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ABSTRACT The steady-state reactive transport model (RTM) is a generalization of the nonlinear
reaction-diffusion model in porous catalysts. The RTM is expressed as a non-linear ordinary differential
equation of second-order with boundary conditions. Artificial neural network (ANN), Particle swarm
optimization (PSO), and hybrid of PSO-SQP (Sequential Quadratic Programming) are used to obtain
accurate, approximate solutions to the non-linear RTM. The proposed technique is applied to three different
cases of non-linear RTM. The properties of the nonlinear reactive transport model in porous catalysts are
investigated by considering various cases based on variation in the half-saturation concentration ‘‘α’’ and
the characteristic reaction rate ‘‘β.’’ The stability, reliability, and exactness of the proposed technique are
established through comparison with the outcomes of the standard numerical procedure with the RK4
method and along with the different performance indices, which are Root-Mean-Square Error (RMSE),
(TIC), Absolute Error (AE), and Mean Absolute Deviation (MAD).

INDEX TERMS Artificial neural networks, nonlinear reactive transport model, particle swarm optimization,
mathematical modeling.

I. INTRODUCTION
Problems arising in microvessels and fluid are multiscale
model of nonlinear steady-state one-dimensional reactive
transport (RTM) which is also known as reaction-diffusion
model in porous catalysts are used to solve those types
of problems [1]–[3]. Reactive transport model dynamics
are essential for the study of physical and biological pro-
cesses because they are used to develop behavior in various
Earth-related studies [4], [5]. The development of reactive
transport models provides a forum for testing and integrating
new theoretical information on transport, geochemical, and
biological processes. The effect of changes in air transport
and temperature, as well as water pollutants, due to diffu-
sion and convection characteristics play an important role in
human lives in the reactive transport model phenomenon of
heat and mass transfer [6]–[8].
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The reactive transport model, which governs in a one-
dimensional steady-state can be stated as follows [9]:

D̂
d2θ
dX2 − V

dθ
dX
− r(θ ) = 0, 0 ≤ X ≤ L, (1)

with boundary conditions as follows:

θ (L) = θs and
dθ (0)
dX
= 0, (2)

the advective velocity is denoted as V, the reaction process is
denoted as r(θ ) and the diffusivity parameter is denoted as D̂.
Moreover the parameters are discussed in [3] and [1] in detail.
By using the non-dimensional quantities θ (x) = θ (X )

θs
, x =

X
L , and the non-dimensional reaction term r(x) into Eq. (1),
we get

d2θ
dx2
− P

dθ
dx
− r(x) = 0, 0 ≤ x ≤ 1, (3)

where P = LV
D̂

is so-called Péclet number. Without advection
of transport, we have P = 0, and the model was used to study
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porous catalyst pellets as a diffusion and reaction model in
this case. The r(x) is assumed by Michaelis–Menten [3] to
be a nondimensional reaction, then Eq. (4) is modified in the
following way:

d2θ
dx2
−

βθ (x)
α + θ (x)

= 0, 0 ≤ x ≤ 1, (4)

the boundary conditions as:

dθ (0)
dx
= 0, θ(1) = 1, (5)

where α, is the concentration of half saturation, which cannot
be negative and β is characteristic reaction rate, when β < 0,
then instead of product reactions we looks at the reactives.
The RTM problem in Eq. (3) has been extensively studied
without advective transport (P = 0), whereas the RTM prob-
lem in Eqs. (4, 5) is a fluid and solute transport model arising
from soft tissue and microvessel research.

The model (3)-(4), which was recently introduced by
Ellery and Simpson [3], is a modification of the primer
model, referred to as the nonlinear reaction-diffusion model
in porous catalysts, which has been used to study porous
catalyst pellets and has been analysed using a variety of
techniques [10]–[12]. The models (3)-(4) incorporate advec-
tive and diffusive transport, as well as the Michaelis-Menten
reaction model, which is frequently used to describe biolog-
ical processes [13]–[15]. This model encapsulates a variety
of critical engineering processes, including various applica-
tions in chemical [16], [17] and environmental engineering
[13], [15]. The boundary value problems (1)–(2) have a non-
linear fractional term, which makes them rather challenging
to solve numerically. Ellery and Simpson [3] proposed a Tay-
lor series solution for this model that is actually convergent if
the Michaelis-Menten reaction term has finite derivatives.

The RTM problems (4, 5) can be solved for different
half-saturation concentration β and characteristic reaction
rate α. The RTM’s significant role motivates researchers to
develop solutions for the model. Alves, Van Genuchten [18],
and Torideet [19] provide analytical solutions for steady-
state non-linear RTMs, such as the Homotopy analysis
method [20], the Adomian decomposition method [21]–[24],
and the Taylor–Galerkin methods for non-linear dynamical
problems [25]. These RTM investigations use deterministic
numerical and analytical methodologies, each with its own
set of advantages, applicability, reliability, and limitations.
On the other hand, artificial intelligence-based techniques
have not yet been investigated for solving mathematical rela-
tions of nonlinear RTMs.

The research community has used stochastic numeri-
cal techniques based on artificial intelligence algorithms
to investigate a wide range of engineering and technol-
ogy applications [26]–[29]. The most prominent stochastic
paradigms applications via the exploitation of ANNs, parti-
cle swarm optimization (PSO), swarm intelligence, pattern
search (PS) include nonlinear Thomas–Fermi model [30],
corneal model [31], multi-phase flow model [32], dynamic

model for heart-beat [32], the model of wire coating anal-
ysis [32], beam-column Designs model [33], over-current
relays model [34], model of plasma [35], Bratu problem [36],
Bagley–Torvik models [37] and Riccati model [38].

Additionally, the stochastic algorithms also handled
problems arising in electromagnetics [39], astrophysics [40],
electrical circuits [41], communication, signal processing,
controls [42], plasma physics [43], bio-informatics [44],
atomic physics [45], and nanotechnology [42]. These are
inspirations for the author to investigate, analyze, and exploit
research stochastic mathematical methodologies to establish
a new, precise, robust, and dependable computing approach
to investigate nonlinear reactive transport models that arise in
soft tissue and microvessel studies.

A. SUMMARY OF THE STUDIES
The following is a summary of the study’s findings in terms
of critical features:

1) For solving nonlinear second-order reactive transport
model systems, governing Earth and heat systems, the
accurate modeling of ANNs that have been optimized
with particle swarm optimization PSO) and PSO-SQP
is efficiently exploited.

2) To determine reactive transport model dynamics for
various cases based on of variations of the characteristic
half-dynamic concentration and reaction rates, the pro-
posed stochastic technique is applied with reasonable
accuracy when compared to the RK4 solution. The
proposed approach outperforms the other methods in
terms of performance.

3) The techniques comparison indicates that the perfor-
mance of PSO and PSO-SQP is better than the rest of
the other numerical techniques for such a model.

4) PSO’s high performance in investigating the governing
mathematical equations of reactive transport mod-
els (RTMs) was further supported by a detailed evalua-
tion of the findings using statistical performance from
MAD, TIC, and RMSE.

II. ORGANIZATION OF THE PAPER
The rest of this paper is structured as follows:

Sect. 3: Design is providedwith computational intelligence
paradigms for the non-linear transport models results.

Sect. 4: Presented the designed scheme of the proposed
technique.

Sect. 5: Statistics results are presented on the basis of
various tests.

Sect. 6: For the reactive transport model, numerical exper-
iments are illustrated with graphical and numerical diagrams.

Sect. 7: Conclusions and future research directions are
discussed.

III. DESIGN METHODOLOGY
The nonlinear reactive transport model (RTMs) design
scheme is divided into two parts. The first section describes
the system’s ANN-based modeling. The second section of
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the study provides an overview of the optimization strategies
that are employed as dynamic methods for training ANN
model weights. The proposed scheme’s workflow diagram is
visually shown in Fig. 2.

A. MATHEMATICAL MODELING
The non-linear reactive transport model (RTM) mathemati-
cal modeling is described in two sections. The first section
constructs ANN simulations for the system’s solution and
derivative terms. The second section discusses the use of
ANN simulations to formulate fitness functions.

We create an artificial neural network approximate solution
as follows by continuously mapping the solution θ̂ (x) and its
derivative up-to nth order as:

θ̂ (x) =
k∑
i=1

Ãif (ω̃ix + γ̃i) , (6)

dθ
dx
=

k∑
i=1

Ãi
d
dx
f (ω̃ix + γ̃i) , (7)

d2θ̂
dx2
=

k∑
i=1

Ãi
d2

dx2
f (ω̃ix + γ̃i) , (8)

dnθ̂
dxn
=

k∑
i=1

Ãi
dn

dxn
f (ω̃ix + γ̃i) . (9)

Here adaptive parameters of networks, are γ̃i, Ãi and ω̄i are
in ith form, f is an activation function and k represent total
number of neurons. In artificial neural network, log-sigmoid
f (τ ) = 1/

(
1+ e−τ

)
, is usually used for activation function,

where the τ = ω̃ix + γ̄i.
Using activation function the log-sigmoid in the set of

equations from Eq.(6) to Eq.(8) and its derivatives can be
represents as follow.

θ̂(x) =
k∑
i=1

Ãi
1+ e−(ω̄ix+γ̄i)

, (10)

dθ̂
dx
=

k∑
i=1

Ãiω̃ie−(ω̂ix+γ̄i)(
1+ e−(ω̄ix+γ̃i)

)2 , (11)

d2θ̂
dx2
=

k∑
i=1

Ãiω̃2
i

[
2e−2(ω̃ix+γ̄i)(
1+e−(ω̃ix+γ̃i)

)3− e−(ω̃ix+γ̄i)(
1+e−(ω̃ix+γ̃i)

)2
]
,

(12)

dnθ̂
dxn
=

k∑
i=1

Ãiω̃ni



n!e−n(ω̃ix+γ̃i)(
1+e−(ω̃ix+γ̃i)

)n+1
−
n(n−1)e−(n−1)(ω̃ix+γ̃i)(

1+e−(ω̃ix+γ̃i)
)n + · · ·

+
(−1)n−1e−(ω̃ix+γ̃i)(
1+e−(ω̃ix+γ̃i)

)2

 . (13)

The ANN architecture of RTM is built using the appropriate
network combinations described in Eq (4) in the form of
single inputs, outputs and hidden layers as indicated in Fig 2.

The RTM fitness function of Eqs (4, 5) is developed using
the approximation principle in the mean square sense as:

ε = ε1 + ε2. (14)

Although ε1 represents the mean square error of the differen-
tial equation representing RTM.

ε1 =
1
K

K∑
k=1

(
d2θ̂k
dx2
−

αθ̂k

β + θ̂k

)2

, (15)

and ε2 is the boundary condition the mean square error as:

ε2 =
1
2

(θ̂k − 1
)2
+

(
dθ̂0
dx

)2
 , (16)

for θ̂k = θ̂ (xk ), xk = kh, h = 1/k . The network for θ̂k
and its first and second-order networks are described in a set
of equations from Eqs. (10) to (12). Now, the approximate
solution θ̂ (x) will be overlapping with the exact solution θ (x)
of the reactive transport model as defined in Eqs. (4,5), if the
tuned weights of the network with εRTM are appropriately
close to zero.

IV. LEARNING METHODOLOGY
Once the fitness function for the non-linear reaction-diffusion
model has been constructed using an artificial neural network,
we applied PSO and PSO-SQP to obtain optimal weights for
the model.

A. OPTIMIZATION PROCEDURE
1) PARTICLE SWARM OPTIMIZATION
At the end of the nineteenth century, Eberhart and Kennedy
developed PSO, a global heuristic search optimization tool.
Particle swarm optimization utilizes genetic algorithms [46]
and has become one of the most popular optimization tech-
niques due to its ease of implementation and lower memory
requirements [47]. PSO provides improved performance on
various standards and the spectrum of engineering issues to
provide more optimal results. PSO is associated with the
combined swarm success of bird flocking and fish school-
ing [48]. Multicast communication network routing prob-
lems [49], solar photovoltaic systems [50], vehicle-to-grid
energy resource scheduling [51], high-dimensional data clus-
tering [52], pathway optimization for humanoid robots [53],
multilevel thresholding [54], collective robotic selection, and
cancer classification gene selection [55], are some of themost
recent PSO applications.

Each candidate outcome is a particle that represents an
optimization model in the search space. To form a swarm,
randomly generated particles explore the problem in the PSO
algorithm. Initial swarms are distributed to determine the
technique’s optimum efficiency on a larger scale. Each parti-
cle in the swarm has fitness values that define the problem’s
parameters, known as the objective function. An iteratively
optimal solution provides parameter initialization in the parti-
cle swarm optimization algorithm. The velocity and position
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FIGURE 1. Graphical abstract of proposed algorithm.
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FIGURE 2. ANN architecture for non-linear RTM.

of the swarm are restructured by using the global best and
local positions of its previous point, Pr−1GB and Pr−1LB .
The standard continuous velocity and position particle

swarm optimization update form is provided as:

X r
i = X r−1

i + V r−1
i , (17)

V r
i = ωV

r−1
i + a1r1

(
Pr−1LB − X

r−1
i

)
+ a2r2

(
Pr−1GB − X

r−1
i

)
, (18)

the velocity vector represented by Vi and iih swarm particle
denoted by vectorXi. The randomvectors is denoted by rl and
r2, and the acceleration constant denoted by al and a2, where
as inertia weight is ω ∈ [0, 1]. The elements of the velocity
vector is between [−vmax, vmax], and maximum velocity is
indicated by vmax. Based on a predefined number of flights,
the output of the algorithm is stopped. The global search
performance of PSO is increased further with the use of
the Sequential Quadratic Programmingmethod (SQP), which
is an efficient, speedy, and fast local search optimization
technique.

2) SEQUENTIAL QUADRATIC PROGRAMMING
Sequential quadratic programming (SQP) has become a very
reliable, effective, efficient and accurate method for optimiz-
ing the linear and nonlinear constrained optimization prob-
lems since early 1970s. SQP is the class of optimization
algorithms with conceptual procedure of various specific
methods that have evolved. The dominance of SQP algorithm
is established through computational and theoretical exper-
imentations. SQP algorithm is considered to be one of the

fundamental techniques to be exploited in the domain of both
public and commercial sector problems of practical signifi-
cance. Few recent applications addressed effectively by SQP
procedures are bilinear optimal control problem [7], finding
theworst resonance response [56]. Furthermore, Fletcher [57]
and Schittkowski [58] are good sources of reference material
on SQP methods. Montoya [59], Kim et al. [60], Witkowska
and Smierzchalski [61], Kouzoupis [62], and Welhazi [63]
are just a few recent examples of how the technique has been
applied to engineering or applied science problems.

Using the MATLAB optimization toolbox, the SQP algo-
rithm is used to optimize the artificial neural network model
using parameters and initial starting point. Fig. (1) depicts
the PSO and PSO-SQP algorithms’ workflow, while the pseu-
docodes for reproducing the results are as follows:

V. PERFORMANCE INDICATORS
The performance of the designed model for solving nonlinear
RTMmodels is examined in this research study by integrating
various performance indices, with a focus on mean absolute
deviation (MAD), the inequality coefficient of Theil (TIC)
and Root Mean Squared Error (RMSE). The benefits of using
these three metrics provide an in-depth analysis of precision,
stability, and convergence for perfect modeling of different
optimal values.

The mathematical output operators for the numerical solu-
tion θm and the approximate solution θ̂m is displayed as:

MAD =
1
n

n∑
m=1

∣∣∣θm − θ̂m∣∣∣ , (19)
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TABLE 1. DE’s proposed hybrid soft computing technique’s pseudo-code.

where n is a grid point for input. TIC, and RMSE error
functions are defined mathematically as:

TIC =

√
1
n

∑n
m=1

(
θm − θ̂m

)2
(
√

1
n

∑n
m=1 θ

2
m +

√
1
n

∑n
m=1 θ̂

2
m)
, (20)

RMSE =

√√√√1
n

n∑
m=1

(
θm − θ̂m

)2
, (21)

Fig. (10) are shown for the graphical illustration of TIC,
RMSE, FIT, and MAD of three cases for hundreds of
independent runs on a semi-log scale. We also depicted the
histograms of TIC, FIT, and MAD for each case. The graph-
ical illustration of the indices fitness values show that most
of the values are close to zero which show the robustness
and effectiveness of the propose techniques as shown in
Figs. (4), (6) and (9).

VI. NUMERICAL RESULTS
The findings of the simulation results are shown here for three
scenarios of reactive transport model (RTM) dynamics with
variance in the half-saturation concentration denoted by α
and the characteristic reaction rate represented by β using
intelligent ANN-based computing methods optimized with
PSO and PSO-SQP. The graphical illustration of weights is
shown in Fig. (8). The approximate solution for all cases by
using the optimal wights of the proposed techniques can be
written in the form of:

θ̂cn (t) =
α1

1+ e−(β1t+γ1)
α2

1+ e−(β2t+γ2)

+
α3

1+ e−(β3t+γ3)
+

α4

1+ e−(β4t+γ4)

+
α5

1+ e−(β5t+γ5)
+

α6

1+ e−(β6t+γ6)

+
α7

1+ e−(β7t+γ7)
+

α8

1+ e−(β8t+γ8)

+
α9

1+ e−(β9t+γ9)
+

α10

1+ e−(β10t+γ10
) . (22)

A. CASE-I: β = 0.5 AND α = 0.2
The reactive transport model (RTM) Eqs. (4,5) may be stated
as follows in this case [9]:

d2θ
dx2
−

(0.5)θ(x)
(0.2)+ θ(x)

= 0, (23)

subject to the boundary conditions

dθ
dx
= 0, θ(1) = 1. (24)

The fitness function ε, for case 1 can be expressed as:

ε =
1
10

10∑
k=1

(
d2θ̂k
dx2
−

0.5θ̂k
0.2+ θ̂k

)2

+
1
2

(θ̂K − 1
)2
+

(
dθ̂0
dx

)2
 . (25)

Particle Swarm Optimization and Sequential Quadratic Pro-
gramming is applied for optimizing the fitness function (25).
In Eq. (22), the optimal weights of PSO and PSO-SQP are
used to find the approximate solutions for case 2 of the
reactive transport model as shown in Eq. (32) and Eq. (33)
respectively. The approximated solutions for fitness func-
tion (25) are calculated, and results for inputs between 0 and 1
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FIGURE 3. Case-I, approximate solution, and absolute error graphs.

FIGURE 4. Histogram of FIT, MAD, TIC, RMSE, and ENSE for Cases I.

with h = 0.1 are shown graphically in Fig. (3) and numeri-
cally in Tab. (1). Furthermore, AEs are determined for PSO
and PSO-SQP results, which are shown graphically in Fig. (3)
and numerically in Tab. (2).

The data shown in Tab. (2) and Fig. (3) indicate that
the PSO and PSO-SQP absolute errors are about 10−6 to
10−7 and 10−7 to 10−8 respectively, which means that PSO

achieved (6 − 7) and PSO-SQP achieved (7 − 8) decimal
places of precision from the reference results. The remaining
techniques PS-AST, and GA-AST [9] absolute errors lie at
around 10−5 and 10−6 respectively, which means that the
PSO and PSO-SQP is relatively better andmore effective than
the rest of the techniques for this case of the reactive transport
model.
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FIGURE 5. Case-II, approximate solution, and absolute error graphs.

FIGURE 6. Histogram and Box plot of FIT, MAD, TIC, and RMSE for Cases II.

B. CASE 2: β = 0.3 AND α = −0.2
The reactive transport model given in Eqs. (4,5) in this case
can be written as [9]:

d2θ
dx2
−

(0.3)θ (x)
(−0.2)+ θ(x)

= 0, (26)

subject to the boundary condition
dθ
dx
= 0, θ(1) = 1. (27)

The fitness function ε, for case 2 can be expressed as:

ε =
1
10

10∑
k=1

(
d2θ̂k
dx2
−

0.3θ̂k
−0.2+ θ̂k

)2

+
1
2

((
θ̂K − 1

)2
+

(
dθ0
dx

)2
)
. (28)

PSO and PSO-SQP is applied for optimizing the fitness
function (28). In Eq. (22), the optimal weights of PSO are
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FIGURE 7. Case-III, approximate solution, and absolute error graphs.

FIGURE 8. Graphs of weights for Cases I, II, III.

TABLE 2. Case 1, solution comparison of PSO and PSO-SQP with RK4.

used to find the approximate solutions for case 2 of the
reactive transport model as shown in Eq. (34) and Eq. (35)

respectively. The estimated solutions for Eqs. (28) are calcu-
lated, and the results and AEs for inputs between 0 and 1 with
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FIGURE 9. Histogram and Box plot of FIT, MAD, TIC, and RMSE for Cases III.

TABLE 3. Case 1, PSO and PSO-SQP absolute error comparison.

h = 0.1 are shown graphically in Fig. (5) and numerically in
Tab. (4), where the AEs are determined by comparing PSO
and PSO-SQP results with RK4.

The data are shown in Tab. (4) and Fig. (5), which indicate
that the PSO and PSO-SQP absolute errors are about 10−6

to 10−7, and 10−9 to 10−11 respectively, which means that
the PSO and PSO-SQP results are overlapping with the RK4
results. From Tab. (4) and Fig. (5) it is evident that the
PSO-SQP model is better and more effective than PSO in this
case of the reactive transport model.
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FIGURE 10. Number of runs with MAD, TIC, FIT, and RNSE for Case-I, Case-II, Case-III.

TABLE 4. Case 2, numerical and absolute error comparison for PSO and PSO-SQP.

C. CASE 3: β = 6 AND α = 1
In this case the reactive transport model given in Eqs. (4,5) is
written as [9]:

d2θ
dx2
−

6θ (x)
1+ θ(x)

= 0, (29)

subject to the boundary condition

dθ (0)
dx
= 0, θ(1) = 1. (30)

The fitness function ε for case 3 can be expressed as:

ε =
1
10

10∑
k=1

(
d2θ̂k
dx2
−

6θ̂k
1+ θ̂k

)2

+
1
2

((
θ̂K − 1

)2
+

(
dθ0
dx

)2
)
. (31)

PSO and PSO-SQP are used to optimize the fitness func-
tion (31). The optimal weights are used in Eq. (22), to find
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TABLE 5. Case 3, solution comparison of PSO and PSO-SQP with RK4.

TABLE 6. Case 3, PSO and PSO-SQP absolute error comparison.

TABLE 7. Acronyms used in this paper.

the approximate solutions for case 3 of the reactive trans-
port model, as shown in Eq. (32) and Eq. (33) respectively.

The approximated solutions for Eqs. (31) are calculated, and
results for inputs between 0 and 1with h= 0.1 are graphically
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represented in Fig. (7) and numerically in Tab. (4). In addi-
tion, AEs are determined for PSO, and PSO-SQP results,
which are graphically illustrated in Fig. (7) and numerically
in Tab. (5).

The absolute errors of PSO and PSO-SQP are about 10−6

to 10−7 and 10−7 to 10−8 respectively, as shown in Tab. (6),
implying that PSO and PSO-SQP achieve (6-7) and (7-8)
decimal places of precision from the reference results. The
absolute errors of the remaining techniques, GA, PS-AST,
and GA-AST [9] are around 10−4 to 10−5, indicating that
the PSO and PSO-SQP are better and more effective than the
other techniques for this case of the reactive transport model.

VII. CONCLUSION
The following conclusions are summarized:

The steady-state reaction-diffusion model that occurs in
the studies of soft-tissues and microvessels in the fluid and
solvent transport models is discussed using the approxima-
tion ability of ANN modeling via the heuristic technique.
The PSO and PSO-SQP computational methodologies can
investigate various cases of reaction-diffusion models by
varying the half-saturation concentration rate and the char-
acteristic reaction rate with reasonable precision. In Case I,
the proposed technique show good agreement with RK4 by
achieving an accuracy of 10−8. In Case II, we compared the
results to an RK4 solution, demonstrating that the proposed
technique achieves an accuracy of 10−11. In Case III, the
accuracy for the proposed approach is also up to 10−15, which
is a good approximation for the RTM model. Comparing the
proposed method to RK4 and other numerical methods shows
that the PSO and PSO-SQP performance for all cases of the
reaction-diffusion model is better than the other methods.

For all three cases, histograms for the performance indica-
tor and fitness function are shown in Figs. (4), (6), and (9)
respectively. Similarly number of independent runs of MAD,
TIC, FIT and RMSE are also done for reactive transport
model as shown in Fig.(10). MAD values show that the
majority are close to zero in Fig. (10a), TIC values show that
more than 90% of the values are less than or equal to 10−03 in
Fig. (10b), and RMSE values show that more than 90% of the
values are less than or equal to 10−03 in Fig. (10d) in all three
cases. Similarly, for all three cases the fitness (FIT) values
in Fig. (10c) show that more than 90% of the values are less
than or equal to 10−03. The preceding discussion validates
the PSO-SQP algorithm’s effectiveness in investigating the
proposed model.

APPENDIX

θ̂PSO1

=
0.2021

1+ e−(1.7705 t−5.9492)
+

−2.9715
1+ e−(−5.0838 t−1.0300)

+
−2.7157

1+ e−(4.5532 t−1.7435)
+

−3.1211
1+ e−(−0.8215 t−4.1161)

+
−0.5007

1+ e−(−2.3513 t+1.5383)
+

0.1687
1+ e−(2.9211 t−1.1782)

+
−0.0174

1+ e−(0.5851 t−0.2223)
+

2.6221
1+ e−(−0.5099 t+0.8405)

+
−2.2349

1+ e−(3.6930 t−0.2313)
+

1.3796
1+ e−(−0.3855 t−0.5792)

.

(32)
θ̂PSO−SPQ1

=
−2.4736

1+ e−(−0.8882 t−6.0781)
+

5.58693
1+ e−(−3.2511 t−29.999)

+
5.67261

1+ e−(23.4867 t−1.8893)
+

7.99743
1+ e−(−1.0701 t−7.0334)

+
−7.1831

1+ e−(4.77724 t−29.999)
+

−8.5775
1+ e−(22.0975 t−0.8985)

+
26.5423

1+ e−(0.90005 t+5.0501)
+

0.78362
1+ e−(−6.5910 t+9.0472)

+
−4.1526

1+ e−(−29.994 t+6.0712)
+

10.6149
1+ e−(0.18647 t+6.9488)

.

(33)
θ̂PSO2

=
1.7221

1+ e−(−0.1316 t−0.6687)
+

−1.2043
1+ e−(1.7413 t−1.5284)

+
−2.1761

1+ e−(3.3977 t+1.1231)
+

−2.0576
1+ e−(0.7003 t+0.9381)

+
0.0115

1+ e−(2.16804 t+0.8088)
+

0.8665
1+ e−(−0.8133 t+1.4451)

+
0.7252

1+ e−(−1.3317 t+−3.7527)
+

−1.9923
1+ e−(−4.3468 t+5.7095)

+
−3.7246

1+ e−(−0.0173 t+0.4250)
+

−0.8833
1+ e−(2.17707 t−1.7331)

.

(34)
θ̂PSOSQP2

=
10.1703

1+ e−(1.75216 t−2.8503)
+

−1.3529
1+ e−(−7.1086 t+29.938)

+
4.29177

1+ e−(−8.9599 t−1.0190)
+

27.0962
1+ e−(−1.9197 t−3.9968)

+
3.02388

1+ e−(−4.0383 t−14.427)
+

7.02808
1+ e−(27.0248 t−0.7100)

+
3.09180

1+ e−(0.8776t+4.1699)
+

−2.7761
1+ e−(−4.3606 t−25.888)

+
7.94666

1+ e−(−2.1567 t−25.888)
+

29.0625
1+ e−(−0.4797 t+5.9041)

.

(35)
θ̂PSO3

=
3.4418

1+ e−(−2.4031t−5.5774)
+

−0.1426
1+ e−(−3.1278 t+1.3603)

+
−7.5151

1+ e−(0.0817 t+3.1149)
+

3.6964
1+ e−(−0.4584 t−9.9571)

+
−2.7033

1+ e−(−1.3053t+4.7346)
+

−4.9003
1+ e−(3.6486 t+4.5602)

+
0.8744

1+ e−(2.4451 t−9.9457)
+

3.5093
1+ e−(−3.7887 t+0.2812)

+
−6.5408

1+ e−(3.4582 t+2.4186)
+

1.7018
1+ e−(−1.1719 t−2.2046)

.

(36)
θ̂PSOSQP3

=
11.4590

1+ e−(−2.7594 t−1.6726)
+

2.75847
1+ e−(−2.5502 t+14.6979)
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+
−6.5859

1+ e−(−25.082 t−16.6476)
+

−6.2284
1+ e−(−2.3489 t−28.5611)

+
3.54573

1+ e−(−2.6961 t−17.9642)
+

−9.0767
1+ e−(−0.6952 t−0.3231)

+
3.89313

1+ e−(−4.4020 t−2.9078)
+

1.98443
1+ e−(−1.8959 t+11.2061)

+
−3.1188

1+ e−(0.14143 t−0.9077)
+

17.7826
1+ e−(−5.0960 t−1.9818)

.

(37)
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