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ABSTRACT A space elevator is a futuristic space transportation technology that enables low-cost and
versatile payload transportation using climbers on a tether deployed from the geostationary orbit (GEO).
In particular, a nonequatorial space elevator, which contains an anchor in a region with latitudes on the
Earth, has recently attracted attention. It has several advantages, such as extending the construction range
and avoiding collisions with spacecraft in the GEO. Prior research has focused on rigid-body or spring-
mass models with low fidelity. This paper proposes a modeling method for nonequatorial space elevators
using a nodal-position finite element method (NPFEM) extended to a rotational coordinate system. The
NPFEM is a three-dimensional finite element method that considers geometric nonlinearity. Conventional
NPFEMs have only been formulated using inertial coordinate systems. This paper proposes a method to
formulate the NPFEM in a noninertial coordinate system and derive the inertial forces and Jacobian matrices.
In addition, a three-dimensional analysis of a nonequatorial space elevator was performed based on the
proposed method. After determining the equilibrium position of the NPFEM, the dynamic response of the
tether during climber ascent was analyzed. Moreover, parametric studies were conducted by varying several
properties of the nonequatorial space elevator. Furthermore, the energy exchange between the components
was analyzed to validate the proposed method and to discuss the energy perspective of the space elevator.
The results revealed that the proposed nonequatorial space elevator model experienced a more tensioned
equilibrium and exhibited a more significant dynamic response than conventional models.

INDEX TERMS Space elevator, nonequatorial, NPFEM, dynamic response, energy exchange.

NOMENCLATURE Nrate Ratio of period for acceleration/deceleration

A Cross-sectional area of tether. to overall ascent period.

Ay Cross-sectional area of tether at anchor point. q Generalized coordinate vector.

E Modulus of longitudinal elasticity. Qe Generalized elastic force vector.

K Kinetic energy. Q. Generalized gravitational force vector.

l Length of tether element after deformation. Q. Generalized centrifugal force vector.

ly Length of tether element before deformation. Qco Generalized Coriolis force vector.

me  Mass of climber. r Position vector.

mew  Mass of counterweight. S Shape function.

M Mass matrix. Tcimp  Total ascending period for climber.

Nele Number of elements. Uel Elastic potential energy.

U, Potential energy due to gravitational force.
The associate editor coordinating the review of this manuscript and U, Potential energy due to centrifugal force.

approving it for publication was Rosario Pecora . Vrmax Maximum relative velocity of climber to tether.
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Xcl Position of climber in local coordinate system.
% Geocentric constant

P Material density of tether.

Oa Allowable stress of tether.

WE Angular velocity of rotation of the Earth.

Qg Angular velocity vector of rotation of the Earth.
Oa Anchor latitude.

©Va Anchor longitude.

y Second-order time derivative of constraint

equation for climber.

Ocw Vector or matrix for counterweight.
Oa Vector or matrix for climber.
O¢ Vector or matrix for one tether element.
Otean Superposed vector or matrix composed of
all tether elements.
Oemiire  Vector or matrix for entire space elevator system.

I. INTRODUCTION

A. STUDY BACKGROUND

1) SPACE ELEVATOR

The space elevator concept holds enormous potential for
futuristic space transportation, as it can transport payloads
on a climber that moves on a tether deployed from a geo-
stationary orbit (GEO) toward the Earth and deep space.
Artsutanov [1] pioneered the idea of space elevators, and
subsequently, Pearson [2] submitted a technical paper that
triggered scientific research regarding this innovative con-
cept. Although the limitation of suitable materials remains
a bottleneck, the discovery of carbon nanotubes (CNTs) by
Iijima [3] convinced NASA [4] and Edwards [5] to seriously
consider their feasibility in constructing a space elevator.
Space elevators are expected to be a futuristic means of
space transportation and traffic owing to their low cost and
reusability. Nonetheless, there are still several issues regard-
ing space elevators, such as the strength of tether materials,
manufacturing technology for long tethers, and tether rupture
caused by space debris. In general, numerical simulations
are employed to comprehend the tether dynamics of space
elevators. Pearson [2] modeled a tether as a string consid-
ering its high tension and low bending stiffness and ana-
lyzed their modal oscillations. Pearson [2] also proposed a
tapered cross-section to maintain constant stress across the
tether, regardless of the location, for safety purposes. Subse-
quently, Cohen and Misra [6] proposed a tapered model con-
sidering the elongation and deformation of the tether under
its own weight. In addition to analyzing the modal oscilla-
tions of the tether, Cohen and Misra [7] evaluated the tether
deformation based on the mass of the climber. They clari-
fied that considering the climber mass influences the tether
oscillation.

2) NONEQUATORIAL SPACE ELEVATOR
Most space elevators discussed to date are based on a simple

concept: the tether connects to the equatorial plane of the
Earth. In 2004, Gassend [8] proposed a model in which the
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tether was connected to a nonequatorial plane of the Earth.
In particular, the nonequatorial space elevator offers the fol-
lowing advantages: 1) expansion of the possible construction
area, 2) avoidance of collision with spacecraft in the GEO,
3) avoidance of high-radiation area of cosmic rays (Van Allen
belt), and 4) avoidance of collision with Phobos and Deimos
(for Mars elevator). Advantage 1 can contribute to expanding
the technical options to consider the anchor location from
a geopolitical perspective, and advantage 2 is essential for
the environmental protection of GEO and benefits the sys-
tem sustainability of space elevators. Regarding advantage 3,
the Van Allen belt—a strong radiation belt containing pro-
tons and electrons captured by the Earth’s magnetic field—
surrounds the Earth in a toroidal shape. Space elevators are
expected to travel through space more slowly than rockets.
Therefore, diminishing the influence of the Van Allen belt
is of considerable advantage in the case of crewed space
transportation using space elevators. Because the thickness of
the Van Allen belt is highest near the equator, the placement of
the anchor at a higher latitude mitigates the influence of the
Van Allen belt [9]. Advantage 4 would aid the construction
of space elevators on Mars. This advantage led to the pro-
posal of nonequatorial space elevators for the Mars migration
program [10]. Although nonequatorial space elevators pos-
sess these attractive possibilities, the direction of the forces
acting on the tether is more complicated than that of equa-
torial space elevators, which creates challenges during the
analysis.

3) ANALYSIS OF TETHER DYNAMICS IN SPACE

The tether dynamics in space has been analyzed for various
situations. Takeichi [11] and Tao et al. [12] analyzed
the behavior of tether deployment during construction.
Aslanov et al. [13] proposed a simulation method for the
tether rupture behavior. In particular, the tether motion during
climber ascent should be analyzed to validate the system fea-
sibility and design the maximum payload and operating speed
of space elevators. The tether dynamics analysis at climber
ascent was first modeled by McInnes [14] in 2005 as a particle
moving on a tether. Subsequently, Cohen and Misra [15]
modeled the climber as a lumped mass and the tether as
rigid bars. The results revealed that the tether oscillated in
the equatorial plane because of the Coriolis force excited by
a moving climber. Accordingly, Williams and Ockels [16]
and Ishikawa et al. [17] proposed methods for suppressing
these oscillations. The dynamics of partial space elevators,
wherein the tether is not connected to the Earth, have also
been actively studied. Williams [18] proposed a spring-mass
model with multiple degrees of freedom for the dynamics of
a climber ascending and descending on a tether of a partial
space elevator. Shi et al. [19] proposed an optimal opera-
tion method and analyzed the tether oscillations of multiple
climbers on a partial space elevator. Future research should
clarify the effects of external disturbances such as the oblate-
ness of the Earth, atmosphere, heat, and perturbations by the
Moon and Sun.
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4) ANALYSIS OF TETHER DYNAMICS IN NONEQUATORIAL
SPACE ELEVATOR

To date, several studies have been conducted on the statics
and dynamics of nonequatorial space elevators. Gassend [8]
studied the latitudinal range applicable for nonequatorial
space elevators. Subsequently, Cowan and Leonard [10] mod-
eled the tether as rigid bar elements, and Wang et al. [20]
proposed a multibody-rigid-bar model and a spring-mass
model with multiple degrees of freedom applicable for
nonequatorial space elevators and obtained the equilibrium
position. Moreover, Wang et al. [21] analyzed the oscilla-
tion modes of the tether of a nonequatorial space elevator
using a spring-mass model with multiple degrees of free-
dom. They also analyzed tether dynamics during climber
ascent. Their research clarified the dynamic response of a
nonequatorial space elevator during climber ascent. Prior
studies have clarified the fundamental tether dynamics of
space elevators during climber ascent. However, only certain
high-fidelity models accurately represent the deformation of
flexible structures such as tethers. For instance, the model
developed by Wang et al. [21] exhibited low fidelity because
they neglected the continuity in the elements and the geomet-
ric nonlinearity of the tether. Thus, a model that can analyze
the deformation of tethers with high fidelity is essential to
study the feasibility of space elevators in detail.

In general, the finite element method (FEM) is used as
an analysis method to consider the deformation of a struc-
ture. The FEM enables the analysis of beams with complex
shapes such as stepped beams. However, the conventional
linear FEM is unsuitable for flexible structures such as teth-
ers because it cannot accurately represent large deforma-
tions in systems that include rigid body motion components.
Recently, nonlinear FEMs that can accurately represent large
deformations of flexible structures have garnered consider-
able attention, as reflected by their application in numerous
studies. Shabana [22] proposed the absolute nodal coordi-
nate formulation (ANCF), and Zhu et al. [23], [24] proposed
the nodal-position FEM (NPFEM) in 2003. Consequently,
Luo et al. [25] modeled an equatorial space elevator using
ANCEF and conducted a static analysis. Meanwhile, dynamic
analysis (i.e., time evolution problems) requires a long com-
putation period for large systems such as space elevators.
Therefore, the computational efficiency of nonlinear FEMs
should be improved for the application in space elevator
analysis. Accordingly, we will apply NPFEM to analyze
nonequatorial space elevators by extending to a noninertial
frame. In the NPFEM, each element is modeled as straight,
considering only the elongational deformation. In addition,
its generalized coordinates are positions in the absolute coor-
dinate system. Consequently, the coupling of elastic deforma-
tion in the elongation direction and the rigid body rotation of
each element can be efficiently described in three dimensions.
Moreover, the NPFEM approximates the mass matrix as a
constant, which is substantially advantageous for improving
the computational efficiency of the dynamic analysis. The
NPFEM employs fewer variables than the ANCF [26], even
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when applying low-order gradient-deficient ANCF elements
that are widely used for aerospace structures [27]-[29]. This
enables efficient three-dimensional simulation. Moreover,
when formulating a long tether with a polynomial approx-
imation function such as ANCEF, the equation of motion
needs to be nondimensionalized because it can significantly
exceed the order of magnitude retained by the computer [30].
In contrast, an NPFEM element does not require nondi-
mensionalization due to its linear shape function. Owing to
its desirable advantages, the NPFEM has been considered
suitable for analyzing flexible tether, e.g., dynamics analysis
of a towing tether for a submarine [31] and a conductive
tether for debris removal [32]. Li et al. [33] analyzed the
impact of ascending and descending multiple climbers on
tether dynamics in three dimensions using NPFEM. However,
it poses a limitation in the analysis for nonequatorial space
elevators. The conventional NPFEM is formulated only in
the inertial coordinate system, not the noninertial coordinate
system. As the nonequatorial space elevator is subject to
complex force directions in three dimensions, the equilib-
rium position used for the initial position cannot be obtained
intuitively, such as for an equatorial space elevator. Thus, the
equilibrium position of the space elevator must be determined
using a static analysis. When utilizing the NPFEM model
to represent geometric nonlinearity, the equilibrium position
of the space elevator in the NPFEM model must be known.
However, the NPFEM model formulated in the conventional
inertial coordinate system cannot conveniently analyze the
space elevator because the space elevator rotates at the same
angular velocity as the Earth.

B. RESEARCH OBJECTIVE

This paper pursues three objectives. First, we pro-
pose a nonequatorial space elevator analysis model with
higher fidelity than conventional approaches. Although
Wang et al. [21] developed simple models such as rigid bars
and spring masses to analyze the nonequatorial space ele-
vator, the rigid bar model cannot deal with the deformation
in the tether element. In addition, the spring-mass model
cannot represent the gravity gradient, and the geometric
nonlinearity is neglected in the conventional model proposed
by Wang et al. [21]. In alarge system such as a space elevator,
the inclusion or exclusion of these considerations when con-
structing the model can significantly impact its equilibrium
position and dynamics. This paper proposes a nonequatorial
space elevator analysis model that extends the NPFEM in
order to represent the rigid body motion and the elastic defor-
mation of the tether. Moreover, the coupling effect between
the motions of the climber and of the counterweight exists in
this model. Generally, nonlinear FEMs are computationally
more expensive than spring-mass models due to their multiple
degrees of freedom. Although Luo ef al. [25] utilized the
ANCEF to analyze the static problem of an equatorial space
elevator, the solution of the time-evolution problem for a
large-scale system such as the space elevator requires com-
putational efficiency. Since the NPFEM neglects the bending
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deformation and the corresponding elastic force, it has fewer
degrees of freedom than the ANCF. Therefore, we adopted
the NPFEM.

Second, we propose a method to formulate the NPFEM
model with geometric nonlinearities in a three-dimensional
Cartesian noninertial coordinate system. Due to the
three-dimensional gravitational field, the nonequatorial space
elevator is subject to a complicated equilibrium position.
Hence, a simple equilibrium position such as a straight tether
is not provided. Wang et al. [21] adopted a three-dimensional
Cartesian rotational coordinate system and obtained the
equilibrium position using static analysis prior to dynamic
analysis. On the other hand, the conventional NPFEM model
has been formulated only in the inertial coordinate system.
A model formulated in an inertial coordinate system unneces-
sarily increases the complexity when deriving the equilibrium
position of a nonequatorial space elevator. Therefore, this
paper proposes an NPFEM model described in a rotational
coordinate system. The equilibrium position of the NPFEM
model described in the rotational coordinate system should be
obtained to realize dynamic analysis. Furthermore, we pro-
pose a method to derive the generalized inertial force vectors
and their Jacobian matrices. Luo et al. [25] described the
ANCEF in a rotational coordinate system and formulated
the centrifugal force. However, in this paper, we formu-
lated the Coriolis force in addition to the centrifugal force.
It allowed us to analyze the dynamics more precisely.

Lastly, the energy of a nonequatorial elevator system was
analyzed to reveal the energy exchanges occurring between
the climber and the tether—counterweight system because the
energy flowing into the tether has not been quantitatively
discussed in prior space elevator dynamic analyses at climber
ascent. This paper discusses the energy exchange between the
climber and the tether—counterweight system of a nonequato-
rial space elevator based on the dynamic analysis results of
a nonlinear FEM. The current model considers the coupling
effect between the climber and the tether. It is valuable in
considering the feasibility of a space elevator from an energy
perspective.

The remainder of this paper is organized as follows.
The basic model of the analysis is presented in Section II,
wherein the basic parameters such as the total tether length,
tether material, and anchor latitude are set. After that,
these parameters are used to determine the properties of
the tapered cross-sectional area and counterweight mass
for the nonequatorial space elevators anchored at various
latitudes. In Section III, the nonequatorial space elevator
components: the tether, counterweight, and climber, are for-
mulated, extending the NPFEM to the noninertial frame.
Subsequently, the static and dynamic analyses of the tether
are conducted in Section IV, wherein the obtained results
were compared with those evaluated using other models.
In addition, the results of the parametric studies under various
climber mass and climber velocity conditions are discussed in
this section. Moreover, the proposed method is verified and
discussed based on the energy exchange between components
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in nonequatorial space elevators. Lastly, the results, findings,
future challenges, and future research directions are summa-
rized in Section V.

Il. PARAMETER DETERMINATION IN ANALYSIS OF
NONEQUATORIAL SPACE ELEVATOR

A. DESCRIPTION OF ANALYSIS MODEL

The coordinate system used in this paper is illustrated in
Fig. 1, wherein a three-dimensional Cartesian coordinate sys-
tem with the center of the Earth at origin O is described.
The X-Y plane denotes the equatorial plane, and the Z-axis
represents the rotation axis of the Earth. Overall, the coor-
dinate system is a noninertial coordinate system rotating
around the Z-axis with an angular velocity wg, where wg
indicates the angular velocity of the rotation of the Earth.
In addition, the X-axis denotes the line connecting the latitude
and longitude 0° on the Earth and origin O; the Y-axis is
considered a right-handed Cartesian coordinate system. The
gravitational and inertial forces act in this rotational coordi-
nate space. Rigorously, the Earth revolves around the Sun.
However, this paper neglects inertial effects related to the
Earth’s orbital revolution. A space elevator comprises a tether,
climber, counterweight, and anchor connecting the tether to
the Earth. The counterweight helps maintain the mechanical
balance of the space elevator even for a short tether; thus,
it can help reduce the oscillation amplitude of the tether.
It was assumed that both the climber and the counterweight
were lumped masses, and the Earth was assumed to be a
perfect sphere (zero oblateness). The effects of disturbances
such as tidal forces of the Sun and moon, atmospheric loads,
solar wind, and temperature variations were neglected. The
overall length of the tether was set to 1.0 x 10% m following
Edwards’ prior study [5].

The tether material was assumed to be composed of carbon
nanotubes (CNTs), discovered by lijima [3] in 1991. To date,
several experiments have been conducted to understand
the mechanical properties of CNTs. Salvetat et al. [34] esti-
mated the elastic modulus of single-walled carbon nanotubes
(SWCNTs) as 1.0 x 10° GPa, considered in this study.
Walters et al. [35] conducted tensile testing of ropes com-
posed of bundled fibers and determined the elastic range
of SWCNTs extended up to 5.8%. In this experiment [35],
the elastic elongation rate of CNTs was measured by mov-
ing the tip of an atomic force microscope perpendicular to
the SWCNT rope and translating the force acting on the
SWCNT into tension. Yu et al. [36] conducted tensile tests on
SWCNT ropes and observed approximately 1.1-5.3% elastic
strains. In comparison, Takakura et al. [37] observed a ten-
sile strength of approximately 6.6 x 10> GPa. As discussed
above, several scholars have conducted tests to determine
the tensile strength of CNTs. However, most results do not
correspond with theoretical ones because producing high-
purity CNTs without any defects and recording experimental
measurements with these CNTs are challenging. The strength
of CNTs is highly dependent on their structure, pressure,
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FIGURE 1. Components of space elevator and coordinate system of analysis model.
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FIGURE 2. (a) Resultant force vector of gravitational and centrifugal forces, (b) gravitational and centrifugal acceleration field of the Earth at

each altitude.

temperature, measurement method, synthesis method, and
so on. Therefore, this paper assumed an elastic elongation
rate of approximately 4% (reference stress: 4.0 x 10%> GPa),
referring to the experiments of Walters et al. [35]. The safety
factor was set as 2 [38], and the allowable stress o, was
assumed to be 2.0 x 10> GPa.

B. TETHER CROSS-SECTIONAL AREA

The magnitude and direction of the gravitational and centrifu-
gal forces acting on an object vary in their spatial positions.
A tether with a constant cross-sectional area is undesirable
and poses safety concerns because the magnitude of the
stress acting on the tether varies with its position. Therefore,
a tapered shape with varying cross-sectional areas depend-
ing on its position is generally considered. An appropriate
setting of the tapered shape avoids strong local stresses and
uniformly distributes constant stress. In 1975, Pearson [2]
conducted the first study of tapered cross-sectional properties
with constant stress at equilibrium. However, Pearson’s study
did not consider the elongation of the tether under its own
weight. After that, Cohen and Misra [6] proposed a tapered
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shape considering the elongation and deformation of the
tether under its own weight.

In nonequatorial space elevators, the direction of the com-
bined gravitational and centrifugal forces is complicated,
which creates difficulty in deriving the characteristics of
the tapered cross-sectional area using analytical methods.
In context, Wang et al. [20] proposed a numerical method
to determine the tapered shape of a nonequatorial space ele-
vator under constant stress for a rigid bar and spring-mass
model. Wang et al. [20] formulated the rigid bar model in
a two-dimensional planar coordinate system comprising the
X—Z axes. As reported, the same gravitational and centrifu-
gal forces can be obtained on any two-dimensional plane
containing the rotation axis [8]. Notably, the division into
a two-dimensional plane is effective only if no force exists
outside the plane, including the rotation axis. In the static
case, it can be considered in a two-dimensional plane. The
X—Z coordinate system plotted in the two-dimensional plane
is presented in Fig. 2, including the Z-axis: the rotation axis.
As indicated, the gravitational force was dominant in the
region proximate to the Earth than in the GEO radius of
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FIGURE 3. Tether cross-sectional area at each altitude for nonequatorial
space elevator.

4.1 x 107 m. In contrast, the centrifugal force caused by
the rotation of the Earth was dominant in the region located
farther from the GEO radius. In the rigid bar model proposed
by Wang et al. [20], the tether is divided into rigid bar ele-
ments, and the unknowns represent the cross-sectional area of
each node, magnitude and direction of the acting tension, and
angle between the rigid bar and equatorial plane. The solution
for these unknowns with a solver yields the tapered cross-
sectional area characteristics. The problem was solved using
the solver function “FSOLVE” in MATLAB. The compari-
son of the tether cross-sectional area for the varying anchor
latitude 6, is depicted in Fig. 3.

The number of elements Nge was set to 100, and the
cross-sectional area of the node connected to the anchor was
set as 1.0 x 10~® m2. The anchor latitude 6, was varied
within 0-20°. The tapered cross-section of the nonequatorial
space elevator evaluated using the rigid bar model provided
by Wang et al. [20] was consistent with the analytically
obtained cross-section characteristics of the equatorial space
elevator [6]. Notably, the cross-sectional characteristics did
not significantly vary with the latitude of the anchor. The
counterweight mass values at each latitude are also listed
in Table 1, which implies that a counterweight mass of
approximately 2.0 x 10 kg could achieve the mechanical
equilibrium of the system at any anchor latitude. Overall,
no solution could be found at latitudes greater than 20°. The
results provided by Wang et al. [20] revealed the range of the
solution was up to approximately 20° anchor latitude for an
allowable stress o, of 20 GPa on a tether, which is consistent.
Furthermore, the cross-sectional area obtained in the rigid bar
model was attributed to each nodal point. Therefore, when
applying a nonlinear FEM, the cross-sectional area should
be converted to an area acting on each element. This paper
assumed that the cross-sectional area of each element was
constant, and thus, the cross-sectional area in an element
Ajth-element Was evaluated as the average of the cross-sectional
areas Ajnode and Ajy1node Of the nodes at both ends of the
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TABLE 1. Counterweight mass mcy at each anchor latitude 6,.

Anchor latitude 6, [deg] 0 15 20

Counterweight mass m.,, [<10° kg] 2.15 2.20 2.25

AZ

Deformed

A ! B
[0

0)
X o | > X
Undeformed

v

\4

FIGURE 4. Expression of NPFEM element.

element, expressed as

Ajnode + Ai+l-node
) .

ey

Ajjth-element =

Ill. FORMULATION OF NONEQUATORIAL SPACE
ELEVATOR BY NONLINEAR FEM

A. FORMULATION OF NONEQUATORIAL SPACE ELEVATOR
IN NPFEM

The NPFEM proposed by Zhu et al. [23], [24] is a type of non-
linear FEM that considers geometric nonlinearities and can
efficiently analyze the three-dimensional motion of objects
with negligible bending stiffness such as tethers. Rigid-body
motion and elastic deformation are coupled in the NPFEM.
In this study, the tether was modeled as a stepped bar with
a constant cross-sectional area within the element. The one-
dimensional linear tether element is depicted in Fig. 4 in
the absolute coordinate system O—XYZ, wherein the position
vector r at any point on the x-axis of the element can be
expressed as follows:

3], @)

where rq, rp, and r3 denote the X-, Y-, and Z-directional
components of the position vector r at any point on the
x-axis of the element. All these components are defined in the
absolute coordinate system. As portrayed in Fig. 4, node A
denotes the point at x = 0, whereas node B is at x = I,
where [y denotes the natural length of the tether element. The
length of the tether element after deformation is defined as
l = |rB — r”|, using the position vectors r* and r® of the
nodes at both ends of the element in the absolute coordinate.

r=[rn n

rA, rB, and the ratio of Iy and x provide an arbitrary position
vector r in an element as
T
r=-9rt+e r=Sq a=| ()" (1#)']
3)
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FIGURE 5. Gravitational force fy.;, centrifugal force vector f, and
Coriolis force vector fc,_¢ acting on arbitrary point in element.

Note that &€ = x / lp. As shown in (3), a product of S and
q yields an arbitrary position vector r. The shape function S
is a linear function shown in the appendix. The generalized
coordinate vector q is composed of the global positions of the
nodes at both ends of the element. Thus, the NPFEM offers
six degrees of freedom per element. Moreover, the NPFEM
described in an absolute coordinate can accurately represent
the infinitesimal strains and large rotation motions.

M;, the mass matrix of each tether element, was derived
from the kinetic energy K; of the element, which can be
written as

1o 1.p .
Ki=- PAI' T dx = —q Mq, 4)
2 Jo 2

where p denotes the mass density of the tether element, and A
indicates the cross-sectional area. The constant mass matrix
M; in NPFEM is highly advantageous for improving the
computational efficiency of dynamic analysis.

The subsequent step is the derivation of the elastic force
vector Q)¢ generated by the stretching deformation of the
tether element. More specifically, Qe was derived from the
elastic energy U, of the element. The strain &, caused by
the elongational deformation of the element in the x-axis
direction is defined as

l
& =——1 5)
lo
If the modulus of elasticity £ and cross-sectional area A are
not functions of x, the elastic potential energy U} in the
direction of elongation of the tether element is expressed as

1
Uelt = —EA
el-t ) [)

The partial differentiation with the generalized coordinate q
yields Qg in a nonlinear form as

_ Ut 11| —-(B=rY
Qelt = aq —EA<£—7>|: B | (N

Subsequently, the generalized external force vector of the
tether element was derived. If the gravitational, centrifugal,
and Coriolis forces act on the tether element at arbitrary
positions, as depicted in Fig. 5, each generalized force of the

lo

eldx. (6)
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tether element Qg.t, Qc.t, and Qco.t can be derived based on
the principle of virtual work as

Iy r
Qg—t E/(; Sng_tAdx, fg_[ = —MPW, ®)

lo
Q= [ STdr. fu=pabil 0, )
0 3273

lo
Qcox = / STtcouddy, foor=2pF x R, (10)
0

where fy, fc.t, and fco represent the vectors of each force
acting on any point in the element, respectively. i denotes
the geocentric constant, and p denotes the mass density.
Q = [O 0 wg ]T represents the angular velocity vec-
tor of the rotation of the Earth. According to Lagrange’s
equation, the equation of motion of a tether element can be
written as

Mt&i + Qert = Qg—t + Qct + Qcot- (1)

The superposition of each element provides the equations of
motion for all tether elements.

Furthermore, the counterweight was assumed as a lumped
mass of myg, located at the free end of the tether. The posi-
tion vector of the counterweight is denoted as r.y, and the
generalized coordinate vector of the counterweight element
is denoted as qcw, which is equivalent to the generalized
coordinate vector of the free end element of the tether. The
kinetic energy of the counterweight K.y, can be defined as

l.t . I.t .
Kew = Ercwmcwrcw = chchquW- (12)
Based on the principle of virtual work, the generalized grav-
itational force vector Qg.cw, generalized centrifugal force
vector Qc.cw, and generalized Coriolis force vector Qco-cw

acting on the counterweight can be derived as

Few

Qg»cw = —UMcw S|;£:[0 3 (13)
[rewl

Qc-cw = Mew Sl;{:k) rcwlréﬁ’@:o w]z-}v (14)

QCocw = 2mew Sly_y, Few X Q. (15)

Consequently, the equation of motion for the tether—
counterweight system was obtained by superposing the mass
matrix and generalized force vector for the counterweight
with the element at the free end of the tether. The resulting
equations of motion require considering boundary conditions
at both tether ends. In this model, the end on the anchor
side was a ball joint, whereas the end on the counterweight
side was free. Hence, the equations of motion for the entire
model considering the boundary conditions can be derived
by eliminating the matrices representing the nodes with sim-
ple support conditions. Subsequently, the Newton—Raphson
method was employed to conduct the static analysis of
the equation of motion for the tether and counterweight
of a nonequatorial space elevator. In equilibrium, q = 0,
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q = 0, and the equation of motion for the nonequatorial space
elevator system can be written as

R(q)=—Qel-t-an1 + Qg-t-atl + Qe-tatl + Qgeew + Qe-cw = 0,
(16)

where R(q) represents the residual force from the equilibrium
position. The equilibrium position can be obtained when R(q)
= 0. The partial differentiation of the left-hand side of (16)
with the variable q yields the Jacobian matrix J, and the
equation to be solved can be stated as

IR (@)

a7

The solution of (17) considering the boundary conditions
yields the modification Aq. Upon updating the value of q
until Aq is sufficiently small, the generalized coordinate
vector q at the equilibrium position can be obtained as a
solution of (16).

Moreover, the climber motion was formulated according to
the method proposed by Sun et al. [30]. The position of the
climber in the local coordinate system x.; and the position
and velocity vectors of the climber in the absolute coordinate
system r| and ¥ are illustrated in Fig. 6. In this paper, the
upward motion of the climber was expressed as a temporal
function in advance. The ascent operation of the climber
was set to 1) acceleration, 2) constant speed, 3) deceleration,
and 4) stop. In particular, the acceleration and deceleration
in operations 1 and 3 can be expressed using trigonometric
functions, and the ratio of acceleration and deceleration to
the total ascent period was assumed as constant. The velocity
of the climber in the local coordinate system X was set as

v 2w v
_ rmax cos ( ) [ + rmax
2 Tclimb 2

Vr max

).Ccl =

where ¢ denotes time. x,; and X, can be evaluated by
first-order integration and differentiation. considering the
continuity of the function. Therefore, the ascent plan of the
climber can be determined by setting the ascent period T¢jimp,
the maximum relative velocity of the climber vypax, and the
time ratio of acceleration and deceleration to the total ascent
period Npate.
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Climber

FIGURE 6. Climber position in local coordinate system xj, climber
position vector r¢j, and velocity vector i in absolute coordinate system.

B. FORMULATION OF EQUATIONS OF MOTION FOR
ENTIRE SYSTEM OF SPACE ELEVATOR

In this paper, the space elevator system is defined as con-
taining a tether, counterweight, and climber. Accordingly, the
equations of motion for the entire space elevator system can
be obtained by incorporating the mass matrix, generalized
external force vector, and the constraint equation with respect
to the climber into the equations of motion for the tether and
counterweight. The generalized coordinate vector (epgre for
the entire system is defined as follows:

(entire = |:qt—all] s (19)

Xel

where q, represents the generalized coordinate vector
which is superposed all tether elements. The mass matrix and
the generalized force vectors of the climber must be placed
appropriately in the equation of motion of the entire space
elevator system. The mass matrix of the entire space elevator
system Mepiire Was obtained as follows:

Mia1 + M 0
Mentire = |: all 0 o Oi| + Mg, (20)

where M1, Mcyw, and M represent the mass matrices of
all the tether elements, counterweight, and climber, respec-
tively. Similarly, the generalized force vector for the entire
space elevator system Qepre Was obtained by rearranging
the generalized force vectors for the tether, counterweight,
and climber to the size of the entire system and adding them
together. In addition, the constraint equations for the climber
and tether were introduced by solving the equations of motion
of the entire space elevator system, including the climber,
tether, and counterweight. Therefore, the equation of motion
of the entire space elevator system required to be solved can
be stated as

. 0
MentireGentire = Qentire + |: y :| . 2D

y represents the second-order time derivative of the constraint
equation for the climber. In the simulation, x.1, X¢|, and X of
the climber in each step were input to evaluate y in advance.

IV. ANALYSIS RESULTS AND DISCUSSION

A. ANALYSIS BY PROPOSED NPFEM

The NPFEM model formulated in the previous section was
used to obtain the equilibrium position of a nonequatorial
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Initial position (3 cases)

Case 1 : Out of X-Z plane

Case 2 : Equilibrium of rigid bar model
Case 3 : Horizontal to X axis

Counterweight

FIGURE 7. Initial position in static analysis (3 cases).

space elevator based on the Newton—Raphson method to
perform the dynamic analysis during climber ascent. In this
paper, three anchor latitudes 6, were selected, namely, 0°,
15°, and 20°. The anchor longitude ¢, was assumed as 0° to
ensure the position of the anchor in the X—Z plane. The three
cases, given as the initial position of the tether in the static
analysis, are illustrated in Fig. 7. Case 1 displays the initial
position of the tether in the instance it is situated outside the
X-Z plane, including the rotation axis and anchor. Case 2
exhibits the equilibrium position obtained from the rigid bar
model, and Case 3 depicts the initial position horizontal to the
X-axis. In Cases 2 and 3, the tether Y-direction component
at any given position was zero. Initially, each element was
stretched by &9 = o, /E, and the total number of elements
Nele was set to 100. Summarily, the parameters of the analysis
are listed in Table 2. In this section, the cross-sectional area
of each element was expressed as the tapered cross-sectional
area value obtained in Section II.

First, a static analysis was performed at an anchor latitude
0, of 20° with the counterweight mass values obtained from
the rigid bar model. However, the solution did not converge
owing to the elongation deformation of the models. Thus,
we adjusted the mass of the counterweight to converge the
solution. In the following analysis, the counterweight mass
was set to 2.68 x 10° kg, which is 120% of the value
obtained from the rigid bar model. In Case 1, the initial
position is expressed outside the plane, including the rota-
tion axis and anchor. The proposed NPFEM model holds a
three-dimensional Cartesian coordinate system, which can
assume the initial positions as Case 1 that do not fit in a
two-dimensional plane used in the rigid bar model. Never-
theless, as depicted in Fig. 8, the equilibrium position was
obtained in the plane containing the rotation axis and anchor,
even if the initial position was located outside this plane.
This was because the gravitational gradient torque acted on
the tether outside the plane containing the rotation axis and
anchor. In the static analysis of this paper, the force acted
only in the direction of the line connecting the point of force
action and origin. In all instances, the anchor position of
the space elevator was constrained to a point on the Earth.
Therefore, the equilibrium position was in the plane contain-
ing the anchor and rotation axis, except for considering the

43972

1 X 10
Equilibrium position
= = ‘Initial position
0.5+
T Anchor
S oot
P~ . S s <
0.5} T~el
-1 .
0 2 4 6 8 10 12
(a) p X [m] x107
x10°
4 . ,
Equilibrium position
= — Initial position
3 L
Eoptf° """ """~ 777777777
N
1 L
0 1 1
0 8 10 12
(b) %107

FIGURE 8. (a) Equilibrium position viewed in X — Y plane; (b) Equilibrium
position viewed in X — Z plane with Case 1 (Note that the scale of the
vertical axis varies from that of the horizontal axis.)

disturbances acting outside this plane. In Cases 2 and 3, the
equilibrium positions converged to the same value as that
displayed in Fig. 8. Therefore, the three cases assumed in this
paper could be deemed to have no initial-value dependency.

The results of the static analysis from the X-Z plane,
including the rotation axis and the anchor, are depicted in
Fig. 8, which demonstrated that the equilibrium position
of the nonequatorial space elevator was curved toward the
center of the Earth near the Earth and followed the equatorial
plane as it moved toward deep space. This was because the
gravitational force acted toward the origin near the surface
of the Earth, whereas the centrifugal force acted positively
in the X-Y plane (Fig. 2). In addition, the space elevator was
approximately 5.0 x 10° m higher than the GEO in the Z-axis
direction. Thus, the equilibrium position of the nonequatorial
space elevator could effectively avoid collisions with space-
craft in the GEO.

Subsequently, the dynamic responses of the tether during
climber ascent were analyzed, considering the equilibrium
position obtained in the static analysis as the initial position.
The classical fourth-order Runge—Kutta method with four
stages was adopted as the calculation scheme, the time inter-
val was set to 1.0 s. The climber mass was set to 1.0 x 103 kg.
The maximum relative velocity of the climber vipax Was set
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TABLE 2. Present analysis parameters.

Material density [kg/m?] p 1.30 x 103
Modulus of longitudinal elasticity =~ [GPa] E 1.00 x 103
Anchor cross-sectional area [m?] A, 1.00 x 107
Allowable stress [GPa] O, 2.00 x 10!
Overall length of tether [m] - 1.00 x 10%
Natural length of tether element [m] ly 1.00 x 10°
Anchor latitude [deg] 0, 2.00 x 10!
Anchor longitude [deg] 0a 0
Counterweight mass obtained by 5
rigid-bar model (6, = 20°) [ke] Mo 2.68 10
Convergence threshold [N] - 1.00 x 1077
Number of elements -] Nae  2.00 x 107
Number of iterations of Newton- 3
Raphson method -] B 10010
x10”
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FIGURE 9. Time history of climber altitude, velocity, and acceleration.

at 100 m/s for the ascent period Tcjimp, and the time ratio
of acceleration and deceleration to constant-speed operation
period Ny, was set as 0.5. The time histories of the altitude,
velocity, and acceleration of the climber at each time inter-
val are presented in Fig. 9, which were utilized in further
analyses.

The displacement of the free end of the tether at latitudes
0°, 15°, and 20° are comparatively presented in Fig. 10, which
reflects the displacement of the free end of the tether from
its equilibrium position during climber ascent. Overall, the
displacement in the X -direction was observed at every anchor
latitude owing to the tension variation caused by the climber
ascent. Specifically, the displacement magnitude ranged from
—2.5 x 10* to +1.0 x 10* m, which is within the range of
small deformations compared with the total tether length of
1.0 x 108 m. In addition, a high anchor latitude results in a
large displacement, potentially because a high anchor latitude
causes a more significant variation in the tension.

In the Y-direction, oscillations of approximately
+5 x 10° m were observed, and its period and ampli-
tude were larger compared to those of the oscillations in
the remaining directions. The Coriolis force caused by the
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FIGURE 10. Time history of tether free end at each latitude.

stretching motion of the tether and the upward motion of the
climber caused this oscillation. Although the Coriolis force
causes oscillation in the negative Y-direction as the climber
ascends, the displacement in this analysis was observed
in the positive direction. This was probably owing to the
more dominant Coriolis force resulting from the elongation
deformation of the tether than the climber ascent for the given
parameters.

The displacement in the Z-direction was observed only
at the anchor latitude was situated in the nonequatorial
area because the combined force vector of the gravitational
and centrifugal forces included a component outside the
X-Y plane at the nonequatorial latitude, as displayed in
Fig. 2. These oscillations had shorter periods and smaller
amplitudes than in the Y-direction. Based on these results,
the Y -direction oscillation can be deemed the most dominant
oscillation during climber ascent.

The elongation rate of each element (defined as [ / [p) at
equilibrium is presented in Fig. 11(a), which indicates the
nonuniform stress acting on each element. Thus, the stress
acting on the NPFEM is not necessarily uniform, regardless
of the constant stress acting on the rigid bar of the tapered
cross-sectional area (Fig. 3). The immense stress was shown
in the elements constrained to the anchor because the enor-
mous centrifugal force pulled the tether in a higher orbit.
As the NPFEM model considers the elongation deformation
of each element, the results discussed above were obtained
for the cross-sectional area set by the rigid bar model.
In future, a method should be developed to determine the
optimal taper shape required for maintaining constant stress,
even in nonlinear finite element models such as NPFEM.
The time history of the variations in each element length is
illustrated in Fig. 11(b), depicting that the proposed method
displayed a stretching deformation of the elements that is
not observed under the conventional rigid bar model [20].

43973



IEEE Access

R. Kuzuno et al.: Dynamics and Energy Analysis of Nonequatorial Space Elevator

1.07

1.06 H

1.05 1

=
~
~
~

1.04 |

1.03 -

1.02 ‘ ‘ ; ‘ ‘
0 20 40 60 80 100

Element number
(a) Anchor side <— — Counterweight side

1.07
. ___,mo-—'"”""“"""“"'\u«ou.-.,‘
\\ "_-.,,v-—n/\~
“OJ
1.06 - 1
= LOS —-—--Anchor element | |
> = = GEO element
1.04 - End element
1.03 - ]
12" === ===T========
0 2 4 6 8 10
(b) Time [s] «10°

FIGURE 11. (a) Elongation rate of each element at equilibrium state;
(b) Time history of elongation rate of each element in dynamic analysis.

More importantly, the variation in the elongation rate was
more pronounced for the element connected to the anchor
than for the element at the free end with GEO. Focusing on
the element connected to the anchor, a temporary reduction in
the elongation rate was observed at t = 5 x 10* s, which sig-
nified that the element connected to the anchor experienced
slackening from the initial tensile state (as the elongation
rate > 1, it was still in tension). This phenomenon was caused
by the movement of a climber from one tether element to
the other, which unloaded the tether element at the location
of the climber. According to the relationship between the
combined gravitational and centrifugal forces at each altitude
(Fig. 2), this phenomenon was particularly prominent when
the climber was situated in the near-Earth region.

B. RESULT COMPARISONS IN VARIOUS CONDITIONS

Furthermore, the dynamic characteristics of the space eleva-
tor for various maximum relative velocities of the climber
vrmax are illustrated in Fig. 12. As observed, the dynamic
effect of the tether decreased with the constant velocity of
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FIGURE 13. Comparison of climber mass m¢ = 1.0 x 10> and 5.0 x 103 kg.

the climber, which was consistent with the characteristics
reported in prior research [16]. This was because the energy
of the tether-counterweight system, provided by the climber
motion, was reduced. The dynamic responses of the tether
under various masses of the climber are comparatively pre-
sented in Fig. 13, which implies that the dynamic response
increased with the climber mass, as consistent with the reports
of previous studies [16]. The influence of varying the initial
climber acceleration on the dynamic response of the tether
is depicted in Fig. 14, wherein both the cases accelerated to
vimax = 100 m/s. In two cases, the ratio of the acceleration
time to constant speed ascent time was Npye = 0.5 and 0.01.
For gradual acceleration, i.e., Npe = 0.5, the oscillation
period was larger, and the amplitude was smaller than those at
Nrate = 0.01, implying that the dynamic response to the tether
was suppressed for lower acceleration. These results indicate
that the larger the payload mass or, the shorter the overall
transport time and acceleration time, the more difficult it is
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FIGURE 14. Comparison of dynamic response of tether with various
acceleration time of climber (N, is ratio of acceleration time to
constant speed ascent time).

to control the oscillation of the space elevator. In addition,
the robustness of the proposed method was verified. When
the input was altered, the calculation did not diverge.

C. VERIFICATION BY COMPARISON WITH CONVENTIONAL
METHOD

The validity of the nonequatorial space elevator theory based
on the nonlinear FEM described thus far was verified by
comparing its results with those obtained using the conven-
tional method [20], [21]. Although the conventional method
[20], [21] analyzed a spring-mass model (1000 elements)
with a time step of 0.05 s, this study analyzed the proposed
NPFEM model (100 elements) with a time step of 1.0 s. The
parameters other than those mentioned above were aligned
with those reported by Wang er al. [21]. The comparison
results are displayed in Fig. 15. The static results presented
in Fig. 15(a) indicate that the proposed NPFEM had a larger
equilibrium position in the X -direction than the conventional
model [21] because the proposed NPFEM considered geo-
metric nonlinearity and appeared a tensioned shape against
the force originating from the gravitational field owing to
its high stiffness. Thus, the geometric nonlinearity of the
proposed NPFEM allowed the nonequatorial space eleva-
tor to avoid the high-concentration area of cosmic radiation
to a greater extent than earlier. The time histories of the
Y- and Z-direction displacements of the free end of the tether
after the climber motion ceased are depicted on Fig. 15 (b)
and (c). The Z-direction displacement obtained with the
NPFEM was consistent with the conventional model [21].
However, the Y-direction displacement of the NPFEM was
more significant than that of the conventional model [21]
because the space elevator modeled by the NPFEM was
more rigid and tensioned owing to the considered geometric
nonlinearity. Consequently, the X -direction component at the
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FIGURE 15. (a) Comparison of equilibrium position between proposed
NPFEM and conventional model [21], comparison of displacements of
tether free end during climber ascent; (b) Y-direction; (c) Z-direction
(Note that the scales of vertical and horizontal axes are different.)

free end and the amplitude of the pendulum motion were
larger in the NPFEM model, as indicated in Fig. 16.

D. ENERGY EXCHANGE BETWEEN COMPONENTS

1) ASSUMPTIONS OF SYSTEM

The energy analysis results of the nonequatorial space eleva-
tor are described herein. The energy analysis was conducted
owing to two specific reasons: to validate the proposed model
and discuss the energy aspects of nonequatorial space eleva-
tors in detail. The assumptions are summarized as follows.

1) The “nonequatorial space elevator system’ comprises
a tether, climber, and counterweight. The exterior of
the system includes outer space, Earth, and the power
system of the climber.

2) Based on a thermodynamic perspective, the ‘“‘nonequa-
torial space elevator system” is an ““insulating system”
in which the energy transfer with the outside world
occurs only through mechanical work (actual space

43975



IEEE Access

R. Kuzuno et al.: Dynamics and Energy Analysis of Nonequatorial Space Elevator

(a)
Conventional ~ Proposed
model [21] NPFEM
X
(b) View in X-Y plane

FIGURE 16. Qualitative comparison of oscillation between previous study
[21] and proposed model (a) 3D schematic diagram, (b) X-Y plane
schematic diagram.

elevators can be assumed to exchange heat with the

outside world, but in this analysis, no heat was assumed

to be transferred).
In the following discussion, we classify a ‘‘nonequatorial
space elevator system’ into two categories: 1) climber, 2)
tether—counterweight, and consider the energy exchange for
the components. Components 1 and 2 are coupled systems;
therefore, the energy is not independently conserved in each
system.

2) RESULT AND DISCUSSION
The energy of the entire system can be calculated using the
following equations:

Kentire = Ke-al + Kew + Ko,

Nele 1
— _ T -
Kian = EKt-ithv Kew = zmcwrcwrcw,
=
I 1.
Ky = Emclrclrclv (22)
Uentire = Utanl + Uew + Udl,
Utan = Uel-t-all + Ug-teanl + Uc-taalls
1 1
— T T T
=5 Qel-canGral + Qg anGe-an — 3 Q¢ anr-all,
Uy 1 2T
Uw = Ug—cw +Ucew = — — ZMewWEr oy Tew,
[rewl 2
mmel 1 2T
Uad = Ugcl + Ueel = — — SMWET ). (23)
el 2

In this section, the analysis results in Section IV-A are used
for discussion.

The time history of the total energy of the space elevator
system—the sum of the total energy of the tether, counter-
weight, and climber—is presented in Fig. 17. The total energy
of the space elevator system increased with the ascent of the
climber and thereafter remained almost constant. The total
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FIGURE 18. Total energy history of tether-counterweight system (upper
panel) and position history of climber (lower panel).

energy of the space elevator system after the termination
of the ascent exhibited a relative variation of 10~?; thus,
it was well conserved. In conclusion, the proposed method
was verified in terms of energy conservation.

The time history of the energy fluctuation of the tether—
counterweight system is depicted in Fig. 18. A sudden
increase in energy was observed at 0-1.0 x 10° s after the
climber started to ascend. After that, the total energy of
the tether—counterweight system decreased. The same phe-
nomenon occurred for an anchor latitude of 0°. This phe-
nomenon can be explained by the climber ascent causing
the tension variation in the tether. Specifically, it can be
considered that the tether deformation varied the climber
position in absolute coordinate and transferred energy to the
climber. Afterward, the total energy fluctuated at approxi-
mately 1.4 x 107 J, owing to the climber motion associated
with the tether oscillation. The tether—counterweight energy
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FIGURE 19. Energy history of climber (upper, middle panel) and altitude
variation of climber (lower panel) after ascent termination.

fluctuation after the climber ascent was on the order of 10° J,
as depicted in Fig. 18.

On the other hand, the climber energy fluctuation after the
climber ascent was also on the order of 103 J, as depicted in
Fig. 19. The climber motion associated with the tether oscilla-
tion was approximately £1.0 x 10* m oscillation centered at
an altitude of the GEO (Fig. 19, lower panel). For instance, the
fluctuation of potential energy A(Ug—_c1+ Uc—¢1) is calculated
as approximately 1.0 x 10° J when a climber moves 1.0 x 10*
m toward the Earth at the GEO. Considering that the potential
energy was more dominant than the kinetic energy in this
analysis, this theoretical calculation result is equivalent to
the order of the energy fluctuation observed in the middle

TABLE 3. Variations in energy before and after climber ascent energy at
initial time t = 0 s was assumed as zero. Unit is [J].

Tether and Climber
counterweight
Kinetic energy 3.23 x 10° 1.83 x 10°
Potential energy of combined 9 10
gravitational and centrifugal field 13910 4.84x10
Elastic potential energy -1.39 x 10° -
Total energy 1.39 x 10’ 4.84 x 10"

panel of Fig. 19; it represents the physical phenomenon of
the climber motion associated with the tether motion, not
a numerical error. Therefore, the energy exchange between
the tether—counterweight system and the climber after the
climber ascent could be on the order of 10° J.

Subsequently, the energy exchange of the space elevator
during climber ascent was analyzed by classifying compo-
nents into the tether—counterweight system and the climber.
Table 3 summarizes the energy changes of each component
when comparing the initial time #+ = O s and the end of
climber ascent t = 4.8 x 10° s. Focusing on the total energy
in Table 3, the increase to 4.84 x 1019 J in the climber
system and 1.39 x 107 J in the tether—counterweight sys-
tem could observe at the end of the climber ascent. The
energy increase in the tether—counterweight system corre-
sponds to the energy transferred from the climber. Moreover,
the tether—counterweight system continued to oscillate even
after the termination of the climber ascent. As the climber
was modeled assuming that it is located on the tether at
all instances, the climber moved with the tether oscillation
even after its ascending operation stopped. Consequently, this
motion caused energy transfer from the tether—counterweight
system to the climber system.

In summary, the energy exchange depicted in Fig. 20 was
deemed to occur. The space elevator system receives energy
from the power system and utilizes it for the climber ascent
and oscillation of the system. In the space elevator system,
the climber directly receives energy from the power system
and transfers the energy to the tether—counterweight system.

Non-equatorial space elevator system

4.84 10107

Power

Climber
system

—

Used for ascending
4.84x10'07

FIGURE 20. Schematic of energy exchange in entire system.
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Overall, the climber and tether—counterweight system trans-
fer energy to each other on the order of 10° J. In this paper,
the low-order values did not precisely correspond because the
order range of the values included in this analysis is large, and
the influences of digit loss and rounding errors were more
pronounced for low-order values (16 digits are retained in
MATLAB).

V. CONCLUSION

The analysis model for space elevators proposed in this paper
is more continuous than the conventional one and considers
elongation deformation in the elements. The conventional
models were formulated in terms of rigid bars [10], [20] and
spring-mass elements [21]. The conventional model [21] did
not consider the geometric nonlinearity of the tether, and this
study enabled us to consider the geometric nonlinearities and
analyze the coupling effect between rigid-body motion and
elastic deformation of the tether. Furthermore, we formulated
NPFEM in a rotational coordinate system, whereas conven-
tional NPFEMs were formulated only in inertial coordinate
systems. Subsequently, the established model developed a
consistent analysis method for nonequatorial space elevators.
This method includes deriving the complex equilibrium posi-
tion of the nonequatorial space elevator using the iteration
method as well as conducting dynamic analysis during the
climber motion.

The static analysis results revealed that the equilibrium
position of the tether was less inclined toward the center of the
Earth than in the conventional model [20], [21]. As observed,
the tether assumed a more tensioned equilibrium position
than in the conventional model owing to the consideration of
geometric nonlinearity. The proposed method provided more
insights toward discussing debris collisions and avoiding the
high radiation area of cosmic rays in nonequatorial space
elevators. Owing to the difference of equilibrium positions,
the displacement obtained from the dynamic analysis was
larger in the Y -direction than in the conventional model.

In addition, we formulated the tether as an NPFEM
model in a rotational coordinate system, which can consider
the deformation of each tether element. Consequently, the
stretching motion of the tether during the climber ascent and
the motion of the entire system caused by the Coriolis force
could be observed. This dynamic analysis demonstrated that a
higher anchor latitude produces a larger overall displacement.
Moreover, the displacement in the Z-direction was observed
only when the anchor was located at a nonequatorial position.
Although the nonequatorial space elevator displays attractive
features such as avoiding debris collisions in GEO and high
radiation of cosmic rays, its dynamic behavior is complicated.
Therefore, these trade-offs must be carefully evaluated when
considering suitable construction locations.

In this paper, the climber velocity, counterweight mass, and
ascent function were varied, and accordingly, the feasibility
of the nonequatorial space elevator varied under multiple
conditions. Furthermore, the proposed method was validated
to be stable for inputs with large displacements. The results of
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the parametric study displayed that the dynamic response of
the nonequatorial space elevator increased with the climber
velocity, acceleration, and mass.

Additionally, we analyzed the energy exchange between
the components and discussed the results. It includes ver-
ifying the proposed model and a deeper discussion on the
energy aspects of nonequatorial space elevators. The energy
analysis results clarified the energy exchange between the
components during the climber ascent. This study further
explained the tension variations caused by the climber motion
from an energy transfer perspective.

In future, a more accurate model that includes the tor-
sional deformation of the tether and further coupling with
the climber will be required. Future studies should focus
on deriving an optimal cross-sectional shape experiencing
constant stress in a nonlinear FEM and conducting a safety
analysis of long tethers based on collision probability with
space debris [39]-[41].

APPENDIX
MATRIX DEFINITION
The shape function S is expressed as

S=[(1-8Ts £l
If cross-sectional area A and mass density p are not functions
of x, the mass matrix of the tether M can be expressed as

lo Alp [ 21 I
M[E/ ,OASTSd)CZ u |: 3x3 3x3
0 6 [ Iixs 2I3x3
Based on the perspective of kinetic energy, the mass matrix of
the counterweight M,y is obtained in the form of a constant
matrix as

(A.1)

] . (A2

03,3
033

03,3

_ QT
Mcy = S|x=lo Mew S|x:lo = Mcw [
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