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ABSTRACT Tile-based many-core architectures are extensively used in modern system-on-chip designs to
achieve scalable computing performance with adequate energy efficiency. Heterogeneity is the key element
to boost computing performance and keep energy consumption under certain limits for several application
domains. However, the steady increase of using many custom heterogeneous tiles leads to an expansion in
design and integration cost with limited tiles re-usability. The recent widespread of open-source RISC-V ISA
provides the potential to develop modular compute units that can be used for many application domains with
high reduction in non-recurring engineering costs. The motivation of this work is to bring design modularity
and adaptability features for heterogeneous tile-based many-core architectures by increasing their flexibility
to realize different many-core configurations with less design time and costs. In this work, AGILER is
proposed as an adaptive tile-base many-core architecture for heterogeneous RISC-V based processors. The
proposed architecture consists of modular and adaptable heterogeneous multi-/single-core compute tiles that
supports 32-/64-bit RISC-V ISAs with different memory hierarchies. Inter-tile communication is developed
based on a scalable network-on-chip architecture to achieve a high degree of system scalability. AGILER
supports run-time adaptation through a custom internal reconfiguration manager for dynamic and partial
reconfiguration over Xilinx FPGAs. Evaluation results demonstrate that the proposed architecture features a
scalable computing performance up to 685 MOPS for 8×32-bit tiles and 316 MOPS for 8×64-bit tiles with
a scalable memory bandwidth up to 7.4 GB/s. AGILER is evaluated on Xilinx Virtex Ultrascale+ FPGA
with a maximum reconfiguration time of 38.1 ms for a single compute tile.

INDEX TERMS Many-core architecture, parallel computing, RISC-V, network-on-chip (NoC), field
programmable gate array (FPGA), reconfigurable computing.

I. INTRODUCTION
Machine learning and data-centric applications constitute
the main driving forces for computing’s rapid evolution.
Over the past decade, several computing paradigms have
been introduced seeking to increase computing performance
scaling and energy efficiency in order to cope with the emer-
gence of new application classes with massive and irreg-
ular data sets [1]. Among those computing paradigms are
compute-centric architectures which are still leveraged in
the mainstream multi-/many-cores System-on-Chip (SoCs)
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developed by industry and academia for several application
domains [2], [3]. Compute-centric systems went through a
tremendous evolution from multi-core homogeneous archi-
tectures to highly heterogeneous architectures with big, lit-
tle cores (e.g. ARM Big.Little [2]) and application-specific
accelerators (e.g. Google TPU [4]).

Despite the high-performance gain of heterogeneous archi-
tectures, the increasing numbers of heterogeneous elements
are limited by the system interconnects scalability and there-
fore the degree of compute performance scalability [5].
This obstacle of compute-performance scaling is referred
to as the scalability wall. Therefore, tile-based architectures
are developed for highly scalable many-core systems with
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a growing capacity of heterogeneous compute elements.
The degree of scalability for tile-based architectures relies
on the inter-tile communication fabric which is on recent
many-core approaches depends on scalable network-on-chip
(NoC) variant topologies. However, the design and devel-
opment of tile-based many-core architectures is a cum-
bersome process in terms of development time and costs.
Especially if target application domains require a high capac-
ity of heterogeneous compute tiles as is the case in recent
computing devices that support a wide range of application
domains [6], [7].

Consequently, several research approaches have been pro-
posed for adaptive and self-aware many-core systems to
allow the re-usability and reconfigurability of many-core
architectures to be adjusted according to multiple require-
ments for different application domains [8], [9]. As a result,
an expected reduction in development time and cost can be
achieved by the adoption of adaptive many-core approaches.
However, adaptive many-core approaches require a sort of
modularity of hardware components to ensure proper integra-
tion and communication between them after the adaptation
process. In tile-based many-core architectures, modularity
can be achieved first by using a unified communication
method between heterogeneous compute tiles through NoC,
or advanced bus-based architectures. In addition, a hetero-
geneous set of compute tiles that share the same inter-tile
interfaces and apply the same communication protocol over
the many-core communication medium as well as a unified
parallel programming model.

Therefore, modularity and adaptability are keys to reduc-
ing design and integration time and promoting the commodity
ofmany-core architectures for emerging application domains.
Recently, the proliferation of the open-source instruction set
architecture (ISA) by RISC-V [10] contributes to increasing
the level of modularity and openness for compute units or
processing elements that can be used by tile-based many-
core architectures. Various types of general purpose or spe-
cialized RISC-V based processors [11] can be selected to
create several types of heterogeneous compute tiles with
different computing specifications for variant applications
requirements.

Existing research platforms do not fully meet modu-
larity and self-adaptability requirements for heterogeneous
RISC-V based multi-/many-core systems. In our previous
work [12], we proposed a modular architecture for homo-
geneous RISC-V based many-core architectures with one
type of compute tile that can be configured during run-time
through an external device (i.e. PC). Additionally, the pro-
posed compute tile supports one type of RISC-V ISA
(RV32IMC) as well as the need for an external soft-core
manager (i.e. Xilinx Microblaze) to manage data transfer
between the RISC-V-based many-core system and external
peripherals (i.e. DDR, and UART). Accordingly, the previous
homogeneous platform is restricted to a single RISC-V ISA
that can not meet the demands of modern heterogeneous
computing architectures.

Therefore, in this work, we propose AGILER as a novel
self-adaptive tile-based many-core architecture for hetero-
geneous RISC-V based many-core configurations targeting
FPGAs without the need of an external device/manager for
reconfiguration and data transfer. The proposed architecture
satisfies the requirements of self-adaptability and modularity
for highly scalable heterogeneous RISC-V based many-core
systems on FPGAs. Our contributions in this work rely on the
following:
• Implementation of modular heterogeneous RISC-V
based processing elements supporting RV32/
RV64-ISAs with tightly coupled parameterized scratch-
pad memory and unified AXI interfaces to be used as
modular PEs within compute tiles.

• We provide a heterogeneous set of compute tiles
for multiple RISC-V ISAs. Compute tiles feature
a multi-/single-core architecture using heterogeneous
RISC-V based PEs for 32-/64-bit ISAs. In addition,
a main/primary processing tile is developed using multi
64-bit RISC-V processors as the main and permanent
compute tile for the proposed many-core system.

• Development of a highly scalable tile-based many-core
architecture using a generic NoC architecture as the
main interconnect medium for inter-tile communication.
The required communication model and programming
method are provided to support parallel tasks execution
and interaction over heterogeneous compute tiles.

• A run-time reconfiguration manager is developed
for multi-core RISC-V compute tiles in order to
support the adaptability feature for the proposed archi-
tecture by self-managing the dynamic partial reconfig-
uration (DPR) process from the main processing tile at
run-time.

As a result, the proposed architecture satisfies the compute
performance scalability using a scalable mesh-based NoC
topology for inter-tile communication with a variant set of
heterogeneous compute tiles. Each compute tile features a
configurable multi-/single-core architecture that can be con-
figured with variant number and types of RISC-V based PEs.
Moreover, shared and local memory hierarchies with param-
eterized sizes are supported per each compute tile. Therefore,
the proposed architecture provides the flexibility for tailoring
several many-core configurations for compute or memory
bound applications. Furthermore, a unified communication
model and a bare metal programming method are supported
to facilitate the parallel execution of several application tasks
over many compute tiles. In this work, the implementation
and performance evaluation of the proposed architecture are
conducted targeting a Xilinx Ultrascale+ FPGA. The tile-
based many-core architecture is evaluated based on compute
performance scalability, achievable memory bandwidth and
resources utilization for different heterogeneous configura-
tions using several benchmarks. Furthermore, the many-core
architecture supports run-time adaptation through an internal
reconfiguration manager using dynamic and partial reconfig-
uration technology on Xilinx FPGAs. Finally, the modularity
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and adaptability features of the proposed architecture allow
the flexibility to be ported to other Xilinx FPGA series.
Accordingly and to the best of our knowledge, our pro-
posed architecture is the first heterogeneous tile-based many-
core architecture for multiple RISC-V ISAs that supports
self-adaptation using internal run-time DPRmanager for sev-
eral heterogeneous many-core configurations on FPGAs.

The rest of the article is structured as follows: Section II
discusses background and related work. AGILER architec-
ture and its design approach and components are introduced
in Section III. Evaluation and experimental results are pre-
sented and analyzed in Section IV. Finally, Section V draws
a conclusion about this work and provides further directions
for future work.

II. BACKGROUND AND RELATED WORK
During the past decade, several research works have proven
the feasibility of tile-based many-core architectures to pro-
vide scalable compute performance in parallel with energy
efficiency achievement [13]. Many sorts of homogeneous
and heterogeneous tile-based architectures have been pro-
posed [14]-[16] targeting pre-defined application domains
prior to the design process. Therefore, the baseline tile-
based many-core architecture consists of custom set of het-
erogeneous or homogeneous compute tiles with specialized
communication fabric and memory hierarchies which make
them highly customized for specific application domains.
Accordingly, rapid evolution of application workloads
(e.g. machine learning, 5G, 6G algorithms) increases the
difficulties for baseline many-core systems to be quickly
adapted to changing workloads requirements. This insuffi-
ciency necessitates a movement toward modular and con-
figurable tile-based many-core systems, where compute tiles
are configurable and re-usable to seamlessly create several
many-core implementations using modular and re-usable
tiles.

As a result, the development of many-core systems will
become inexpensive and affordable for small scale com-
panies and academic research, and as seamless as devel-
oping software applications. Meanwhile, the emergence
of agile hardware design methodologies and open-source
RISC-V ISAs [17], [18] alleviate design costs and efforts
(e.g. validation, integration, verification) which can con-
tribute to the proliferation of modular and configurable tile-
based many-core frameworks. However, there are limited
number of studies that seek to provide modular and config-
urable tile-based frameworks that can be adapted either at
design or run-time to fit with different application require-
ments. We provide here a review of related work for tile-
based many-core architectures using open-source compute
units based on RISC-V ISAs targeting both FPGA and ASIC
platforms.

OpenPiton [19] has been proposed as an open architec-
ture framework to realize large scale many-core architectures
reducing traditional difficulties for many-core systems devel-
opment. The architecture consists of regular homogeneous

compute tiles, multiple tiles are grouped intomany-core chips
which are connected together through a coherent multi-layer
NoC. Each compute tile features a single RV64GC Ariane
core [20] with private instruction and data caches. OpenPiton
is only configurable at design time with the flexibility to
select the number of tiles/cores, memory size configura-
tion, and cores extension with floating point unit (FPU) or
stream processing unit. Despite the high level of scalability,
the architecture supports a single core compute tile which
increases the size and complexities for inter-tile connections
by increasing number of cores as well as the required pro-
gramming model. Furthermore, Kamaleldin et al. [12] pro-
vides a scalable FPGA based RISC-V many-core platform
using a lightweight NoC to realize several RISC-V based
many-core taxonomies supporting external run-time config-
uration through an external device. It features a homoge-
neous multi-core compute tile based on RV32 ISA, the cores
are connected through an AXI interconnect within the tile
with shared and local memory. Similarly, Andromeda frame-
work [21] is proposed for early stage applications explo-
rations using homogeneous RV64 based tiles connected with
a single mesh NoC. However, the latest framework lacks the
run-time configuration feature supported by [12]. To enhance
inter-tile communication, MemPool [22] provides a scalable
RISC-V based many-core architecture with low latency inter-
tile interconnect. The architecture consists of multiple tiles
groups to form a cluster of homogeneous computing tiles.
Each tile hosts four RV32IMC cores with L1-shared data
memory and shared instruction cache. Compute tiles are con-
nected through full-crossbars interconnects to ensure low data
transfer latency between tiles as well as between several tiles
groups. The architecture features a regular design of compute
tiles with configurable L1-shared memory size during design
time. Despite the high scalability and design regularity of the
aforementioned frameworks and architectures, they do not
support heterogeneous compute tiles with multiple ISAs or
custom hardware accelerators.

Therefore, Tapasco [23] has been proposed as an
open-source framework to generate multi-/many-core SoCs
with custom PEs. The framework allows seamless integration
of any HLS-based accelerator within a scalable architecture
by auto-generating required wrapping logic and interfaces for
interconnection and communication within the architecture.
The compute tile consists of multiple types of PEs, RV32
based PE or HLS-based PE are supported within the tile.
The architecture uses multiple cascaded crossbars to con-
nect multiple PEs within the tile as well as the connection
between several tiles. However, the architecture could suffer
from low scalability due to the limited bandwidth of cross-
bars. Accordingly, Savas et al. [24] proposed a framework
to design a highly scalable domain-specific heterogeneous
many-core architecture from application data flow graphs.
The framework is based on a heterogeneous tile-based archi-
tecture, each tile consists of a 64-bit RISC-V core with a
tightly coupled HLS-based accelerator and private local data
memory. To ensure high scalability, the framework supports
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TABLE 1. Comparison of state-of-the-art approaches for RISC-V based many-core architectures.

inter-tile communication through a lightweight NoC. Sim-
ilarly, the GRVI Phalanx architecture [25] is proposed for
extreme scalability for FPGA-based many-core architectures.
It efficiently uses the FPGA resources to place hundreds
of simple 32-bit RISC-V PEs within multi-core compute
tiles. An FPGA-based NoC architecture is used for inter-tile
communication for a high degree of scalability. However, the
GRVI architecture lacks an efficient programming model for
parallel execution and data sharing over compute tiles.

Therefore, Blackparrot [26] has been proposed as the
first heterogeneous and Linux capable open-source multi-
core platform. The platform features a coherent NoC-based
architecture as the inter-tile communication fabric, three
NoCs are used for internal data, shared memory, and exter-
nal peripherals. Three heterogeneous types of compute
tiles are provided for general purpose (GPP) computing
based on RV64, coherent, and streaming custom hardware
accelerators. The platform supports several programming
models based on application requirements. Furthermore,
multiple RISC-V ISAs are supported by several many-core
platforms [27], [28] for more compute resources and effi-
ciency to support several workloads requirements. Manti-
core [27] has been proposed for high performance comput-
ing workloads, it consists of hundreds of 32-/64-bit RISC-
V cores grouped into multiple tiles. Each tile hosts eight
RV32 cores with L1-shared memory and shared instruc-
tion cache. Multiple tiles are creating a cluster, each cluster
contains quad-core RV64 for controlling and management.
Cascaded crossbars are used for inter-tile and inter-cluster
communication. On the other hand, ESP framework [28] has
been proposed to realize different many-core configurations
for embedded platforms. ESP features a scalable coherent
NoC-based architecture consisting of multiple heterogeneous
compute tiles of RISC-V based processors and custom hard-
ware accelerators. Each compute tile hosts a single compute
element. RV64 ISA is supported inside a general purpose tile
as well as a compute tile for HLS-based accelerator. Similar to
Tapasco platform [23], ESP also auto generates the required
wrapping logic and interfaces to seamless integrate custom

hardware accelerators into the accelerator tile. Also, several
programming models are supported through bare metal or
Linux operating system.

Accordingly, our proposed architecture AGILER differ-
entiates from those above-mentioned work as shown in
Table 1 by providing more design space to create several
heterogeneous tile-base many-core configurations. The pro-
posed architecture provides a configurable set of compute
tiles that can support two RISC-V ISAs (RV32, RV64).More-
over, compute tiles can be configured to support single-core
and multi-core architectures with the flexibility to support
several memory hierarchies. Each compute tile features a pri-
vate address space which allows the communication between
all PEs and shared tile peripherals through shared data mem-
ory via an AXI interconnect. For inter-tile communication,
a synchronous scalable NoC architecture ARTNoC [29] is
used with a message-based communication model to manage
data transfer between compute tiles. Furthermore, the pro-
posed architecture is run-time adaptable which provides the
flexibility to change types and number of active compute tiles
during run-time. Thanks to the internal run-time reconfigu-
ration manager that manages and controls the DPR process
on FPGAs.

III. AGILER ARCHITECTURE
AGILER is proposed as an adaptive heterogeneous tile-
based many-core architecture targeting FPGA devices. The
main motivation is to provide a modular and configurable
many-core architecture (either at design or run-time) that can
be tailored to support general-purpose and domain-specific
computing for several application domains. The architecture
consists of two main parts: a© a heterogeneous set of mod-
ular and configurable compute tiles that support multiple
RISC-V ISAs in single and multi-core tiles architectures with
the option to add application-specific hardware accelerators,
and b© scalable 2-D mesh NoC with an associated commu-
nication model for inter-tile communication. In the follow-
ing, Section III. A will focus on compute tiles architecture,
Section III. B on heterogeneous RISC-V based PEs inside
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FIGURE 1. Overview of the proposed AGILER architecture with a 3× 3 tile-based many-core configuration including: (a) 4× 32-bit
compute tiles, (b) 2× 64-bit compute tiles, (c) the main/primary processing tile, and optional custom hardware accelerator tiles.

compute tiles, Section III. C on scalability and inter-tile
communication, Section III. D on run-time reconfiguration
management and Section III. E describes the programming
method for AGILER architecture.

A. MODULAR AND CONFIGURABLE COMPUTE TILES
Compute tiles are the core of AGILER architecture, they
represent the computing nodes for the proposed many-core
system. As shown in Figure 1, the many-core architecture
consists of three types of heterogeneous tiles that support
multiple RISC-V ISAs in addition to custom hardware accel-
erators. All compute tiles have a regular design pattern based
on a bus-based architecture. The compute tile tightly couples
single or multiple RISC-V based PEs with shared instruction
and data scratchpad memories using a shared AXI intercon-
nect. Therefore, all PEs in a single tile share a common private
address spacewhich allows the communication between them
and accessing tile’s shared memories and memory-mapped
peripherals via AXI interconnect. To enhance the memory
bandwidth, shared instruction and data memories are imple-
mented as dual-ported BRAM/URAM blocks. Therefore,
two memory read/write (R/W) channels can be established
across AXI interconnect to handle two memory requests
simultaneously. Shared instruction memory is implemented
as read-only BRAMmemory which is used as a boot memory
during the memory initialization stage to load the compiled
binary file for execution. Each compute tile implements a uni-
formmemory access (UMA) architecture, where each PE can
access shared data and instruction scratchpad memories con-
nected to the AXI interconnect as a slave memory-mapped
peripheral [30]. In the UMA architecture, each PE experi-
ences the same bandwidth and access latency to the memory.
However, the overall memory bandwidth is divided between
the number of PEs per tile. Therefore, the growing number of

PEs connected to the AXI interconnect leads to an increase
in memory access latency per each PE and increases the
probability of memory congestion due to limited crossbar
bandwidth. In order to reduce memory congestion per tile,
we use an open-source high-performance coherent AXI inter-
connect implementation [31], [32]. The AXI interconnect is
based on a fully-connected crossbar where each slave port
has a dedicated connection to each master port. The crossbar
supports up to five independent data transaction channels for
R/W and applies a round robin arbitration scheme. How-
ever, the memory bandwidth scalability is limited and starts
to saturate after a certain number of PEs. Therefore, each
tile supports a maximum number of four PEs to ensure a
congestion free tile implementation. As shown in Figure 1
(a), the first compute tile is a 32-bit processing node with
four RV32 PEs. Each PE consists of a single RV32IMC
core with scratchpad local memory and the PE is compat-
ible with AXI 32-bit standards to seamlessly connect it to
the tile AXI interconnect. Second compute tile is a 64-bit
processing node that can be configured to support single or
dual RV64 based PEs as shown in Figure 1 (b). Similar to
RV32 PE, the RV64 PE consists of a single RV64IMAC
core with local scratchpad memory that can be seamlessly
connected to the tile interconnect via AXI 64-bit interfaces.
The third type of compute tile is shown in Figure 1 (c), it is the
main and permanent processing tile of the AGILER many-
core architecture. The main processing tile is based on a
64-bit quad-core architecture with shared instruction and data
memory. The off-chip DDR memory is used as shared data
memory for large capacity of data sharing between the four
RV64 PEs.While the shared instructionmemory uses on-chip
BRAM blocks similar to other compute tiles. Moreover, the
main processing tile control and manage external many-core
peripherals (i.e. SD-card, UART) and it can be extended to
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support other types of off-chip peripherals. Furthermore, the
reconfiguration manger unit and its associated components
(i.e. direct memory access (DMA), internal configuration
access port (ICAP) controller) are hosted and managed inside
the main processing tile. Therefore, the main process tile is
the static part of our AGILER many-core architecture which
is primarily responsible for many-core management and con-
figuration as well as taking part of computational workload
with other tiles. Finally, all compute tiles are equipped with a
32-bit generic network-interface (NI) to connect them to the
NoC routers for inter-tile communication.

B. HETEROGENEOUS RISC-V BASED PROCESSING
ELEMENTS
PEs are the main computing units for the proposed tile-
based architecture. The design modularity of the PE allows
the execution of general-purpose applications across different
domains (e.g. signal or image processing) with different com-
puting requirements and memory footprints. In this section,
two RISC-V based PEs based on RV32/RV64 ISAs for
32-/64-bit compute tiles are described as follow.

1) 32-BIT PE
The 32-bit PE consists of a single open-source RI5CY soft-
core processor [33] with an implemented local tightly cou-
pled memory subsystem for data and instructions as shown
in Figure 2. RI5CY core is a 32-bit 4-stage pipeline in-order
processor. The core implements a simple RV32IMC ISA
with a main arithmetic-logic unit (ALU) and dedicated units
for multiplication, division and multiply-accumulate (MAC).
Average base instructions loading latency from instruction
memory is one clock cycle except for load/store (LD/ST)
instructions and other custom instructions which have a min-
imum latency of 2 clock cycles [34]. The PE features 2 sepa-
rate tightly coupled memory blocks implemented using on-
chip BRAM/URAM for instruction and data as shown in
Figure 2 (b). I/D-TCMoffer lowmemory latency of one clock
cycle for R/W operations, it also increases data locality for
memory-bound applications. All memory blocks have a fixed
word size of 32-bit compatible with RV32 ISA. As shown
in Figure 2 (b), ITCM is implemented as a dual-ported on-
chip BRAM/URAM with a read-only interface to the RI5CY
core instruction port (I-Port) for instruction fetching every
one clock cycle. In addition, a write-only interface to the
data port (D-Port) allows the transfer of specific instructions
from the shared instruction memory to the ITCM during
the memory initialization stage. In contrast, the DTCM is
implemented as a single port on-chip BRAM/URAM with
R/W interface to the RI5CY core D-Port. The DTCM is
only accessed via its own coupled PE. Therefore, access-
ing local memory directly by other PEs is prevented and
the local data memory has to be transferred to the shared
data memory to be accessible by other PEs in compute tile.
To allow seamless integration of PE in 32-bit compute tile, the
I/D-Ports of the RI5CY core are extended to be compati-
ble with AXI-4 and AXI-Stream standards by implementing

(D, I-Bridges) as shown in Figure 2 (b). D, I-Bridges
allows the communication between the RI5CY core and
tile’s memory-mapped peripherals through the shared AXI
interconnect. Since the RI5CY core or the PE is the master
unit on the proposed system. The PE AXI interfaces are
master interfaces that permit a connection to any AXI slave
peripherals inside the tile. As shown in Figure 2, the D-Bridge
handles the RI5CY read/write memory requests (req_D) and
the write-enable (we) signals from the D-Port interface by
rerouting them based on the memory-mapped address range
to the corresponding memory-mapped component (as shown
in the table in Figure 2). Hence, a finite state machine is
implemented with seven states covering the read/write states
to the (AXI interconnect, AXIS, ITCM_write and DTCM)
interfaces. According to the state and the address-range input,
the D-Port interfaces (data_write/read_D, valid_D, grant_D)
are re-connected to the corresponding interfaces. Similar
to the D-Bridge, the I-Bridge is implemented as shown in
Figure 2 (b) with a two states FSM for only reading from the
ITCM or the shared instruction memory.

2) 64-BIT PE
The 64-bit PE consists of a single open-sourceAriana (CVA6)
soft-core processor [35] with an implemented local tightly
coupled memory subsystem for data and instructions as
shown in Figure 3. Ariane core is a 64-bit 6-stage pipeline
in-order processor. The used core version in this work is
configured to fully implement RV64IMAC [36]. Similar to
the 32-bit PE, the tightly coupled memory subsystem is
implemented using on-chip BRAM/URAM blocks as shown
in Figure 3 (c). All memory blocks have a fixed word size
of 64-bit compatible with RV64 ISA. ITCM is implemented
as a dual-ported memory with a read-only interface con-
nected directly to the tile main AXI-interconnect. On the
other hand, DTCM is implemented with R/W interfaces using
also dual-ported memory. In contrast to the 32-bit PE, the
used open-source Ariane core is equipped already with inter-
faces that are compatible with AXI 64-bit standard interfaces
(AXI_resp, AXI_req) to access instruction and data memories
as shown in Figure 2 (a). Therefore, the design of 64-bit
PE is quite simple and does not require implementing extra
I/D-bridges or converters to make native core I/D-Ports com-
patible with AXI standards. However, an AXI-Master con-
nect is implemented to re-route AXI request and response
signals to different memory-mapped slaves peripherals
(i.e. I/D-TCM, shared memory, and tile peripherals) as shown
in Figure 3. Accordingly, D/I-TCM are directly connected
and accessed through the main tile AXI-interconnect in order
to reduce the number of crossbars interconnects inside the
PE and also memory access latency. Similarly to 32-bit PE,
the local memory subsystem per PE is only accessed by its
core. Therefore for each PE, I/D-TCM_offsets are inserted
to core’s AXI-resp/-req R/W addresses signals (as shown in
Figure 2 (b)) to modify the AXI addresses sent to the shared
AXI-interconnect so that each core can access its local mem-
ory. As mentioned in the right tables in Figure 3, I/D-TCMs
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FIGURE 2. Schematic of 32-bit RISC-V based PE showing: (a) open-source RV32IMC (RI5CY) core, (b) instruction and
data bridges for converting native I/D signals to AXI-4 interfaces, (c) on-chip I/D TCM and their connection to the
RI5CY core through I/D bridges.

FIGURE 3. Schematic of 64-bit RISC-V based PE showing: (a) open-source RV64IMAC (CVA6/ARIANE) core, (b) address
converter to access I/D TCM through main AXI-4 interconnect, (c) on-chip I/D TCM and their connection to the CVA6
core through main AXI-4 interconnect.

for all PEs have the same address range for all cores, but they
have unique address ranges on the shared AXI-interconnect.
Therefore, addresses modifications are required for each
PE/core to access its corresponding I/D-TCM. Accordingly,
based on that implementation, we reduced the number of
crossbar interconnects to be only the shared AXI intercon-
nects which leads to a decrease in memory access latency
(4 clock cycles) to local and shared memory.

C. SCALABILITY AND COMMUNICATION MODEL
In this work, the real-time NoC architecture ARTNoC [29] is
used for inter-tile communication and to provide the required

high scalability for the proposed many-core architecture. The
used NoC provides guaranteed quality of service (QoS) in
terms of bandwidth and end-to-end latency. In addition, the
NoC router architecture is highly modular and parameter-
ized in terms of I/O ports configurations, switching controls,
buffering sizes and routing schemes. A circuit switching
based version with an XY-routing algorithm is used in the
implementation for less resource utilization compared to a
packet-switched NoC. The NoC architecture consists of: a
5 ports circuit-switched router including a control path cir-
cuitry and arbiters for path reservation, a crossbar to switch
between the I/O ports using a round-robin arbitration scheme,
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FIGURE 4. A unified network interface (NI) block diagram for many-core
compute tiles.

synchronous network links to connect between routers. The
circuit-switched NoC reserves a static transmission path
between the source and destination routers. This is performed
by sending a single flit of 32-bit from the source router
containing the X-Y coordinate of the destination router. The
router can transmit a single flit every one clock cycle as the
I/O router ports are stream interfaces with 32-bit data width.

A generic network interface (NI) is implemented to allow
communication between compute tiles and NoC routers. The
router I/O interfaces are compatible with the AXI-stream
standard. Therefore, the proposed NI architecture is based on
a flit-based streaming approach. The NI links between the
compute tile crossbar and the AXI-stream interfaces of the
router. An overview of the NI internal architecture is shown
in Figure 4. The NI has two separated channels for sending
and receiving data (NI-TX, NI-RX). It is connected to the
AXI interconnect as AXI-slave memory-mapped peripheral
that can be accessed by all compute tile PEs. The NI internal
architecture consists of: an AXI-stream FIFO of size 64 loca-
tions in case of NI-TX and 8K locations in case of NI-RX
to store/receive the transmitted and received packet flits,
an AXI-stream to AXI-4 converter to connect the AXIS-FIFO
and its control signals to the tile AXI-interconnect. As the
NoC is based on a 32-bit architecture, an AXI-4 bit width
converter is required for 64-bit compute tiles. A single PE
can access the NI by setting a synchronization flag (for either
sending or receiving) in the shared data memory indicating
that the NI is blocked by this PE to prevent data interference
by several NI requests from different PEs. The data flow
between a PE to a NI is performed by setting a pointer to the
data source address in the shared data memory to transmit
a specified size of data. The data is transmitted in a form
of a group of 32 packet-flits to the NI-TX FIFO. Similarly,
in the receiving direction, the received packet-flits are stored
in the NI-RX AXIS-FIFO until a reading request comes from
a certain PE to start data storing in the shared data memory.

FIGURE 5. Sequence diagram of the message-based communication
model between computing tiles over the NoC.

Transmitting and receiving of data through NI can be done
concurrently as the NI has two separate read/write channels
to the AXI-interconnect.

In this work, a message-based communication model
is developed over the NoC to control the communication
between compute tiles. In other words, the communication
model is considered as the network transport layer over the
NoC hardware architecture. Figure 5 shows a sequence dia-
gram of the proposed communication model between two
compute tiles. The transmission is initiated by any PE in
the sender tile. The first transmitted packet contains the
X-Y coordinate of the tile destination followed by a stream
of payload data packets, each packet contains 32-flits of pay-
load data. The transmitted data will be directly stored in the
NI-RX AXIS-FIFO of the received tiles. Therefore, the
receiving tile will not be blocked while the data is transmitted
from the sending tile and it can load the received data to
shared data memory after a certain amount of time. How-
ever, the maximum amount of data that can be transmitted
without blocking is equal to the size of NI-RX AXIS-FIFO
which is set to 8K locations (32 KiB) for (8K × 32-bit)
data flits. In case the data is larger than 32 KiB, the send-
ing tile has to wait for an acknowledgement (ack) sig-
nal from the receiving tile that the previous 8K data flits
have been stored on the shared data memory and it is
permitted to start sending another block of (8K × 32-bit)
data flits. Accordingly, the proposed communication model
guarantees no data loss during the transmission process.
Table 2 gives a detailed description of used communication
model functions for data sending and receiving between com-
pute tiles. Based on the proposed many-core architecture, two
sending/receiving cases are applicable. The first case is send-
ing/receiving by a 32-bit compute tile. In this case, 32-bit data
are loaded from sender shared datamemory to the NI and then
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TABLE 2. Communication model functions for sending and receiving data between compute tiles.

transmitted over the 32-bit NoC architecture. The second case
is sending/receiving by a 64-bit compute tile. In this case, a
64-bit data flit has to be split into 2× 32-bit data flits by the
corresponding PE before transmission to theNI. For receiving
by a 64-bit compute tile, each received two data flits have
to be concatenated again into one 64-bit data width before
writing in shared data memory.

D. INTERNAL RUN-TIME RECONFIGURATION
MANAGEMENT
AGILER architecture differentiates from other state-of-the-
art RISC-V based many-core architectures by the ability
to support different many-core configurations through the
run-time adaptation feature. As shown in Figure 1 (c), a run-
time reconfiguration manager unit (suitable for multi-core
RISC-V based compute tile) is implemented based on a
single RISC-V core approach [37] inside the main process-
ing tile to control and manage the reconfiguration process
through the DPR technique for Xilinx FPGA. The proposed
many-core architecture consists of a static partition region
and several reconfigurable partition (RP) regions to be recon-
figured according to the selected many-core configuration.
The static region hosts the main processing tile and the NoC
architecture. While the reconfigurable regions host differ-
ent configurations for 64-/32-bit compute tiles (e.g. number
of PEs, memory type and size) through a set of compute
tiles reconfigurable modules (RMs). All compute tiles RMs
share unified interfaces to the NoC routers through NI with
single domain clock and reset signals. The DPR process
is conducted internally through internal access configura-
tion port (ICAP) primitive to allow AGILER architecture to
self-manage the configuration process without any external
controlling peripherals (e.g. a PC through a JTAG) [37].
A block diagram for the proposed reconfiguration manager
is shown in Figure 6. The proposed implementation pro-
vides a high data throughput rate to the FPGA configuration
memory via the ICAP primitive. The reconfiguration man-
ager has three interfaces as shown in Figure 6: one control
interface connected to the main tile AXI interconnect to
control the Xilinx DMA controller [38], a data interface for

FIGURE 6. Run-time reconfiguration manager block diagram including a
DMA controller and an internal ICAP controller for DPR process.

transferring partial bitstream from the external DDR to the
ICAP primitive, and the ICAP primitive interface to the
FPGA configuration memory. The DMA controller is con-
nected to the main tile DDR controller through an additional
crossbar as a master component to the DDR controller. There-
fore, the DDR can be accessed either by PEs as a shared data
memory or by the reconfiguration manager to load partial
bitstream to FPGA configuration memory. Hence, partial
bitstreams are stored in different address ranges than shared
data memory address section of PEs. As the reconfiguration
manager is implemented inside the 64-bit main tile, the DMA
is configured to transfer a 64-bit data word from the DDR.
Therefore, as mentioned in Figure 6, an AXIS2ICAP block
is implemented to split a 64-bit data word into 2 × 32-bit
data words to be compatible with the 32-bit data interface
of the ICAP primitive. Besides, the valid stream signal is
inverted and connected to the ICAP data port as the write
enable signal (ICAP_WE). Also, an AXI data width and
protocol converters are used to convert between the 64-bit
AXI-interconnect and the 32-bit AXI-Lite control interface of
Xilinx DMA component. The reconfiguration process takes
place in two steps to successfully load a new partial bitstream
with a new RM into the RP. All reconfiguration steps are
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FIGURE 7. Schematic of many-core programming flow including: (a) building application tasks source codes targeting 32-/64-bit ISA, (b) generation of
BRAM coefficient files to be stored on shared instruction memory (boot memory) of target compute tiles.

Listing 1. Internal dynamic partial reconfiguration process executing on
the 64-bit main processing tile.

managed by one 64-bit PE through a set of software functions
as mentioned in Listing 1. The first step initializes RMs by
reading the bit size (pbit_size) of their partial bitstream files
stored on the external sd-card and loading them to defined
destination addresses in the DDR memory. The first step is
performed by the FAT32 I/O file system software modules
running on one PE to load selected RMs partial bitstreams
from FAT partitions on sd-card and store them on speci-
fied DDR destinations. Second, the reconfigure process step
is executed by starting the DMA read channel to read the
selected RM partial bitstream from the DDR and transfer it
to the AXIS2ICAP block. After the DMA completes trans-
ferring the entire partial bitstream payload, a control signal is
sent to the PE to indicate completion of the reconfiguration
process, and the RM module of the corresponding compute
tile is ready to communicate with the rest of the many-core
architecture.

E. PROGRAMMING METHOD AND APPLICATIONS
EXECUTION
In this work, a bare-metal parallel programming method is
developed for the proposed many-core architecture to gen-
erate multiple binary files from multi-tasks applications to
be executed on many-core compute tiles. Each compute tile
executes a separate binary file for its mapped task, for this
work we consider static task mapping that is done by the
programmer prior to application execution. The PULP-RISC-
V GNU toolchain [39] is used to compile C source codes for
RV32/RV64 compute tiles architecture. As shown in Figure 7,
a list of generated binary files (.bin) for 32-/64-bit tiles are
the output of the compilation process, each compute tile has
a single and separate binary file that will be executed on the
shared instruction memory (boot memory) of its correspond-
ing tile. Afterwards, the generated (.bin) files are converted
to verilog memory files that contain the set of instructions for
each tile. Then BRAM coefficient files (.coe) are generated
to be loaded on shared instruction BRAM block for each tile
as shown in Figure 7 (b). The BRAM coefficient files can be
loaded to shared instruction memory during design tile prior
to synthesizing process or after the generation of bitstreams
by using update memory tool from Xilinx to only update
BRAM contents of generated bitstreams.

In-order to execute software kernels using local memory
of each PE inside a compute tile a memory initialization
stage is required to load local instructions to the ITCM and
local data initialization to DTCM for each PE as shown in
Figure 8 (a). Therefore, a linker script (.ld) is developed as
shown in Figure 8 (b) for instruction/data memory mapping.
The linker script defines memory partitions and sectors for
PEs shared and local instructions/data memory for a single
compute tile. Initially and before application execution, all
shared and local instructions are stored on shared instruction
memory as shown in Figure 8 (a). Also, shared and local data
initial values are stored on shared data memory. Therefore,
during the memory initialization, each PE starts to load its
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FIGURE 8. Memory mapping and sectors for a single compute tile:
(a) instruction and data memory mapping for compute tile shared and
local memories, (b) the corresponding linker script file (.ld) defines the
different memory sectors for software building and compilation.

local instructions and initial data values from shared instruc-
tion/data memory to I/D-TCM based on memory address
ranges defined on linker script for each PE. Listing 2 shows a
snippet C code of memory initialization process for a single
tile. In the C code kernel each function which has to be exe-
cuted from a local ITCM has to be preceded with a memory
section attribute (__attribute__(section(‘‘.itcm_0’’))) which
defines its executable ITCM for a specific PE. Similarly,
local data variables have to be preceded with memory section
attribute (__attribute__(section(‘‘.dtcm_0’’))) which defines
its executable DTCM for a specific PE.

IV. HARDWARE AND PERFORMANCE EVALUATION
Physical hardware implementation, system scalability, run-
time reconfiguration and performance analysis results for
the proposed AGILER architecture are discussed and pre-
sented in this section. Xilinx Virtex Ultrascale+ XCVU9P
is the target FPGA for implementation and prototyping of
the proposed tile-based many-core architecture. Also, Vivado
Design Suite HLx 2019.1 is used for RTL synthesis, sim-
ulation, place and routing, and full and partial bitstream
generation.

In this section, AGILER architecture is evaluated based on:
1) Hardware resources utilization and power consump-

tion for different compute tiles and heterogeneous PEs
described in Section III.

2) Run-time reconfiguration based on hardware resource
utilization of reconfigurable partitions and reconfigu-
ration time for different compute tiles configurations.

Listing 2. Memory initialization for each compute tile prior to
kernels/tasks execution.

3) System scalability and computing performance with
respect to different number and types of compute tiles
in terms of achievable memory bandwidth, inter-tile
data transfer latency, and computing operations per
second (Op/s).

Benchmarks and test cases used for evaluation are written
as software kernels over corresponding compute tiles using
C programming language and compiled using the PULP-
RISC-V GNU toolchain [36] as described in the previous
section to generate the corresponding binary (.bin) files and
coefficient files (.coe) to be loaded into the shared instruction
memory of each compute tile. The execution cycles used
in this section are measured by the performance counter
register (PCCR) of RV32/RV64 cores. The number of cycles
measured by the PCCR can be read using read_csr assem-
bly function called in the corresponding benchmark or test
case kernels and stored back in the compute tile shared data
memory. As shown in Figure 1 (Section III), sd-card and
UART peripherals are only accessed by the main processing
tile which manages external data transfer between compute
tiles and external peripherals. Therefore, for purposes of
testing and evaluation each compute tile transmits evaluation
results to the main processing tile to be transmitted to UART
peripheral.

A. HARDWARE EVALUATION
AGILER architecture has been developed and implemented
using a modular and hierarchical design approach. Where
architectural modules (i.e. RISC-V cores, PEs, memory
blocks, interconnects, etc.) are implemented as intellec-
tual property (IP) components to be integrated together to
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TABLE 3. Hardware resource utilization and power consumption of different compute tiles for the proposed many-core architecture targeting a
Xilinx Virtex Ultrascale+ (XCVU9P) FPGA.

build heterogeneous compute tile modules for several many-
core configurations. Inter-tile communication is implemented
using ARTNoC framework [27] to generate multiple 2-D
mesh NoC dimensions based on selected many-core con-
figurations. The NoC module is implemented as a single
parameterized module including routers and network links.
The NoC is configured only during design-time based on
2-D mesh size, and number of flits per packet. In addition,
dual-ported BRAM/URAM blocks used for instruction and
shared memory inside compute tiles are implemented using
Xilinx BRAM/URAM memory generator blocks with AXI-

BRAM controllers. All many-core configurations and their
required modules are synthesized and implemented targeting
Xilinx Virtex Ultrascale+ XCVU9P FPGA. The proposed
tile-based architecture is running using a single clock domain
of 120 MHz for all implemented components and modules.

Table 3 shows the hardware resource utilization for differ-
ent heterogeneous compute tiles used for the proposed tile-
based many-core architecture as depicted in Figure 1. Three
compute tile and a main processing tile modules are imple-
mented to support different many-core configurations with
two NoC configurations. All compute tiles are configured
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during design-time with a 64 KiB shared instruction memory,
and 256 KiB shared data memory except the main process-
ing tile which uses external DDR as shared data memory.
As shown in Table 3, the RV32 tile consists of four PEs with
4KiB ITCM and 16 KiB DTCM. Each 32-bit PE consumes
(∼0.6%) of total LUT, the 32-bit tile consumes (2.6%) of
LUT mostly consumed by the 4 PEs. On-chip memory usage
is distributed between BRAM and URAM blocks with a total
percentage utilization of (∼3%) for a complete tile. As shared
and local data memories are implemented using URAM
blocks while all instruction memories are implemented using
BRAMblocks for balanced on-chip memory utilization. Sim-
ilarly, RV64 tiles (w/single-PE, and w/2-PEs) consume the
same on-chip memory resources as the RV32 tile. In contrast,
one 64-bit PE is 6x the size of a 32-bit PE in terms of resource
utilization. Therefore, the maximum number of PEs per
64-bit tile is two to keep resource utilization under a cer-
tain limit for RV64 tiles. As shown in Table 3, the RV64
(w/single-PE) tile is 1.5x and the RV64 tile with two PEs
is 3x the size of the RV32 tile respectively. On the other
hand, the main processing tile consumes (18.5%) of total
LUT and (∼16%) of on-chip memory as it is config-
ured with four 64-bit PE. However, the main processing
tile can be configured with less PEs in order to reduce
resource utilization for smaller FPGAs or more design space.
In addition, all compute tiles are equipped with two NI
channels for transmitting and receiving over the NoC, for
NI-RX 15 BRAM blocks are used to implement the
(8K×32-bit) AXIS-FIFO and single BRAM block for
NI-TX AXIS-FIFO. Two NoC configurations are realized
in this work for two different many-core sizes, the first one
support the communication up to 14 compute tiles including
one main processing tile with total resource utilization of
(6%) of total LUT. The second NoC configuration consumes
less resource utilization for smaller many-core size up to
8 compute tiles. Furthermore, the power consumption of
each type of compute tile and NoC configurations are esti-
mated by Vivado power estimation tool at a clock frequency
of 120 MHz as shown in Table 3.

B. RUN-TIME RECONFIGURATION
Xilinx dynamic partial reconfiguration (DPR) technique is
supported to change many-core configurations during run-
time without the need to synthesize or implement the com-
plete architecture every time a new configuration is applied.
The generation of partial bitstreams for many-core tile con-
figurations is conducted through Xilinx partial reconfigura-
tion (PR) design flow [40]. AGILER architecture is equipped
with an internal reconfiguration manager located inside the
main processing tile to manage and control the reconfigu-
ration process through the FPGA ICAP primitive. For eval-
uation, two NoC configurations are used to support several
many-core sizes regarding the number and types of compute
tiles. As mentioned in the previous section, the main process-
ing tile and NoC are hosted by the static partition region of
the architecture, while the other three types of compute tiles

are swapped over reconfigurable partition regions during run-
time. Figure 9 (a, b) show two FPGA floorplans based on two
different NoC configurations: first configuration with 2 × 7
NoC, and second configuration with 2 × 4 NoC. The first
many-core size shown in Figure 9 (a) consists of 12 RPs
that can host two types of compute tiles (RV32, and RV64
(w/single-PE) tiles) as RMs. All 12 RPs have the same size
on the FPGA floorplan with the same number and types of
hardware resources. A single RP size is specified to host
the largest compute tile used in the first many-core size.
Table 4 shows hardware resource utilization for a single
RP and percentage resource utilization for each RM from
the total RP size. The maximum utilization percentage is
achieved by the RV64 (w/single-PE) tile with (87.5%) LUT
and (91.6%) on-chip memory utilization. On the other hand,
the second many-core size with 2×4 NoC supports larger RP
size to support the largest configurable compute tile module
(RV64 (w/2-PE) tile) for AGILER architecture. Figure 9
(b) shows the FPGA floorplan of the second many-core size
with 7 RPs and three types of RMs for all compute tiles.
However, the number of compute tiles is limited to 7 tiles
to fit with the target FPGA total size. Similar to first many-
core, all RPs have the same size that can fit with the largest
compute tile which is in this case the RV64 tile with two
PEs. Table 4 shows resource utilization for second many-core
and its RMs. The RP size is double the size used for first
many-core with a maximum utilization of (92.2%) for LUT
and (87.5%) for on-chipmemory hosting RV64 (w/2-PEs) tile
modules. In contrast, RV32 tile modules consume less than
(30%) of RP resources. Therefore, the second many-core can
be used efficiently to support more RV64 tiles in comparison
with the first many-core.

Moreover, Table 5 shows total resources utilization for
the two many-core sizes shown in Figure 9. The resource
utilization reports the total hardware resources required by
all used RPs with the main processing tile for the two many-
core sizes. Accordingly, the first many-core is more suitable
for heterogeneous configurations that support more RV32
tiles than RV64 tiles to increase the efficiency of resources
usability. On the other hand, the second many-core is more
suitable for RV64 based configurations. In addition to that,
several many-core sizes can be realized by using differ-
ent NoC sizes to support different number of homogeneous
or heterogeneous compute tiles based on target application
requirements.

Furthermore, reconfiguration time is an important aspect
to evaluate the performance of the internal reconfiguration
manager (presented in Section III). In this work, the recon-
figuration time is measured through the RISC-V core PCCR
to measure the required number of clock cycles from load-
ing a partial bitstream from the DDR memory until fully
transferring the partial bitstream to the ICAP primitive. The
reconfiguration time includes all software and hardware over-
head required by the reconfiguration manager to successfully
loaded one partial bitstream to the FPGA configuration mem-
ory through the ICAP. As shown in Table 4 (last column),
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FIGURE 9. FPGA floorplan and resources utilization percentage for two different many-core sizes and configurations targeting a
Xilinx Virtex Ultrascale+ (XCVU9P) FPGA.

TABLE 4. DPR resource utilization and reconfiguration time for two many-core sizes.

TABLE 5. Total hardware resource utilization for the two different
many-core sizes shown in Figure 9.

the total reconfiguration time of a single RP for first con-
figuration is 18.8 ms. For second configuration, as the RP
size increased, the required reconfiguration time is 38.1 ms.
Accordingly, the proposed reconfiguration manager supports
a high speed reconfiguration process as it uses a separate
data stream channel to transfer partial bitstream to the ICAP
primitive through a Xilinx DMA.

C. COMPUTING PERFORMANCE AND SCALABILITY
In this work, AGILER architecture is evaluated based on
inter-tile data transfer latency, achievable memory band-
width, and computing performance in terms of integer oper-
ations per second (Op/s). The evaluation is conducted over
different numbers and types of compute tiles supported by

the proposed many-core architecture. In order to measure
inter-tile data transfer latency through the NoC. Two data
transmission scenarios are evaluated for RV32 and RV64
tiles. Data transfer latency is measured from the transmitter
tile (tile-TX) by measuring the time delay of transmitting a
variant set of data sizes to the NI-RX of the receiving tile
(tile-RX). The transmission time includes 1© the time over-
head of loading the data from tile-TX shared data memory
to NI-TX using the communication model software function
running on a PE inside tile-TX, and 2© the time overhead of
transmitting the data from source to destination routers over
the NoC. Figure 10 shows the measured data transfer latency
for both RV32 and RV64 tiles scenarios up to 32KiB of data
size. Since RV64 tiles support 64-bit memory transfer from
shared data memory to NI-TX compared to 32-bit memory
transfer for RV32 tiles, the data transfer latency from the
RV64 tile is (∼ 2x) faster than the RV32 tile. The transmission
time overhead over the NoC is similar for both RV32 and
RV64 tiles as the NoC supports stream data transmission
of 32-bit. Therefore, transmission time between NoC source
and destination routers is negligible compared to the time
overhead required to load the data from shared data memory
to the NI-TX inside the transmitting tile.
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FIGURE 10. Data transfer latency over NoC between heterogeneous
32-/64-bit compute tiles (lower is better).

The memory bandwidth is measured by a parallel exe-
cution of a copy function on all PEs inside a tile to copy
a data size of 4 KiB through two evaluation scenarios 1©
by using only shared data memory for multi-core supported
compute tiles, 2© by using local data memory (DTCM) for
all type of compute tiles. Figure 11 shows the memory
bandwidth scalability up to 8 compute tiles using differ-
ent types of tiles for shared and local memory scenarios.
Memory bandwidth is approximately proportionally scal-
able with the increasing number of tiles for all types of
supported compute tiles. For shared memory scenario as
shown in Figure 11, using RV64 tiles (2-PEs per tile) achieve
higher memory bandwidth (∼3.5x) compared to RV32 tiles
(4-PEs per tile). Therefore, supporting 64-bit memory trans-
fer over 64-bit AXI interconnect for RV64 tiles provides
more memory bandwidth per tile and thus the total many-core
configuration. Moreover, for RV32 tiles memory bandwidth
scalability is not increased proportionally by increasing num-
ber of PEs due to the traffic contention through the AXI-
interconnect. As a result, for shared memory scenario, using
8xRV64 (w/2-PEs) tiles achieves a maximum memory band-
width of (∼2.5 GB/s) while 8xRV32 (w/4-PEs) achieve
(∼0.75 GB/s). On the other hand, for local memory sce-
nario as shown in Figure 11, the overall memory bandwidth
scalability for all compute tiles is improved by (∼4x) for
RV32 tiles and by (∼2.5x) for RV64 (w/2-PEs) tiles com-
pared to shared memory scenario. Moreover, the memory
bandwidth achieved by using RV64 (w/single-PE) tiles is
approximately the same achieved by RV32 (w/4-PEs) tiles.
Therefore, memory access latency is less in RV64 tiles com-
pared to RV32 tiles due to fewer interconnects and data
bridges usage inside 64-bit PEs between RISC-V core and
DTCM. Consequently, RV64 (w/2-PEs) tiles achieve (∼2x)
memory bandwidth compared to RV64 (w/single-PE) tiles.
As a result, the maximum achievable memory bandwidth
using 8xRV64 (w/2-PEs) tiles is (7.4 GB/s) and (3.8 GB/s) for
8xRV32 tiles.

A parallel block matrix multiplication benchmark is imple-
mented in order to evaluate the computing performance of
different compute tiles for several many-core configurations.

FIGURE 11. Achievable memory bandwidth with respect to numbers and
types of many-core computing tiles using shared or local data memories
(higher is better).

TABLE 6. Computing performance for different numbers and types of
compute tiles using matrix multiplication benchmark.

Matrix multiplication benchmark is based on square matrix
multiplication dimension for equal matrices partitioning for
parallel execution over binary numbers of compute tiles. The
parallel block matrix algorithm is used to partition matrix
A into sub-matrices equals to the number of compute tiles.
While matrix B is partitioned into sub-matrices equals to
the number of PEs per compute tile. Each PE inside a com-
pute tile computes the multiplication of a sub-matrix A with
a sub-matrix B and store the result in a sub-matrix C in
shared data memory. 32-/64-bit integer matrix multiplication
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FIGURE 12. Computing latency of matrix multiplication benchmark over different numbers and types of compute tiles.

FIGURE 13. Speedup of 2-D and 3-D convolution kernels for different input matrix sizes over different numbers and types of compute tiles.

algorithms are used over RV32 and RV64 tiles respectively.
For evaluation, three many-core configurations are used with
8 compute tiles. Each configuration supports only one type
of compute tile (RV32, RV64 (w/single-PE), and RV64 (w/2-
PEs)). In addition, two evaluation scenarios are conducted
using tiles shared data memory or local data memory to load
and store matrices values. Figure 12 shows parallel matrix
multiplication computing latency for the three many-core
configurations using several types of compute tiles with three
square matrix sizes. As a result, computing performance is
proportionally scalable with increasing number of compute
tiles for RV32 and RV64 tiles using shared or local data
memory. As shown in Figure 12 (a), the computing per-
formance of single RV32 tile is approximately the same as
RV64 (w/2-PE) tile. Despite the higher number of PEs per
RV32 tile which increases computing performance, the RV64
tile has a higher memory bandwidth compared to RV32 tile.
Therefore, the required memory access time for loading and
storing matrices values is less in case of RV64 tile which
improves the overall computing performance with less num-
ber of PEs. However, by increasing the number of tiles, many-
core configuration with RV32 tiles achieve less computing

latency by (∼1.5x) compared to many-core configuration
with RV64 tiles. On the other hand, using local data memory
will improve the computing performance by (∼6x) for RV32
tiles and (∼3.5x) for RV64 tiles as shown in Figure 12 (b).
In local memory scenario, computing performance depends
only on number of PEs as each PE has its own data memory.
Therefore, for all number of tiles, the RV32 tile achieves
less computing latency by (∼5x) in comparison with RV64
(w/single-PEs). Table 6 shows the computing performance
in term of number of Op/s based on the matrix multipli-
cation benchmark for the aforementioned many-core con-
figurations and evaluation scenarios. As a result, AGILER
architecture achieves a maximum 32-bit computing perfor-
mance of (685 MOPS) configured with 8xRV32 (w/4-PEs)
tiles using only local data memory. For 64-bit integer oper-
ations, a maximum computing performance of (316 MOPS)
is achieved by 8xRV64 (w/2-PEs) configuration. In addition,
the main processing tile achieves a maximum performance
of (96 MOPS).

Furthermore, 2-D and 3-D parallel convolution ker-
nels are considered for evaluation as they are commonly
used for signal processing and neural network algorithms.
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TABLE 7. Comparison between state-of-the-art RISC-V based many-core architectures and the proposed architecture (AGILER) in term of resources
utilization and computing performance targeting FPGA platforms.

Similarly to the matrix multiplication benchmark, parallel
convolution kernels are evaluated over the aforementioned
three many-core configurations based on RV32 and RV64
tiles. Also, 64-bit and 32-bit integer operations are supported
by RV32 and RV64 tiles respectively. Parallel execution is
conducted by partitioning the input matrix over the target
number of compute tiles. In this experiment, input matri-
ces have square dimensions to be partitioned equally over
a binary number of compute tiles. Inside each compute tile
the input matrix is partitioned again over the number of PEs
per tile. 2-D and 3-D convolution are computed by sliding a
kernel size of (3×3, and 3×3×3) across the assigned input
matrix for each PE. Loading and storing operations from/to
the memory during convolution are conducted using local
data memory for each PE to achieve maximum computing
performance. Therefore, due to the limited size of on-chip
memory larger sizes of input matrix require multiple compute
tiles to be executed. Figure 13 shows the execution speedup
of 2-D and 3-D convolution over different numbers and types
of compute tiles. Speedup is measured based on the comput-
ing latency achieved by a specific many-core configuration
in comparison with the computing latency of many-core con-
figuration with RV64 (w/1-PE) tile for the same input matrix
size. As a result, the many-core configuration with RV32
tiles achieves the highest speedup compared to other RV64
many-core configurations. As shown in Figure 13 (a), for
2-D convolution a maximum speedup of (∼37x) for (16×16)
input matrix size is achieved by 8xRV32 tiles in comparison
with a single RV64 (w/single-PE) tile. In case of (256× 256)
input matrix size, 8xRV32 configuration achieves a speedup
of (∼5.5x) in comparison with 4xRV64 (w/single-PE) con-
figuration. For 3-D convolution, as shown in Figure 13 (b),
a speedup of (∼65x) is achieved by 8xRV32 configuration
for (8 × 8 × 8) input matrix size. In case of a large input
matrix size (32 × 32 × 32), a speedup of (∼8x) is achieved
compared to 4xRV64 (w/single-PE) configuration.

D. STATE OF THE ART COMPARISON
In this work, the goal is to provide a heterogeneous and adapt-
able tile-based many-core architecture to support seamless
integration and communication between multiple RISC-V
ISAs for realizing several many-core configurations. Our
main contributions rely on the modularity and run-time
adaptability of compute tiles to support variant requirements
for compute and memory-bound applications. The proposed
architecture specifically targets FPGA devices for fast proto-
typing and evaluation which make it suitable for design space
exploration for many application domains. Several RISC-V
based many-core architectures are previously proposed in
the literature and as open-source platforms. However, design
modularity and run-time adaptability are not supported by
existing state-of-the-art approaches. Besides, Table 7 shows
a comparison between our proposed architecture and sev-
eral state-of-the-art RISC-V-based many-core architectures
targeting FPGA devices. Comparison aims to evaluate hard-
ware specifications and computing performance of our pro-
posed architecture with other state-of-the-art approaches.
Proposed architectures by [20], [24], [41] are based on a
single application class RISC-V core per tile supporting one
ISA which increases the cost of scalability in terms of hard-
ware resources required for interconnection for many-core
realizations as well as high clock frequency to increase the
compute performance of a single tile (in case of ESP [41]).
In contrast, Andromeda architecture [21] combines several
cores per tile adding more computing power to a single tile
using lower clock frequency and reducing the cost of scala-
bility. However, power consumption is the main bottleneck of
using application class RISC-V processors in compute tiles,
especially for high scalable many-core systems. Therefore,
GRVIPhalanx [25] uses a simple RISC-V ISA (RV32I) to
support tens of compute tiles with appropriate overall power
consumption. However, computing performance is very lim-
ited as it only support RV32I. In comparison to them, our
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proposed architecture supports different types of compute
tiles with more computing capabilities suitable for several
application requirements. The RV32 tile supports highly scal-
able many-core systems with less resource utilization and
power consumption per tile. Also, RV64 tiles feature low
resource utilization compared to [20], [21], [41] supporting
local and shared memory hierarchies per tile.

V. CONCLUSION
This work proposes AGILER a novel adaptive tile-
based many-core architecture for heterogeneous RISC-V
processors suitable for FPGA platforms. The proposed
architecture features a high degree of design scalability
and regularity using heterogeneous RISC-V PEs for multi-
/single-core compute tiles. AGILER is based on a mod-
ular and configurable set of heterogeneous compute tiles
connected through a scalable NoC architecture. Each com-
pute tile supports scratchpad shared and local memory sys-
tems. Moreover, the proposed architecture supports design-/
run-time configurations to change numbers and types of
compute tiles for several many-core configurations. For run-
time reconfiguration, a high-speed reconfiguration manager
is implemented to manage and control the DPR process
internally from AGILER architecture. The proposed archi-
tecture aims to ease the development and realization of
RISC-V based heterogeneous many-core architectures by
reducing the design time and the non-recurrent engineering
costs. AGILER architecture is evaluated based on hardware
resource utilization and computing performance scalability
through several many-core configurations and benchmarks.
The results show a high degree of computing scalability using
a scalable number of heterogeneous compute tiles.

As for the future work, it is planned to provide more
heterogeneous compute tiles with RISC-V ISA extensions
for floating point operations (e.g. RV32F, RV64D) and vec-
tor instructions to support more applications requirements.
In addition, an auxiliary memory tile will be implemented to
support off-chip memory access directly through the NoC to
be accessed directly by all compute tiles without passing by
the main processing tile to access the external memory.
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