wherewww := [g−11 , g−11 h1, g
−1
1 h2, g

−1
1 µ]T and ξξξ k := [λe2,k −

ẍd , uo,kx1,k , x2,k , sφ,k − sk ]T .
Let f (xxxk ) = g−11 d1(xxxk ). According to Lemma 1, the

unknown continuous function g−11 d1(xxxk ) can be approxi-
mated by a suitable FLSwithxxxk ∈ �x , where�x is a compact
set in R2. Then, we have

f (xxxk |ϑϑϑk ) = ϑϑϑTk (t)ϕϕϕ(xxxk )+ ε(xxxk ), (19)

ϑϑϑ∗k (t) = argmin
ϑϑϑk

[ sup
xxxk∈�x

(f (xxxk |ϑϑϑk )− f (xxxk ))] (20)

where ϑϑϑ∗(t) is the the optimal fuzzy weight vector and ϑϑϑk (t)
is the estimate of ϑϑϑ∗(t). The approximation error is defined
as ε(xxxk ) = f (xxxk |ϑϑϑk ) − f (xxxk ), where |ε(xxxk )| ≤ εF , with εF
being a positive constant.

Denote ϕϕϕ(xxxk ) briefly by ϕϕϕk . Combining (18) with (19)
leads to

V̇k =
$1,k

$ 3
2,k

sφ,kg1[wwwTξξξ k + g
−1
1 (g1 + g2x21,k )uk ]+

$1,k

$ 3
2,k

×sφ,kg1(ϑϑϑ∗T (t)ϕϕϕk + ε(xxxk )+ g
−1
1 d2(xxxk , t)). (21)

On the basis of (21), we design the control law and learning
laws as follows:

uk = u1,k + u2,k , (22)

u1,k = −γ1$2,ksφ,k −wwwTk ξξξ k − ϑϑϑ
T
k ϕϕϕk , (23)

u2,k = −
$2,k (ρkx21 |u1,k | + %k )

|$2,k |
sat−1,1

(
sk (t)
φk (t)

)
(24)

wkwkwk = satw,w̄(wwwk−1)+
$1,k

$ 3
2,k

γ2sφ,kξξξ k ,w−1w−1w−1 = 0, (25)

ϑkϑkϑk = satϑ,ϑ̄ (ϑϑϑk−1)+
$1,k

$ 3
2,k

γ3sφ,kϕϕϕk ,ϑ−1ϑ−1ϑ−1 = 0, (26)

ρk = sat0,ρ̄(ρk−1)+
$1,k

|$2,k |3
γ4|sφ,k |x21,k |u1,k |, ρ−1 = 0,

(27)

%k = sat0,%̄(%k−1)+
$1,k

|$2,k |3
γ5|sφ,k |, %−1 = 0, (28)

where γ1 > 0, γ2 > 0, γ3 > 0, γ4 > 0, γ5 > 0, ρk is used
to estimate ρ := g−11 g2, and %k is used to estimate %(t) :=
sup(εF + g

−1
1 |d2(xxxk , t)|).

Remark 2: According to the definition of sφ,k (t) given in
(12) and (13), sφ,k (0) = 0 holds, which is useful for the
formula derivation from (47) to (52). As shown in (15), bar-
rier Lyaupunov function, rather than a traditional Lyapunov
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function Vk = 1
2 sφ,k (t), is used for controller design. The

purpose is to let sφ,k (t) constrained during each iteration as
sφ,k (t) < bs.
Remark 3: While the barrier Lyapunov function V2,k =

1
2

s2φ,k
b2s−s

2
φ,k

is adopted in controller design, one should check

or prove the nonnegativity of V2,k in advance, which brings
the inconvenience in controller design. This inconvenience
may be removed by replacing V2,k with (15).

IV. CONVERGENCE ANALYSIS
Theorem 1: For the closed-loop PAM system composed

of (6) and (22)-(28), the tracking performance and system
stability are guaranteed as follows:

(1) The filtering error may be constrained in the sense that

|sk (t)| < |sk (0)|e−µt + bs. (29)

(2) |e1,k (t)| = e−λt |e1,k (0)| + e−µt−e−λt
λ−µ

|sk (0)| holds as the
iteration number k increases.

(3) All adjustable control parameters wwwk (t), ϑϑϑk (t),
ρk (t), %k (t), and internal signals xk (t), ek (t), uk (t) are
bounded ∀t ∈ [0,T ] and ∀k ≥ 0.

Proof: The proof consists of two parts. In Part A, wewill
prove that |sφ,k | < bs hold for any k . Then, we will analyze
tracking error convergence in Part B.

Part A. The constraint property of sk
Substituting (22) into (21) leads to

V̇k ≤ −γ1g1
$1,k

$ 2
2,k

s2φ,k +
$1,k

$ 3
2,k

sφ,kg1(w̃ww
T
k ξξξ k

+ϑ̃ϑϑ
T
k ϕϕϕk )+

$1,k

|$2,k |3

(
|sφ,k |g1ρx21,k |u1,k | + |sφ,k |g1%

)
−
$1,k

|$2,k |3
|sφ,k |(g1 + g2x21,k )g

−1
1 g1ρkx21,k |u1,k |

−
$1,k

|$2,k |3
|sφ,k |(g1 + g2x21,k )g

−1
1 g1%k , (30)

where w̃wwk = www − wwwk and ϑ̃ϑϑk = ϑϑϑ∗(t) − ϑϑϑk . Due to
sφ,ksat−1,1

(
sk (t)
φk (t)

)
= |sφ,k |, g1 > 0 and g2 > 0, it follows

from (30) that

V̇k ≤ −γ1g1
$1,k

$ 2
2,k

s2φ,k +
$1,k

$ 3
2,k

sφ,kg1(w̃ww
T
k ξξξ k

+ϑ̃ϑϑ
T
k ϕϕϕk )+

$1,k

|$2,k |3

(
|sφ,k |g2x21,k |u1,k | + |sφ,k |g1%

)
−
$1,k

|$2,k |3

(
|sφ,k |g1ρkx21,k |u1,k | + |sφ,k |g1%k

)
= −γ1g1

$1,k

$ 2
2,k

s2φ,k +
$1,k

$ 3
2,k

sφ,kg1(w̃ww
T
k ξξξ k + ϑ̃ϑϑ

T
k ϕϕϕk )

+
$1,k

|$2,k |3

(
|sφ,k |g1ρ̃kx21,k |u1,k | + |sφ,k |g1%̃k

)
(31)

where ρ̃k = ρ − ρk and %̃k = % − %k . According to (12),
we can see sφ,k (0) = 0 holds. Define a barrier Lyapunov
functional as follows:

Lk = Vk +
g1
2γ2

∫ t

0
w̃wwTk w̃wwkdτ +

g1
2γ3

∫ t

0
ϑ̃ϑϑ
T
k ϑ̃ϑϑkdτ

+
g1
2γ4

∫ t

0
ρ̃2k dτ +

g1
2γ5

∫ t

0
%̃2kdτ. (32)

With the help of (31), we can get the time derivative of Lk as

L̇k ≤ −
$ 2

1,k

$ 2
2,k

γ1,kg1s2φ,k +
$1,k

$ 3
2,k

g1sφ,k (w̃ww
T
k ξξξ k + ϑ̃ϑϑ

T
k ϕϕϕk )

+
$1,k

|$2,k |3

(
|sφ,k |g1ρ̃kx21,k |u1,k | + |sφ,k |g1%̃k

)
+

g1
2γ2

×w̃wwTk w̃wwk +
g1
2γ3

ϑ̃ϑϑ
T
k ϑ̃ϑϑk +

g1
2γ4

ρ̃2k +
g1
2γ5

%̃2k . (33)

By using (25), we have

$1,k

$ 3
2,k

sφ,kg1w̃ww
T
k ξξξ k +

1
2γ2

g1w̃ww
T
k w̃wwk

=
g1
2γ2

(www−wwwk )T (2wwwk − 2satw,w̄(wwwk−1)+www−wwwk )

=
g1
2γ2

[−wwwTkwwwk +www
Twww− 2wwwT satw,w̄(wwwk−1)

+2wwwTk satw,w̄(wwwk−1)]

= −
g1
2γ2

[wwwk − satw,w̄(wwwk−1)]T [wwwk − satw,w̄(wwwk−1)]

+
g1
2γ2

[satw,w̄(wwwTk−1)satw,w̄(wwwk−1)+www
Twww

−2wwwT satw,w̄(wwwk−1)]

≤
g1
2γ2

[satw,w̄(wwwTk−1)satw,w̄(wwwk−1)+www
Twww

−2wwwT satw,w̄(wwwk−1)]. (34)

Note that each term in g1
2γ2

[satw,w̄(wwwTk−1)satw,w̄(wwwk−1) +
wwwTwww − 2wwwT satw,w̄(wwwk−1)] is bounded. Therefore, there exits
a positive number mw, which satisfies

$1,k

$ 3
2,k

g1sφ,kw̃ww
T
k ξξξ k +

g1
2γ2

g1w̃ww
T
k w̃wwk ≤ mw. (35)

Similarly, it follows from (26), (27) and (28) that there exists
positive numbers mϑ , mρ and m% meeting

$1,k

$ 3
2,k

sφ,kg1ϑ̃ϑϑ
T
k ϕϕϕk +

g1
2γ3

ϑ̃ϑϑ
T
k ϑ̃ϑϑk

=
g1
2γ3

[−ϑϑϑTk ϑϑϑk + ϑϑϑ
∗Tϑϑϑ∗ − 2ϑϑϑT satϑ,ϑ̄ (ϑϑϑk−1)

+2ϑϑϑTk satϑ,ϑ̄ (ϑϑϑk−1)]

= −
g1
2γ3

[ϑϑϑk − satϑ,ϑ̄ (ϑϑϑk−1)]
T [ϑϑϑk − satϑ,ϑ̄ (ϑϑϑk−1)]

+
g1
2γ3

[satϑ,ϑ̄ (ϑϑϑ
T
k−1)satϑ,ϑ̄ (ϑϑϑk−1)+ ϑϑϑ

∗Tϑϑϑ∗

−2ϑϑϑT satϑ,ϑ̄ (ϑϑϑk−1)]

≤
g1
2γ3

[satϑ,ϑ̄ (ϑϑϑ
T
k−1)satϑ,ϑ̄ (ϑϑϑk−1)+ ϑϑϑ

∗Tϑϑϑ∗

−2ϑϑϑT satϑ,ϑ̄ (ϑϑϑk−1)]

≤ mϑ , (36)
$1,k

|$2,k |3
|sφ,k |g1ρ̃kx21,k |u1,k | +

g1
2γ4

ρ̃2k

=
g1
2γ4

[−ρ2k + ρ
2
− 2ρsatρ,ρ̄(ρk−1)+ 2ρksatρ,ρ̄(ρk−1)]
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=
g1
2γ4

[satρ,ρ̄(ρk−1)satρ,ρ̄(ρk−1)+ ρ2 − 2ρsatρ,ρ̄(ρk−1)]

−
g1
2γ4

[ρk − satρ,ρ̄(ρk−1)]2

≤
g1
2γ4

[satρ,ρ̄(ρk−1)satρ,ρ̄(ρk−1)+ ρ2 − 2ρsatρ,ρ̄(ρk−1)]

≤ mρ (37)

and
$1,k

|$2,k |3
|sφ,k |%̃k +

1
2γ5

%̃2k

=
1
2γ5

[−%2k + %
2
− 2%sat%,%̄(%k−1)+ 2%ksat%,%̄(%k−1)]

=
1
2γ5

[sat%,%̄(%k−1)sat%,%̄(%k−1)+ %2 − 2%sat%,%̄(%k−1)]

−
1
2γ5

[%k − sat%,%̄(%k−1)]2

≤
1
2γ5

[sat%,%̄(%k−1)sat%,%̄(%k−1)+ %2 − 2%sat%,%̄(%k−1)]

≤ m%, (38)

respectively. Substituting (34)-(38) into (33) yields

L̇k ≤ −
$ 2

1,k

$ 2
2,k

γ1,kg1s2φ,k + mw + mϑ + mρ + m%. (39)

Note that sφ,k (0) = 0 and then Lk (0) = 0. From (39), we have

Lk (t) ≤ Lk (0)−
∫ t

0

$ 2
1,k

$ 2
2,k

γ1,kg1s2φ,kdτ + t(mw + mϑ

+mρ + m%)

≤ t(mw + mϑ + mρ + m%) (40)

From (40), we have

1
2

s2φk (t)

(b2s − s
2
φ,k (t))

2
≤ t(mw + mϑ + mρ + m%). (41)

Due to sφ,k (0) = 0 for k = 0, 1, 2, 3, · · · , from (41), we can
see |sφk (t)| < bs holds for t ∈ [0,T ]. Suppose |sφ,k (t)| →
bs− holds at a certain moment tδ ∈ (0,T ]. Then,

1
2

s2φk (tδ)

(b2s − s
2
φ,k (tδ))

2
→+∞, (42)

would happen, which is contrary to (41). Actually, from (41),
we can deduce

b2s − s
2
φ,k (t) ≥

|sφk (t)|√
2t(mw + mϑ + mρ + m%)

. (43)

According to (43), we thus get

|sφ,k (t)| ≤

√
b2s −

|sφk (t)|√
2t(mw + mϑ + mρ + m%)

< bs. (44)

Further, according to the definition of sk , we have

|sk (t)| ≤ |sk (0)|e−µt + |sφ,k (t)| < |sk (0)|e−µt + bs. (45)

From (40), we can see that Lk (t) is bounded, which fur-
ther leads to the boundedness of sk , eeek , xxxk , ξξξ k and ϕϕϕk .
By the property of saturation functions, wwwk , ϑϑϑk , ρk and
%k are also guaranteed to be bounded. On basis of above
conclusions, we can deduce that u1,k is bounded from (23).
Then, u2,k , uk and all other signals can be verified to be
bounded.

Part B. The convergence of tracking error
On the basis of (31) and (32), we have

Lk ≤ −
∫ t

0
γ1g1

$1,k

$ 2
2,k

s2φ,kdτ +
∫ t

0

$1,k

$ 3
2,k

sφ,k

×g1(w̃ww
T
k ξξξ k + ϑ̃ϑϑ

T
k ϕϕϕk )dτ +

∫ t

0

$1,k

|$2,k |3

(
|sφ,k |g1

×ρ̃kx21,k |u1,k | + |sφ,k |g1%̃k
)
dτ

+
g1
2γ2

∫ t

0
w̃wwTk w̃wwkdτ +

g1
2γ3

∫ t

0
ϑ̃ϑϑ
T
k ϑ̃ϑϑkdτ

+
g1
2γ4

∫ t

0
ρ̃2k dτ +

g1
2γ5

∫ t

0
%̃2kdτ. (46)

While k > 0, from (46), we can derive

Lk − Lk−1

≤ −

∫ t

0
γ1g1

$1,k

$ 2
2,k

s2φ,kdτ +
∫ t

0

sφ,k ($1,k )

$ 3
2,k

×g1(w̃ww
T
k ξξξ k + ϑ̃ϑϑ

T
k ϕϕϕk )dτ +

∫ t

0

$1,k

|$2,k |3

(
|sφ,k |g1

×ρ̃kx21,k |u1,k | + |sφ,k |g1%̃k
)
dτ

+
g1
2γ2

∫ t

0
(w̃wwTk w̃wwk − w̃ww

T
k−1w̃wwk−1)dτ +

g1
2γ3

∫ t

0
(ϑ̃ϑϑ

T
k ϑ̃ϑϑk

−ϑ̃ϑϑ
T
k−1ϑ̃ϑϑk−1)dτ +

g1
2γ4

∫ t

0
(ρ̃2k − ρ̃

2
k−1)dτ

+
g1
2γ5

∫ t

0
(%̃2k − %̃

2
k−1)dτ + Vk (0)− Vk−1. (47)

Note that in (47), Vk (0) = 0. By using the relationship (υ −
q)2 − (υ − ς )2 ≤ (υ − q)2 − (υ − satς,ς̄ (ς ))2, from (25),
we obtain

g1
2γ2

(w̃wwTk w̃wwk − w̃ww
T
k−1w̃wwk−1)+ g1

sφ,k ($1,k )

$ 3
2,k

w̃wwTk ξξξ k

≤
g1
2γ2

[(www−wwwk )T (www−wwwk )− (www− satw,w̄(wwwk−1))T (www

−satw,w̄(wwwk−1))]+ g1
sφ,k ($1,k )

$ 3
2,k

w̃wwTk ξξξ k

≤
g1
2γ2

(2www−wwwk − satw,w̄(wwwk−1))T (satw,w̄(wwwk−1)−wwwk )

+g1
sφ,k ($1,k )

$ 3
2,k

w̃wwTk ξξξ k

≤
g1
γ2

(www−wwwk )T [satw,w̄(wwwk−1)−wwwk +
γ2sφ,k ($1,k )ξξξ k

$ 3
2,k

]

= 0. (48)
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From (26), we have

g1
2γ2

(ϑ̃ϑϑ
T
k ϑ̃ϑϑk − ϑ̃ϑϑ

T
k−1ϑ̃ϑϑk−1)+ g1

sφ,k ($1,k )

$ 3
2,k

ϑ̃ϑϑ
T
k ϕϕϕk

≤
g1
2γ2

[(ϑϑϑ∗ − ϑϑϑk )T (ϑϑϑ∗ − ϑϑϑk )− (ϑϑϑ∗ − satϑ,ϑ̄ (ϑϑϑk−1))
T (ϑϑϑ∗

−satϑ,ϑ̄ (ϑϑϑk−1))]+ g1
sφ,k ($1,k )

$ 3
2,k

ϑ̃ϑϑ
T
k ϕϕϕk

≤
g1
2γ2

(2ϑϑϑ∗ − ϑϑϑk − satϑ,ϑ̄ (ϑϑϑk−1))
T (satϑ,ϑ̄ (ϑϑϑk−1)− ϑϑϑk )

+g1
sφ,k ($1,k )

$ 3
2,k

ϑ̃ϑϑ
T
k ϕϕϕk

≤
g1
γ2

(ϑϑϑ∗ − ϑϑϑk )T
[
satϑ,ϑ̄ (ϑϑϑk−1)− ϑϑϑk + γ2

sφ,k ($1,k )

$ 3
2,k

ϕϕϕk
]

= 0. (49)

Similarly, from (27) and (28), we can obtain

g1
2γ4

(ρ̃2k − ρ̃
2
k−1)+

g1ρ̃k |sφ,k |x21,k |u1,k |($1,k )

|$2,k |3

≤
g1
γ4

(ρ − ρk )
[
sat0,ρ̄(ρk−1)− ρk + γ4|sφ,k |x21,k |u1,k |

×
$1,k

|$2,k |3

]
= 0 (50)

and

g1
2γ5

(%̃2k − %̃
2
k−1)+

g1|sφ,k |%̃k ($1,k )
|$2,k |3

≤
g1
γ5

(% − %k )
[
sat0,%̄(%k−1)− %k +

γ5|sφ,k |($1,k )
|$2,k |3

]
= 0, (51)

respectively. Substituting (48)-(51) into (47) yields

Lk (t)− Lk−1(t) ≤ −Vk−1(t) (52)

By using the recursive relation (52) and the definition of
Vk−1, we can further obtain

Lk (t) ≤ L0(t)−
1
2

k−1∑
j=0

s2φ,j(t) (53)

for k > 0.
It can be seen from (40) that L0(t) is bounded for t ∈ [0,T ].

Therefore, there exists a positive constantmL , which satisfies
the equality as follows:

L0 ≤ mL . (54)

Combining (53) with (54), we can draw a conclusion that

lim
k→+∞

sφ,k (t) = 0 (55)

holds for all t ∈ [0,T ], which means

lim
k→+∞

|sk (t)| ≤ |sk (0)|e−µt ,∀t ∈ [0,T ]. (56)

TABLE 1. Parameters in the PAM system.

By using the relationship

ė1,k + λe1,k = sk , (57)

from (56), we can obtain

|e1,k (t)| = e−λt |e1,k (0)| +
e−µt − e−λt

λ− µ
|sk (0)| (58)

as the iteration number k increases. Therefore, by choosing
proper positive numbers λ and µ, |e1,k (t)|may exponentially
converge with respect to t .
In this work, difference learning method is applied to

estimate unknown parameters, the optimal weight of FLS,
and the upper bound of the sum of approximation error and
noncontinuous disturbance. Since the uncertain input gain
contains angle state signal and unknown parameters, it is
difficult to design iterative learning controller through direct
estimating all contained unknown parameters. Robust control
strategy is used to deal with this difficulty during controller
design.

V. NUMERICAL SIMULATION
To verify the correctness of above theoretical analysis, numer-
ical simulation was performed for the PAM system (6),
where dυ (θ, θ̇ , t) = 2 + 0.5x21x

2
2 + 0.8 sin(x1,j)x2,j +

0.2sgn(x1,jx2,j) + 0.2rand1, [x1,k (0), x2,k (0) = [0.7 +
0.1rand2,−0.05+0, 05rand3]T and the model parameters are
listed in TABLE 1. The control objective is to let x1,k track the
reference trajectory x1,d = 0.5 cos( π2.5 t) under the condition
that x1,k (0) 6= x1,d (0) and x2,k (0) 6= x2,d (0). Here, rand1,
rand2 and rand3 denote random numbers between 0 and 1.
In the implementation, seven fuzzy sets are characterized

by the following membership functions.

µF1
i
(xi,k ) = exp[−

1
2
(
xi,k + 1.5

0.7
)2],

µF2
i
(xi,k ) = exp[−

1
2
(
xi,k + 1
0.7

)2],

µF3
i
(xi,k ) = exp[−

1
2
(
xi,k + 0.5

0.7
)2],

µF4
i
(xi,k ) = exp[−

1
2
(
xi,k
0.7

)2],

µF5
i
(xi,k ) = exp[−

1
2
(
xi,k − 0.5

0.7
)2],

µF6
i
(xi,k ) = exp[−

1
2
(
xi,k − 1
0.7

)2],

µF7
i
(xi,k ) = exp[−

1
2
(
xi,k − 1.5

0.7
)2], i = 1, 2.

The control parameters and gains in control law (22) and
learning laws (25)-(26) are set as follows: λ = 2, µ = 5,
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FIGURE 2. x1 and its reference signal x1,d (constraint ILC).

FIGURE 3. x2 and its reference signal x2,d (constraint ILC).

FIGURE 4. The error e1 (constraint ILC).

γ1 = 5, γ2 = 1, γ3 = 1, µ4 = 0.01, µ5 = 0.01, bs =
0.25,T = 7s. After 15 iteration cycles, the simulation
results are shown in Figs. 2-7. Figs. 2-3 show the profiles
of angle position and angular velocity at the 15th learning
cycle, respectively. The corresponding tracking error profiles
presented in Figs. 4-5, respectively. From Figs. 2-5, we con-
clude that xxx = [x1,k , x2,k ]T can precisely track xxxd (t) =
[x1,d , x2,d ]T . The control input at the 15th learning cycle
is shown in Fig. 6. Fig. 7 gives the convergence history
of sφ,k in the filtering-error constrained ILC, where Jk ,
maxt∈[0,T ] |sφ,k |. From Fig. 7, we can see that the constraint
sφ,k < bs holds for each iteraion.

FIGURE 5. The error e2 (constraint ILC).

FIGURE 6. Control input(constraint ILC).

FIGURE 7. History of sφ,k convergence(constraint ILC).

To verify the effectiveness of our proposed ILC algorithm,
two comparison examples are provided in the following part.
Comparison A: To verify the constraint property of our pro-

posed ILC algorithm, the simulation applying non-constraint
adaptive ILC (60)-(65) is studied for PAM system (6).

uk = u1,k + u2,k , (59)

u1,k = −γ1sφ,k −wwwTk ξξξ k − ϑϑϑ
T
k ϕϕϕk , (60)

u2,k = −(ρkx21 |u1,k | + %k )sat−1,1

(
sk (t)
φk (t)

)
(61)

wkwkwk = satw,w̄(wwwk−1)+ γ2sφ,kξξξ k ,w−1w−1w−1 = 0, (62)
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FIGURE 8. History of sφ,k convergence( unconstraint ILC).

FIGURE 9. x1 and its reference signal x1,d (time-invariant boundary layer
based ILC).

ϑkϑkϑk = satϑ,ϑ̄ (ϑϑϑk−1)+ γ3sφ,kϕϕϕk ,ϑ−1ϑ−1ϑ−1 = 0, (63)

ρk = sat0,ρ̄(ρk−1)+ γ4|sφ,k |x21,k |u1,k |, ρ−1 = 0, (64)

%k = sat0,%̄(%k−1)+ γ5|sφ,k |, %−1 = 0. (65)

The control parameters here are set as λ = 2, µ = 5, γ1 =
5, γ2 = 1, γ3 = 1, µ4 = 0.01, µ5 = 0.01 and T = 7s.
Fig. 8 shows that |sφ,k | converges to a tunable residual set as
the iteration increases, but the constraint inequality sφ,k < bs
is violated. The definition of Jk in Fig. 8 is the same as the one
in Fig. 7. Comparing Fig. 7 with Fig. 8, we can see that our
constraint adaptive ILC algorithm is effective in both error
convergence and system error constraint.
Comparison B: To show the necessity of dealing with

initial position problem, the robust adaptive ILC algo-
rithm based on time-invariant boundary layer is adopted for
simulation.

uk = u1,k + u2,k , (66)

u1,k = −γ1sη,k −wwwTk ξξξ k − ϑϑϑ
T
k ϕϕϕk , (67)

u2,k = −(ρkx21 |u1,k | + %k )sat−1,1
( sk
η

)
(68)

wkwkwk = satw,w̄(wwwk−1)+ γ2sη,kξξξ k ,w−1w−1w−1 = 0, (69)

ϑkϑkϑk = satϑ,ϑ̄ (ϑϑϑk−1)+ γ3sη,kϕϕϕk ,ϑ−1ϑ−1ϑ−1 = 0, (70)

ρk = sat0,ρ̄(ρk−1)+ γ4|sη,k |x21,k |u1,k |, ρ−1 = 0, (71)

%k = sat0,%̄(%k−1)+ γ5|sη,k |, %−1 = 0, (72)

FIGURE 10. x2 and its reference signal x2,d (time-invariant boundary
layer based ILC).

FIGURE 11. Maximum of |sη,k | in the iteration domain(time-invariant
boundary layer based ILC).

where sη,k = sk − ηsat−1,1(
sk
η
), η is a positive constant.

Set η = 0.1, and other control parameters are set as same
as the one in Comparison A. Figs. 9-10 show the profiles of
angle position and angular velocity at the 15th learning cycle,
respectively. Fig. 11 shows that the maximum of |sη,k | in the
iteration domain, where Jc,k , maxt∈[0,T ] |sη,k |. cannot be
obtained as the iteration increases. From Figs.9-11, we can
see that the tracking control performance is not satisfied.
These simulation results verify the effectiveness of our pro-
posed filtering-error constrained adaptive ILC scheme.

VI. CONCLUSION
A filtering-error constrained adaptive learning fuzzy control
scheme is proposed to solve the tracking problem of PAM
systems in this paper. To achieve system constraint in iter-
ations, a new type of barrier Lyapunov function is intro-
duced in controller design. The initial position problem of
ILC for PAM systems is handled by using the technique of
time-varying boundary layer. The continuous nonparametric
uncertainties in the PAM system is compensated by the adap-
tive leaning FLS, whose optimal weight is estimated by dif-
ference learning approach. It is shown that the angle tracking
error and angular velocity tracking error can asymptotically
converge to a tunable residual set as the iteration number goes
to infinity.

41836 VOLUME 10, 2022



X. Guan et al.: Filtering-Error Constrained Angle Tracking Adaptive Learning Fuzzy Control for PAM Systems

REFERENCES
[1] D. Liang, N. Sun, Y. Wu, Y. Chen, Y. Fang, and L. Liu, ‘‘Energy-

based motion control for pneumatic artificial muscle actuated robots with
experiments,’’ IEEE Trans. Ind. Electron., vol. 69, no. 7, pp. 7295–7306,
Jul. 2022, doi: 10.1109/TIE.2021.3095788.

[2] H. Yang, Y. Yu, and J. Zhang, ‘‘Angle tracking of a pneumatic muscle
actuator mechanism under varying load conditions,’’ Control Eng. Pract.,
vol. 61, pp. 1–10, Apr. 2017.

[3] L. Zhao, H. Cheng, J. Zhang, and Y. Xia, ‘‘Angle attitude control for a
2-DOF parallel mechanism of PMAs using tracking differentiators,’’ IEEE
Trans. Ind. Electron., vol. 66, no. 11, pp. 8659–8669, Nov. 2019.

[4] G. Andrikopoulos, G. Nikolakopoulos, and S.Manesis, ‘‘Advanced nonlin-
ear PID-based antagonistic control for pneumatic muscle actuators,’’ IEEE
Trans. Ind. Electron., vol. 61, no. 12, pp. 6926–6937, Dec. 2014.

[5] K. Xing, Q. Xu, J. Huang, Y. Wang, J. He, and J. Wu, ‘‘Tracking control
of pneumatic artificial muscle actuators based on sliding mode and non-
linear disturbance observer,’’ IET Control Theory Appl., vol. 4, no. 10,
pp. 2058–2070, Oct. 2010.

[6] N. Sun, D. Liang, Y. Wu, Y. Chen, Y. Qin, and Y. Fang, ‘‘Adaptive control
for pneumatic artificial muscle systems with parametric uncertainties and
unidirectional input constraints,’’ IEEE Trans. Ind. Informat., vol. 16, no. 2,
pp. 969–979, Feb. 2020.

[7] J.-P. Cai, F. Qian, R. Yu, and L. Shen, ‘‘Adaptive control for a pneu-
matic muscle joint system with saturation input,’’ IEEE Access, vol. 8,
pp. 117698–117705, 2020.

[8] J. Huang, J. Qian, L. Liu, Y. Wang, C. Xiong, and S. Ri, ‘‘Echo state net-
work based predictive control with particle swarm optimization for pneu-
matic muscle actuator,’’ J. Franklin Inst., vol. 353, no. 12, pp. 2761–2782,
Aug. 2016.

[9] L. Zhao, H. Cheng, Y. Xia, and B. Liu, ‘‘Angle tracking adaptive back-
stepping control for a mechanism of pneumatic muscle actuators via
an AESO,’’ IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4566–4576,
Jun. 2019.

[10] D. Zhang, X. Zhao, and J. Han, ‘‘Active model-based control for pneu-
matic artificial muscle,’’ IEEE Trans. Ind. Electron., vol. 64, no. 2,
pp. 1686–1695, Feb. 2017.

[11] R. Chi, X. Liu, R. Zhang, Z. Hou, and B. Huang, ‘‘Constrained data-driven
optimal iterative learning control,’’ J. Process Control, vol. 55, pp. 10–29,
Jul. 2017.

[12] D. Huang, W. Yang, T. Huang, N. Qin, Y. Chen, and Y. Tan, ‘‘Iterative
learning operation control of high-speed trains with adhesion dynam-
ics,’’ IEEE Trans. Control Syst. Technol., vol. 29, no. 6, pp. 2598–2608,
Nov. 2021, doi: 10.1109/TCST.2021.3049958.

[13] B. Jia, S. Liu, and Y. Liu, ‘‘Visual trajectory tracking of industrial manip-
ulator with iterative learning control,’’ Ind. Robot, Int. J., vol. 42, no. 1,
pp. 54–63, Jan. 2015.

[14] D. Meng and J. Zhang, ‘‘Robust optimization-based iterative learning
control for nonlinear systems with nonrepetitive uncertainties,’’ IEEE/CAA
J. Autom. Sinica, vol. 8, no. 5, pp. 1001–1014, May 2021.

[15] D. Shen, ‘‘Iterative learning control with incomplete information: A sur-
vey,’’ IEEE/CAA J. Autom. Sinica, vol. 5, no. 5, pp. 885–901, Jul. 2018.

[16] J. Liu, X. Ruan, and Y. Zheng, ‘‘Iterative learning control for discrete-time
systems with full learnability,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 2, pp. 629–643, Feb. 2022.

[17] Y.Wang, E. Dassau, and F. J. Doyle, ‘‘Closed-loop control of artificial pan-
creatic β-cell in type 1 diabetes mellitus using model predictive iterative
learning control,’’ IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 211–219,
Feb. 2010.

[18] T. Hu, K. H. Low, L. Shen, and X. Xu, ‘‘Effective phase tracking for bioin-
spired undulations of robotic fish models: A learning control approach,’’
IEEE/ASME Trans. Mechatronics, vol. 19, no. 1, pp. 191–200, Feb. 2014.

[19] X. Li, J.-X. Xu, and D. Huang, ‘‘An iterative learning control approach for
linear systems with randomly varying trial lengths,’’ IEEE Trans. Autom.
Control, vol. 59, no. 7, pp. 1954–1960, Jul. 2014.

[20] X. Bu, Q. Yu, Z. Hou, andW. Qian, ‘‘Model free adaptive iterative learning
consensus tracking control for a class of nonlinear multiagent systems,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 4, pp. 677–686,
Apr. 2019.

[21] J. Li and J. Li, ‘‘Distributed adaptive fuzzy iterative learning control of
coordination problems for higher order multi-agent systems,’’ Int. J. Syst.
Sci., vol. 47, no. 10, pp. 2318–2329, Feb. 2015.

[22] G. Li, Y. Han, T. Lu, D. Chen, and H. Chen, ‘‘Iterative learning control
for nonlinear multi-agent systems with initial shifts,’’ IEEE Access, vol. 8,
pp. 144343–144351, 2020.

[23] X. Dai and X. Zhou, ‘‘Mixed PD-type iterative learning control algorithm
for a class of parabolic singular distributed parameter systems,’’ IEEE
Access, vol. 9, pp. 12180–12190, 2021.

[24] W. Cao, J. Qiao, and M. Sun, ‘‘Consensus control via iterative learning
for singular multi-agent systems with switching topologies,’’ IEEE Access,
vol. 9, pp. 81412–81420, 2021.

[25] C.-J. Chien, C.-T. Hsu, and C.-Y. Yao, ‘‘Fuzzy system-based adaptive
iterative learning control for nonlinear plants with initial state errors,’’
IEEE Trans. Fuzzy Syst., vol. 12, no. 5, pp. 724–732, Oct. 2004.

[26] X.-D. Li, M.-M. Lv, and J. K. L. Ho, ‘‘Adaptive ILC algorithms
of nonlinear continuous systems with non-parametric uncertainties for
non-repetitive trajectory tracking,’’ Int. J. Syst. Sci., vol. 47, no. 10,
pp. 2279–2289, 2016.

[27] Q. Z. Yan, M. X. Sun, and H. Li, ‘‘Iterative learning control for nonlinear
uncertain systems with arbitrary initial state,’’ Acta Autom. Sinica, vol. 42,
no. 4, pp. 545–555, Apr. 2016.

[28] J.-X. Xu, X. Jin, and D. Huang, ‘‘Composite energy function-based itera-
tive learning control for systems with nonparametric uncertainties,’’ Int. J.
Adapt. Control Signal Process., vol. 28, no. 1, pp. 1–13, 2014.

[29] X. Jin and J.-X. Xu, ‘‘A barrier composite energy function approach for
robot manipulators under alignment condition with position constraints,’’
Int. J. Robust Nonlinear Control, vol. 24, no. 17, pp. 2840–2851, 2014.

[30] G. Zhu, X. Wu, Q. Yan, and J. Cai, ‘‘Robust learning control for tank gun
control servo systems under alignment condition,’’ IEEE Access, vol. 7,
pp. 145524–145531, 2019.

[31] Q. Ai, D. Ke, J. Zuo, W. Meng, Q. Liu, Z. Zhang, and S. Q. Xie, ‘‘High-
order model-free adaptive iterative learning control of pneumatic artificial
muscle with enhanced convergence,’’ IEEE Trans. Ind. Electron., vol. 67,
no. 11, pp. 9548–9559, Nov. 2020.

[32] D. Guo, W. Wang, Y. Zhang, Q. Yan, and J. Cai, ‘‘Angle tracking robust
learning control for pneumatic artificial muscle systems,’’ IEEE Access,
vol. 9, pp. 142232–142238, 2021.

[33] E. G. Gilbert and K. T. Tan, ‘‘Linear systems with state and control con-
straints: The theory and application of maximal output admissible sets,’’
IEEE Trans. Autom. Control, vol. 36, no. 9, pp. 1008–1020, Sep. 1991.

[34] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, ‘‘Con-
strained model predictive control: Stability and optimality,’’ Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[35] K. Kogiso and K. Hirata, ‘‘Reference governor for constrained systems
with time-varying references,’’ inProc. IEEE Int. Conf.Multisensor Fusion
Integr. Intell. Syst., Sep. 2006, pp. 359–364.

[36] X. Jin, Z. Wang, and R. H. S. Kwong, ‘‘Convex optimization based
iterative learning control for iteration-varying systems under output con-
straints,’’ in Proc. 11th IEEE Int. Conf. Control Autom. (ICCA), Jun. 2014,
pp. 1444–1448.

[37] K. B. Ngo, R. Mahony, and Z.-P. Jiang, ‘‘Integrator backstepping using
barrier functions for systems with multiple state constraints,’’ in Proc. 44th
IEEE Conf. Decis. Control, 2005, pp. 8306–8312.

[38] L. Liu, Y. J. Liu, S. C. Tong, and C. L. P. Chen, ‘‘Integral barrier Lyapunov
function-based adaptive control for switched nonlinear systems,’’ Sci.
China Inf. Sci., vol. 63, no. 3, pp. 1–14, 2020.

[39] X. Jin and J.-X. Xu, ‘‘Iterative learning control for output-constrained sys-
tems with both parametric and nonparametric uncertainties,’’ Automatica,
vol. 49, no. 8, pp. 2508–2516, 2013.

[40] Q. Z. Yan and M. X. Sun, ‘‘Error-tracking iterative learning control with
state constrained for nonparametric uncertain systems,’’ Control Theory
Appl., vol. 32, no. 7, pp. 895–901, Jul. 2015.

[41] Q. Yu, Z. Hou, and R. Chi, ‘‘Adaptive iterative learning control for non-
linear uncertain systems with both state and input constraints,’’ J. Franklin
Inst., vol. 353, no. 15, pp. 3920–3943, Oct. 2016.

[42] X. Jin, ‘‘Iterative learning control for non-repetitive trajectory tracking of
robot manipulators with joint position constraints and actuator faults,’’ Int.
J. Adapt. Control Signal Process., vol. 31, no. 6, pp. 859–875, Jun. 2017.

[43] L. X. Wang, A Course in Fuzzy Systems. Upper Saddle River, NJ, USA:
Prentice-Hall, 1999.

[44] J. Cai, C. Wen, L. Xing, and Q. Yan, ‘‘Decentralized backstepping con-
trol for interconnected systems with non-triangular structural uncertain-
ties,’’ IEEE Trans. Autom. Control, early access, Feb. 16, 2022, doi:
10.1109/TAC.2022.3152083.

[45] W. Qi, G. Zong, and W. X. Zheng, ‘‘Adaptive event-triggered SMC for
stochastic switching systems with semi-Markov process and application to
boost converter circuit model,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 2, pp. 786–796, Feb. 2021.

VOLUME 10, 2022 41837

http://dx.doi.org/10.1109/TIE.2021.3095788
http://dx.doi.org/10.1109/TCST.2021.3049958
http://dx.doi.org/10.1109/TAC.2022.3152083


X. Guan et al.: Filtering-Error Constrained Angle Tracking Adaptive Learning Fuzzy Control for PAM Systems

[46] W. Qi, J. H. Park, G. Zong, J. Cao, and J. Cheng, ‘‘Filter for posi-
tive stochastic nonlinear switching systems with phase-type semi-Markov
parameters and application,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 52, no. 4, pp. 2225–2236, Apr. 2022.

[47] H. He, W. Qi, Z. Liu, and M. Wang, ‘‘Adaptive attack-resilient control
for Markov jump system with additive attacks,’’ Nonlinear Dyn., vol. 103,
no. 2, pp. 1585–1598, Jan. 2021.

[48] X. Zheng andX. Yang, ‘‘Command filter and universal approximator based
backstepping control design for strict-feedback nonlinear systems with
uncertainty,’’ IEEE Trans. Autom. Control, vol. 65, no. 3, pp. 1310–1317,
Mar. 2020.

[49] J. Kong, B. Niu, Z. Wang, P. Zhao, and W. Qi, ‘‘Adaptive output-feedback
neural tracking control for uncertain switched MIMO nonlinear systems
with time delays,’’ Int. J. Syst. Sci., vol. 52, no. 13, pp. 2813–2830,
Oct. 2021.

XIAOHUI GUAN received the master’s degree
in computer science from Zhejiang University,
Hangzhou, China, in 2005. She is currently
an Associate Professor with the College of
Information Engineering, Zhejiang University of
Water Resources and Electric Power. Her current
research interests include machine learning and
adaptive control.

ZHONGJIE HE (Member, IEEE) received the
B.S. degree in automation from Hangzhou Dianzi
University, Hangzhou, China, in 2003, and
the Ph.D. degree in electrical engineering
from Zhejiang University, Hangzhou, in 2009.
From 2009 to 2012, he worked as an Electrical
Engineer at the Zhejiang Electric Power Planning
and Design Institute, State Grid, Hangzhou. Since
2012, he has been working as a Lecturer at the Col-
lege of Automation, Hangzhou Dianzi University.

His current research interests include artificial intelligence, adaptive control,
scheduling optimization, and muti-objective programming. He is a member
of the Chinese Association of Artificial Intelligence and the Director of the
IEEE PES Electric Vehicle Satellite Committee-China.

MEIYAN ZHANG was born in Sanmen, Taizhou,
Zhejiang, China, in 1983. She received the B.S.
and master’s degrees from the Zhejiang Univer-
sity of Technology, Hangzhou, China, in 2006 and
2009, respectively. She then joined a postgraduate
program at the Institute of Automation, Zhejiang
University of Technology. From 2016 to 2017, she
was a Visiting Research Scholar at Missouri Uni-
versity, Rolla, MO, USA. She joined the College
of Electrical Engineering, Zhejiang University of

Water Resources and Electric Power, as an Associate Professor. In recent
years, she has published more than 20 papers on wireless sensor networks
and holds more than ten patents. Her research interests include wireless
communication, wireless sensor networks, and multimedia sensor networks.

HUIJIE XIA is currently pursuing the B.S. degree
in the IoT engineering with the College of Infor-
mation Engineering, Zhejiang University of Water
Resources and Electric Power, Hangzhou, China.
His current research interests include embedded
system development and nonlinear system control.

41838 VOLUME 10, 2022


