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ABSTRACT Photoplethysmography (PPG) has recently become a popular method for heart rate estimation
due to its simple acquisition technique. However, the main challenge in determining the heart rate from the
PPG signals is its high vulnerability to motion artifacts (MA). In this paper, a new scheme is proposed for
heart rate estimation through frame selective multistage adaptive noise cancellation (MANC). The frame
selective approach determines the specific frames of PPG signal which are significantly interfered with
MA, and the MA removal operation is only employed over those specific frames. The MANC scheme is
implemented through the LeastMean Square (LMS) algorithm in which instead of the conventional approach
of using accelerometer data directly, we propose to utilize mode-based decomposed 3-channel accelerometer
data as reference signals independently in a sequential manner. The use of decomposed modes offers high
degrees of controllability in the ANC scheme depending on the overlap between the spectra corresponding
to MA and heart rate, thereby offers effective denoising. A peak searching algorithm is employed to estimate
heart rate-related peaks from the resulting noise-reduced PPG signal. The novelty of the proposed scheme lies
in the use of decomposed reference inputs to the MANC algorithm (named as DERMANC scheme) which
is accomplished through both empirical mode decomposition (EMD) and variational mode decomposition
(VMD). Performance of the proposed EMD and VMD based schemes (E-DERMANC and V-DERMANC)
has been tested on a publicly available dataset and very satisfactory results are obtained in terms of estimation
accuracy and computational time (0.95 and 1.10 BPM, respectively on 12 recordings) that makes the schemes
worthy to be implemented in wearable devices.

INDEX TERMS Acceleration data, adaptive noise cancellation (ANC), empirical mode decomposition
(EMD), heart rate, motion artifacts, photoplethysmography (PPG), variational mode decomposition (VMD).

I. INTRODUCTION
In biomedical applications, the measurement of heart
rate (HR) is a good way to measure the level of physical
fitness. The traditional HR measurement techniques mostly
utilize electrocardiogram (ECG) that can measure the HR
almost accurately. But its prodigious instrumental setup has
recently led to explore many other alternatives to measure HR
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more conveniently and photoplethysmogram (PPG) is one of
them [1]. The periodicity of the PPG signals corresponds to
the cardiac rhythm helps to estimate HR using PPG signals
simply recorded from the wearers’ wrist [2]. The technique
is not only flexible but also of significantly low cost. Many
wearable devices are available to estimate HR in real-time
using PPG signals. However, the main obstacle for these
estimators is that the PPG signals are remarkably vulnerable
to motion artifacts (MA), which strongly interfere with HR
monitoring. Additionally, the shapes of the PPG waveform
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differ from subject to subject and also vary with the location
and manner in which the PPG sensor is attached. Hence it
is a great challenge to remove MA from the PPG signals,
considering the variation of the PPG signals with subjects.

To combat the challenges, many signal processing tech-
niques have already been proposed during recent years to
estimate HR accurately from different PPG signals [2]–[20].
A framework called TROIKA proposed a sparse signal
reconstruction-based denoising technique where PPG sig-
nal is decomposed using singular spectral analysis (SSA)
method and then MA-related components are removed using
the information from simultaneously recorded acceleration
data [2]. Nonetheless, it was computationally intensive. That
method is further enhanced in [9], referred to as JOSS,
where denoising was performed using a joint sparse spectrum
subtraction. Spectral subtraction based denoising algorithms
are also used for HR estimation in [8], [10], but the main
problem associated here is that it fails to remove noisewithout
deteriorating HR information due to the significant spectral
overlapping between MA and HR.

Different denoising schemes based on signal decom-
position techniques are also employed in HR estimation.
In [21], [22], PPG signal is decomposed using empirical
mode decomposition (EMD) and MA-related modes are
removed using the noise-related information obtained from
the spectrum of accelerometer data. However, it is observed
that EMD cannot distinguish very close frequencies [23].
For this reason, an additional recursive least square (RLS)
based adaptive noise cancellation (ANC) scheme is also
needed in those methods. In another work, recorded PPG
signal is viewed as a composition of HR-related information
along with the limited number of MA components [24].
Here variational mode decomposition (VMD) is employed in
decomposing both the PPG signals and accelerometer data.
Next, frequency components dominating in extracted modes
from PPG and accelerometer are compared to determine HR-
relatedmode. However, onemajor drawback to obtain precise
HR from the PPG signal, all of the MA components are
needed to be distinguished separately. Using decomposition
of PPG signal to estimate HR, the distinction is only
possible if there exists a certain spectral gap between an
MA component and HR frequency. Though the VMD-
based method performs better than EMD-based methods in
separating frequencies, it has also several constraints which
are analyzed and presented rigorously in [25].

Another popular method to denoise theMA-corrupted PPG
signals is the Adaptive Noise Cancellation (ANC) algorithm
and several schemes based on it were proposed in numerous
research works like [3]–[5], [15], [26], [27]. In [3], a two-
stage NLMS adaptive filter is proposed, where the reference
signal is generated by subtracting the two-channel PPG
signals. In [4], a synthetic noise from the MA corrupted PPG
signal is generated to use as a reference signal in the LMS
filter, and in [5], Kalman filter is used for this purpose. The
RLS-based ANC is also combined with the LMS-based ANC
in [15], [27] in order to achieve higher accuracy. However,

all these schemes are highly sensitive to the selection of
noise reference. Most of the reported methods have used the
accelerometer data directly as the reference signals to the
ANC algorithm.When accelerometer data are used directly as
noise reference, the characteristics of different noise-related
modes cannot be utilized separately. However, the use of
decomposed 3-channel accelerometer data as reference signal
to the ANC algorithm may have a potential outcome that
needs to be further investigated, and here lies the novelty of
this paper.

In this paper, a new algorithm is proposed based on
a frame selective multi-stage adaptive noise cancellation
scheme (MANC) utilizing decomposed acceleration data as
the reference signal applied to the ANC algorithm. Here a
noise energy-based frame selection approach is introduced
to sort out the noise corrupted frames primarily and then
LMS-based MANC is proposed to remove the effect of noise
substantially from the selected frames. The main idea here
is to utilize the decomposed accelerometer data as noise
reference to the MANC algorithm where both EMD and
VMD methods are implemented for decomposition sepa-
rately. A decomposed mode as noise reference allows more
degrees of freedom where different MA-related components
can be handled separately by varying the step-size and
filter order parameters of LMS-based ANC scheme which
is not possible using acceleration data directly. Thus PPG
can be denoised effectively without deteriorating HR-related
information even there exist a high spectral overlap between
MA and HR. This denoising process is followed by an
innovative peak tracking algorithm that ensures precise HR
estimation. The performance of the proposed method is
tested and compared to some recent research works on HR
estimation.

II. MATERIALS
The proposed method has been tested on the most widely
used and publicly available PPG database, reported in [2].
The PPG signals were recorded using two pulse oximeters
with identical green LEDs (609nm), along with a 3-axis
accelerometer from 12 different subjects of different ages
who were running on a treadmill under a controlled situation.
During data recording, each subject ran on a treadmill with
changing speeds of 1−2 km/h for 0.5 min, then at 6−8 km/h
for 1 min, 12− 15 km/h for 1 min, then again at 6− 8 km/h
for 1 min, 12− 15 km/h for 1 min and at 1− 2 km/h for the
last 0.5 min. Moreover, ECG based signal was also recorded
from the chest using wet ECG sensors to calculate the ground
truth HR for performance measurement of an algorithm. The
sampling rate of all these signals was 125 Hz. The ground
truth HR has been computed from an 8s time frame. Each
time frame has an overlap of 6s with the previous time frame.

III. PROPOSED METHOD
A recorded PPG signal, d(n) during physical exercise contains
HR related information along with motion artifacts (MA).
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This can be represented as following equation:

d(n) = sc(n)+ ũc(n); n = 0, 1, . . . ..,L − 1 (1)

which is a composition of the actual HR component along
with its half frequency and harmonic frequency compo-
nents. On the other hand, the characteristic of embedded
MA in acquired PPG signal can also be analyzed using
simultaneously recorded 3-ch accelerometer data. For a better
understanding on the pattern of MA related components
within the range of HR, the periodogram of an average
of 3-ch acceleration data is computed and then dominant
frequencies are extracted from the recorded data of a specific
subject (Subject 07). Here a frequency is considered as a
dominant one if there exists a spectral peak at that frequency
and the spectral magnitude at that position is at least 0.5 in
the normalized scale. After that, these extracted dominant
frequencies for different 8-second time windows along with
actual HR (ground-truth) are depicted in Fig. 1a. It is found
that there exist only a few dominant MA frequencies within
the range of HR and these dominant MA frequencies are well
separable from each other, and maintain a significant spectral
gap among them. However, theseMA frequencies can also be
found in close proximity to actual HR. In order to investigate
the variation of dominant frequencies among all subjects,
we consider two dominant frequencies corresponding to the
top two spectral magnitudes and define them as the most
dominant component (MDC) and the second most dominant
component (SMDC). In Fig. 1b, the distribution of the MDC
and the SMDCextracted from all subjects are illustrated using
a Box plot. It is to be noted that the frequency value of the
MDC can be lower or higher than that of the SMDC. For
example, two DCs are 70 bpm and 140 bpm and 140 bpm has
higher spectral magnitude. In this case, 140 and 70 will be
considered as the MDC and SMDC, respectively. As a result,
in this figure a wide variation is observed in frequency values
of the MDC and SMDC. When the selected two dominant
frequencies in each case are ordered as per their values as
the lower frequency component (LFC) and higher frequency
component (HFC), corresponding distribution of LFCs and
HFCs are found more compact and shown in Fig. 1c. It can be
inferred from the plot that there exists a spectral gap between
the LFC and the HFC and hence it is possible to separate these
two components in most of the frames. Considering these
facts, recorded PPG can be modeled as follows now:

d(n) =
N∑
i=1

si(n)+
M∑
i=1

ūi(n) (2)

where si(n) denotes a component related to HR and ūi(n)
denotes aMA related mode. N andM represent the number of
dominant modes in PPG and accelerometer data respectively.

In this paper, an algorithm is proposed to reduce the
effect of motion artifacts by removing or suppressing MA
components present in d[n] in order to get an accurate
estimation of HR. The major steps involved in the proposed
algorithm are demonstrated in Fig. 2 with the help of a

FIGURE 1. a. Dominant frequencies, fn (denoted by green dots) extracted
from accelerometer data are illustrated along with actual heart rate
(ground truth) for a single subject (Subject 7). b. Distributions of the most
dominant components (MDC) and the second most dominant
components (SMDC) are presented in the box plot to visualize the
variation among the dominant frequency components in different
subjects. c. The distribution of the lower frequency components (LFC) and
the higher frequency components (HFC) are depicted which ensures that
two separable frequency components exist in most of the accelerometer
frames during physical exercise.

FIGURE 2. Proposed algorithm for HR estimation. Noise corrupted frames
are selected and then the proposed DERMANC scheme is employed to
estimate the candidate frequencies. Finally, a verification and tracking
technique is utilized for the accurate estimation of HR.

block diagram. An average of 2-channel PPG data along
with separate 3-channel accelerometer data are available
as input. At first, a frame selection scheme is designed
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FIGURE 3. Effect of averaging of two channel PPG data shown in spectral
domain. Four different cases are considered in four rows depending on
the location of original HR (marked by a red circle) on the spectral plot.
First row (a-c) corresponds to the Case I where 1st channel with a
misleading peak and second row (d-f) corresponds to the Case II where
2nd channel with a misleading peak. Case III ( both channels with
misleading peak) and Case IV (both channels with correct peaks) are
depicted in third (g-i) and fourth (j-l) row respectively. The red marker
indicates the actual HR (in BPM) for that frame.

to detect the MA-affected frames. Next, the proposed
decomposed reference multistage adaptive noise cancella-
tion (DERMANC) scheme is employed over the selected
frames to remove the effect of noise substantially. In this
scheme, extracted data from each accelerometer channel
is decomposed and used as references to the multi-stage
adaptive noise cancellation (MANC) blocks. Thereafter,
a spectral peak tracking and searching scheme based on prior
HR estimates and dominant MA frequencies is introduced
to compute the desired HR. Finally, the performance of the
proposed method is tested on the most widely used and
publicly available PPG database and the results are compared
with results obtained by some recent research works on HR
estimation.

A. PREPROCESSING
PPG can be measured using a single sensor. However, the
dataset used in this work contains pulse oximeter data from

two sensors. From the given two-channel PPG data, at first,
the average of both channel data is computed instead of
using them separately. The averaging operation offers two-
fold advantages of utilizing the information contained in
both channels and reducing the unwanted random noise.
To demonstrate the advantages of using the average of
two-channel data in enhancing the desired spectral peak
(corresponding to the true HR), spectral representation of
PPG data obtained from the 1st channel, the 2nd channel,
and the average of the two-channels are shown in Fig. 3
considering four cases from four different subjects.

In Case I the spectrum of 1st channel data contains a
misleading peak while it shows a better peak in Case II
for another subject. The opposite result occurs for the 2nd

channel data. Case III represents the worst condition in
which both spectra of 1st and 2nd channels show troublesome
peaks to detect HR frequency. Case IV shows the best
condition in which both channels indicate that HR frequency
can easily be computed. But if the average of two-channel
data is considered, the HR peak becomes stronger than half
frequency peak and second harmonic peak remarkably in all
four cases. Thus it is revealed from the pictorial analysis
that the averaging of 2 PPG channel data can utilize the
HR information properly and reduce the effect of MA in
many instances. However, it is not sufficient to eliminate the
effect of MA completely from all the PPG frames. Hence,
frame selective denoising scheme is employed in proposed
algorithm.

B. FRAME SELECTION SCHEME
It is found that the noise energy in the PPG signal is
significantly increased during the intense physical exercise
stage compared to that at the resting stage. Hence the
PPG signal frames are negligibly corrupted by noise at
rest conditions, while the effect of noise is prominent
in the frames corresponding to intense physical activities.
As stated before, the source of this noise is mainly motion
artifacts (MA). Most of the conventional methods employ
MA removal algorithms on all the PPG signals irrespective
of the level of noise. But applying a specific MA removal
method, blindly over each signal frame creates a chance of
getting degraded HR estimation performance; especially in
the frames which are not significantly affected by noise.
Here lies the necessity of detecting the frames which
are significantly corrupted by noise before employing any
noise reduction technique. The effect of MA is to generate
unwanted frequencies in the PPG spectrum.With the increase
in physical activity, the level of MA increases causing
spurious peaks in the PPG spectrum. In view of explaining
the fact, two different cases are considered and demonstrated
with help of sample cases.

1) CASE I (NOISE FREE PPG SIGNAL)
In Fig. 4, the spectrum of averaged PPG signal along with the
spectra corresponding to their
3-channel accelerometer data are depicted where the effect
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FIGURE 4. Spectrum of the noise free PPG signal (average of two PPG channels) along with acceleration data (X, Y, and Z-axis data) are
shown (Case I). The spectrum of the PPG and the accelerometer data are in different scales. The red circle marker indicates the actual HR
(in BPM) for that frame. Here it is evident that the effect of MA is not significant in the recorded PPG signal and hence it is possible to
estimate HR without any denoising operation.

FIGURE 5. Spectrum of the noise corrupted PPG signal (average of two PPG channels) along with acceleration data (X, Y, and Z-axis data)
are illustrated (Case II). The spectrum of the PPG and the accelerometer data are in different scales. The red marker indicates the actual
HR (in BPM) for that frame. Here the influence of the MA is clearly visible in the spectrum of the PPG signal.

of MA is not significant. On the other hand, the spectrum
of a significantly noise-corrupted PPG signal along with the
spectra corresponding to their 3-channel accelerometer data
are presented in Fig. 5. In case of Fig. 4, in which the PPG
spectrum has peaks at its dominant frequencywithin the range
of HR and clearly the true heart rate frequency is located
on the most dominant spectral peak of the spectrum. Hence
there is no use in employing any MA removal operation
over the frames similar to this condition. Even in the case
of a weak PPG spectrum, the MA removal operation may
degrade the magnitude further, hampering the original HR
peak to be detected. Though in the case of a strong PPG
spectrum, the MA removal operation will not affect the HR
tracking significantly, it is desired to exclude the PPG signal
frames fromMA removal operation which are not remarkably
affected by MA.

2) CASE II (NOISY PPG SIGNAL)
On the contrary, the PPG spectrum shown in Fig. 5
demonstrates the effect of noise in which the energy of
accelerometer data is significantly higher compared to that
in Fig. 4 (100 times higher shown in the sampled frames).
As a result, there is a high chance in this case that the MA
noise exhibits significant energy in some frequencies which
eventually corrupts the recorded PPG data and may provide

false spectral peaks in various locations other than the true
HR peaks. Hence a PPG frame, for which the energy of
corresponding accelerometer data is very high, needs obvious
noise compensation.

In the proposed method, a frame selective approach is
introduced which is both computationally and methodically
effective to detect the significantly noise-corrupted frames
(more specifically MA corrupted frames) first and apply the
MA removal operation on those frames only. If a PPG signal
frame is found to be corrupted significantly by MA, a noise
cancellation scheme is needed to be applied prior to HR
estimation from spectral peaks. Otherwise, a peak searching
algorithm can be employed directly to estimate HR. In this
paper, an energy-based frame selection scheme is proposed
to determine the noise corrupted frames. Noise energy of
3 channel acceleration data (for ith frame) is calculated as

Ei =
1
3

L∑
n=1

(xi(n)+ yi(n)+ zi(n))2 (3)

where L is the number of samples in each frame. If this energy
exceeds a certain level ET in a frame, that specific frame is
labeled as a noise-corrupted frame and otherwise as a noise-
free frame. It is observed that at the beginning and in some
cases at other time slots, due to rest condition Ei becomes
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FIGURE 6. Block diagram of an adaptive noise canceller (ANC) scheme.
For a input signal di (n), the adaptive LMS filter’s parameters are updated
based on the reference and error signals.

extremely low. Hence finding a suitable threshold value ET
is not a difficult task. For example, it is evident from Fig. 4
that the acceleration data energy representing the noise is
significantly low, compared to that of Fig. 5 (100 times lower
in the sampled frame). Hence the previous frame is labeled as
the noise-free frame, while the next is marked as the noisy-
frame in this paper. Thus the noise-energy for each frame is
an indicator to determine whether that frame is significantly
affected byMA or not. If a frame is foundMA-corrupted then
denoising is employed over that frame as discussed in the next
section.

C. PROPOSED DERMANC SCHEME
From an extensive analysis of the spectral representation of
accelerometer data collected with PPG signals, it is found
that they contain information related to fundamental hand-
swing along with its harmonics, which can be considered as
a combination of two or more signals with different spectro-
temporal characteristics. Apart from the lead or contact
noise, these data represent the MA noise embedded in the
recorded PPG signals. The major objective of this paper is
to develop a unique scheme for MA removal from the PPG
signal and then estimate the HR successfully. Among all the
MA removal operations, the adaptive filtering-based noise
cancellation methods are getting more popular nowadays
considering their real-time applications. Different adaptive
filter algorithms are available for the ANC operation. Among
them, the least mean squares (LMS) algorithm is a popular,
fast, and effective tool due to its low computational burden
and ease of implementation. In Fig.6, basic operation of
an LMS-based ANC scheme is shown. It is a stochastic
gradient algorithm in which it iterates each tap weight of the
transversal filter in the direction of the instantaneous gradient
of the squared error signal corresponding to the tap weight
in question. Performance of ANC scheme using the LMS
algorithm depends on step-size parameter, the total number
of tap weights, and the most importantly the amplitude of the
reference signal [28].

Inmost of the adaptive filtering algorithms, the noise repre-
senting accelerometer data is employed directly as reference

FIGURE 7. Proposed DERMANC scheme. For three channels accelerometer
data, we propose 3 separate operating blocks placed serially (ie. Block-X,
Block-Y and Block-Z). A sample operation in a block is shown in the right
side. Two components obtained by decomposing corresponding acc. data
(using EMD or VMD) are used as reference to LMS-based ANC scheme.

signals. As discussed at the beginning of this subsection
that the accelerometer data can be better represented as the
summation of various component signals. Hence instead of
directly using the accelerometer data as reference to the
LMS filter, we propose to utilize the component signals
as reference. Moreover, we intend to reduce the sensitivity
of LMS-based ANC with the variation of the amplitude of
the reference signal. For this reason, the accelerometer data
are separated through a decomposition technique (EMD or
VMD) and then the amplitude of each component signal is
normalized to 1. The idea here is to decompose the reference
signal into component signals and then by comparing their
dominant frequency components with the HR estimates
obtained in previous time instances, design a suitable noise
compensation strategy. Depending on the separation between
the dominant spectral peak of the decomposed signal and
the previously estimated HR peak, three levels of noise
cancellation are proposed: (i) soft, (ii) moderate, and (iii)
hard.

1) Soft denoising: If the dominant frequency of each
component is found closely spaced to the previously
estimated HR, the task of denoising would be very
critical. Here the denoising operation needs to be
performed very carefully to reduce the MA related
information without affecting the HR information.
Although a complete removal of noise may not be
possible in this case, the amplitude of the MA related
component can be reduced here.

2) Moderate denoising: On the other hand, moderate
denoising is employed if a dominant noise frequency
appears within a certain range of the previously
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FIGURE 8. Decomposition of a single channel of acceleration data using EMD. Time domain representation of the X-axis accelerometer data,
decomposed mode 1, and mode 2, respectively are illustrated through (a)-(c). On the other hand, frequency spectrum corresponding to the
X-axis accelerometer data, decomposed mode 1, and mode 2, respectively are depicted (d)-(f).

estimated HR. In this case a relatively stronger
denoising is possible but still an attention is required
to avoid the information loss.

3) Hard denoising: If there exists a sufficiently large
spectral gap between a noise component and the
estimated HR in the previous frame, hard denoising
is applied to remove that noise component completely
from the recorded PPG signal. Here, the possibility
of affecting HR related information remains very low
when substantial noise removal operation is performed.

The level of denoising operation (i.e. soft, moderate or
hard) is controlled by varying the step-size and filter length
parameters of the LMS based ANC algorithm. The values
of these parameters considered in different scenarios are
mentioned in Section IV. In order to understand the impact
of different levels of denoising on the HR estimation, let us
consider a case where a strong MA component is present
very close to the actual HR. In this case, if the ANC is
performed just in accordance with the strength of that MA
component without considering the spectral proximity with
the actual HR, it will certainly deteriorate the necessary HR
information. However, in the proposed three-level denoising
scheme, here a soft or moderate denoising operation is
performed depending on the close spectral proximity, which
will ensure the preservation of the necessary HR information.
The performances of the single level denoising with different
combinations of the parameters and three level denoising will
further be presented quantitatively at the graphical analysis
part in the section IV. The novelty of the proposed method is
the utilization of the decomposed accelerometer data as the
reference signal for multistage adaptive noise cancellation.
Thus all the noise components are expected to be removed or
suppressed substantially from the MA-corrupted PPG signals
to estimate the desired HR correctly. Due to the use of
DEcomposedReference in theMANC, the proposed scheme
is termed as DERMANC.

For a better understanding, the whole DERMANC algo-
rithm is demonstrated through a block diagram in Fig. 7.
At first, the accelerometer data from three channels (x,y,z),
labeled as xi(n), yi(n) and zi(n) respectively, are decomposed
into several modes which represents the potential noise
components uixl (n),u

i
yl (n) and u

i
zl (n), where l = 1, 2, . . . . . . p,

number of modes and i denotes the frame index. Decomposi-
tion of accelerometer data using EMD and VMD is depicted
in Fig. 8 and Fig. 9, respectively. The prior analysis of noise
reveals that the noise signals have only a few dominant peaks
within the range of HR frequencies (around 60-180BPM) and
in most of the time number of dominant frequencies is found
two, as shown in Fig. 1. Thus the first two modes obtained
via VMD or EMD within heart rate range are used for MA
removal. In Fig. 7, the candidate PPG signal frame d(n) is
used as the signal input to Block-X while the first mode of
decomposed X-ch (xi(n)) accelerometer, labeled as uix1 (n),
is used as the reference input to the first LMS filter. On the
right side of Fig. 7, the Block-X is shown in an enlarged view.
It can be observed that the input d[n] passes through two
LMS blocks where first two modes of proposed decomposed
acceleration signal are used as reference sequentially. The
output of the first LMS filter of Block-X is then passed to
the next LMS filter as input and the second mode of the
xi(n), labeled as uix2 (n) as reference input. The output of the
Block-X, namely exout (n) is then fed to Block-Y. Similar to
the operations of Block-X, here two filters are used. The
successive two stages of LMS filters utilize the two modes
uiy1 (n) and u

i
y2 (n) derived from the decomposition operation

over Y-axis accelerometer data sequentially as references.
Thereafter, output of Block-Y, eyout (n) is passed to Block-Z
where the modes uiz1 (n) and u

i
z2 (n) from Z-axis accelerometer

data are used as references. It is found at each block that,
use of two LMS filters tries to reduce the effect of noise
components corresponding to decomposed accelerometer
data of a particular channel. As a result, the DERMANC
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FIGURE 9. Decomposition of a single channel of acceleration data using VMD. Time domain representation of the X-axis accelerometer data,
decomposed mode 1, and mode 2, respectively are illustrated through (a)-(c). On the other hand, frequency spectrum corresponding to the
X-axis accelerometer data, decomposed mode 1, and mode 2, respectively are depicted (d)-(f).

scheme enhances the performance of the traditional ANC
scheme significantly using decomposed mode as reference
instead of directly using acceleration data, which has been
explored in the Results and Analysis section analytically.

D. HEART RATE ESTIMATION THROUGH SPECTRAL PEAK
SELECTION SCHEME
For precise HR estimation from noise-reduced PPG signal,
Welch’s periodogram is deployed. For a sequence d(n)
Welch’s periodogram is defined as:

D̂(ejω) =
1

K × L × U

K−1∑
i=0

∣∣∣∣∣
L−1∑
n=0

w(n)d(n+ im)e−jnω
∣∣∣∣∣
2

(4)

Here, w(n) denotes window function, L is the data length of
an ensemble, K is the number of ensembles, m represents
overlapping factor andU is defined asU = 1

L

∑L−1
n=0 |w(n)|

2 .

From the spectrum obtained through the periodogram, the
HR-related peak is expected to be the strongest peak in most
cases. However, a noise peak can dominate actual HR in some
frames due to the application of soft denoising in those frames
as mentioned before. In order to estimate HR accurately in
all the situations, initially three candidate peaks (namely fpk1,
fpk2, and fpk3) are obtained from the spectrumwithin the heart
rate range (60 to 180 BPM).

These candidate peaks are then verified for the proper
estimation of HR using a tracking and verification algorithm.
At the beginning of the algorithm, the priority of these three
peaks is defined.
• In the case of a noise-free PPG frame, the priority of
selected peaks is assigned according to their amplitudes.

• On the other hand, if the frame is detected as noisy,
dominant noise frequencies are also obtained from
decomposed 3 channel accelerometer data to verify the
relevancy of HR estimation.

As mentioned earlier, the proposed DERMANC scheme
satisfactorily removes the MA-related modes from recorded
PPG signals when the MA-related peaks appear far away
from the previous estimation. But in the case of a close MA
mode, the ANC scheme is performed in order to suppress
MA softly instead of completely eliminating it. Hence, there
is the possibility that an MA-related peak may still exist in
the denoised PPG signal. In order to overcome this problem,
we propose an algorithmwhere the priority of a peak does not
merely depend on its amplitude in the PPG spectrum. Rather
priority of different peaks is sorted again when any of the
peaks is found close to anyMA-related components fnk where
k = 1, 2, . . . ., 6. In Algorithm 1, the proposed technique is
demonstrated logically.

In Algorithm 1, δf , fl and fh are assigned as 2 BPM, 60
BPM and 180 BPM respectively in the proposed method.
In the proposed algorithm, the priority of the peaks remain
unchanged when the first priority peak is found far from
all of the MA-related frequencies. On the contrary, two
highest amplitude peaks is shuffled when the first one is
close to any of the MA components, while the second one
is far. On the other hand, if the first two peaks are found
close to any noise frequency, both of their priorities are
decreased and the priority of the third highest peak is set
to the supreme one. If all of the acquired peaks are found
close to any of the MA related frequency, the priority of all
peaks are decreased and then there will be no peak with first
priority.

After reshuffling, if the first priority peak is found close to
the previous HR within a range of 11, it will be considered
as current HR. Otherwise, if any of the remaining peaks do
not differ more than 12 to the previous HR, then it will be
considered as current BPM. Nonetheless, the closer one will
be considered as current HR if both of the peaks are found
within this range. If none of the above-mentioned conditions
is fulfilled, current HR will be considered as the same as the

59766 VOLUME 10, 2022



M. T. F. Talukdar et al.: MANC Scheme for HR Estimation From PPG Signal Utilizing Mode

Algorithm 1: Algorithm for Peak Priority Resolve

if (|fpk1 − fnk | > δf ) && fl < fpk1 < fh then
fpk1← fpk1
fpk2← fpk2
fpk3← fpk3

else
if (|fpk2 − fnk | > δf ) && fl < fpk2 < fh then

tmp← fpk1
fpk1← fpk2
fpk2← tmp
fpk3← fpk3

else
if (|fpk3 − fnk | > δf ) && fl < fpk3 < fh then

tmp← fpk3
fpk3← fpk2
fpk2← fpk1
fpk1← tmp

else
fpk3← fpk2
fpk2← fpk1
fpk1← 0

end
end

end

last frame. In our performed algorithm,11 and12 have been
set as 15 BPM and 7 BPM, respectively.

IV. RESULTS AND ANALYSIS
A. PERFORMANCE MEASURES
The evaluation of the performance of our proposed method
has been accomplished through five parameters:

1) AAE: The average absolute error (AAE) defined as:

AAE =
1
W

W∑
i=1

|BPMest(i)− BPMtrue(i)| (5)

where W is the total number of time windows.
2) AAEP: The average absolute error percentage (AAEP)

is calculated as

AAEP =
1
W

W∑
i=1

|BPMest(i)− BPMtrue(i)|
BPMtrue(i)

(6)

3) Band-Altman Plot: The Bland-Altman plot is the third
one to examine the agreement between ground-truth
and estimates, which shows the difference between
each estimate and the associated ground-truth against
their average [29].

4) LOA: The Limit of Agreement (LOA), which is defined
as: [µ − 1.96σ,µ + 1.96σ ], where µ is the average
difference and σ is the standard deviation.

5) PCC: The Pearson Correlation Coefficient (PCC) is
another parameter to compare the similarities between
ground truth and estimated HR values.

B. PARAMETERS SETTING
The frame size used in the proposed method is 8 seconds sim-
ilar to the ground truth. The noise energy of 3 channel accel-
eration data(Ei) is utilized in order to distinguish between
noisy and noise-free frame. The energy of the accelerometer
signal during the exercise is easily distinguishable from the
energy found in the rest condition because of very significant
differences in these two energy levels. During the rest
condition, the energy is found very low and it exhibits very
small fluctuations in different frames (over the time). On the
contrary, the level of energy is found relatively much higher
during the non-rest conditions, for example during physical
exercise, walking or running conditions. Although in this
case, a wide range of variation is observed in different frames,
in each case the energy level is found significantly higher with
respect to the rest condition. Hence a threshold value is empir-
ically determined as ET = 50 that offers a sufficient margin
between the two classes, rest and non-rest conditions. Differ-
ent neighboring threshold values are also investigated and no
significant differences are observed due to the existence of
large separation between the energy levels of the two classes.

The performance of denoising operation based on the LMS
algorithm can be controlled by varying the step-size (µ)
and filter length (M) parameters. As mentioned earlier, three
levels of denoising scheme namely (i) soft, (ii) moderate,
and (iii) hard, have been employed in our proposed method.
The level of denoising is selected based on the spectral
gap between the dominant frequency of an MA component
and the previous estimated HR. Soft denoising is employed
when that spectral gap is found within 0.083 Hz which is
corresponding to 5 BPM. In that case, step-size (µ) is used
0.0004 along with filter length (M ) 25. On the other hand,
a moderate denoising scheme is employed on the input signal
by setting µ = 0.0012 and M=25 when that spectral gap
lies between 0.083 Hz and 0.5 Hz. Otherwise, hard denoising
is performed using step-size (µ) 0.0012 along with filter
length (M ) 50.

C. COMPARATIVE ANALYSIS
In this subsection, the performance of the proposed scheme
is evaluated in terms of various performance indices. Various
conditions are taken into consideration, such as the effect
of using the average of the 3 channel accelerometer data
directly as the reference signal to the LMS blocks, using
these data separately stage by stage, employing EMD for
noise decomposition and VMD for the same purpose to use
the decomposed signals as reference inputs. The comparative
analysis of different cases is described briefly. Moreover,
the results of the proposed method are compared with other
research works. The tabular and graphical results have been
demonstrated analytically.

1) TABULAR ANALYSIS
The performance of the proposed method is demonstrated in
two tables. In TABLE 1, AAE and AAEP values obtained for
all 12 subjects are reported for both EMD and VMD-based
proposed DERMANC schemes. The average AAE for EMD
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TABLE 1. AAE and AAEP for all 12 subjects using proposed E-DERMANC and proposed V-DERMANC methods.

FIGURE 10. (a) Pearson correlation plot between estimated HR and ground truth HR of the estimation on the 12 datasets, (b) Bland-Altman
plot showing agreement between ground truth HR and estimated HR on the 12 datasets using V-DERMANC method.

TABLE 2. Comparison among different approaches in terms of
performance measures considering all 12 subjects.

based DERMANC scheme is obtained as 1.10 BPM while it
is 0.95 BPM for the VMD-based scheme. Therefore, clearly,
the VMD-based proposed DERMANC scheme is depicted as
the preferable method.

In Table 2, another analysis is incorporated. The direct
use of accelerometer data to the MANC algorithm without
decomposition and the decomposed accelerometer data has
been reported in this table through four different cases. The
four cases are:

Case I (ANC): Using an average of 3-channel accelerome-
ter data as a reference signal to ANC (LMS algorithm).
Case II (MANC): Using 3 channel accelerometer data

separately as a reference signal to MANC (LMS algorithm)
sequentially.
Case III (E-DERMANC): Using two modes from each of

the three accelerometer channels as a reference signal to
MANC (LMS algorithm) successively. Here, the modes are
extracted using EMD.
Case IV (V-DERMANC): Using two modes from each of

the three accelerometer channels as a reference signal to
MANC (LMS algorithm) successively. Here, the modes are
extracted using VMD.

Simulations are performed in a personal computer with
processor Intel Core i5-8265 CPU along with the clock speed
of 1.6 GHz. Average computational times required for the HR
estimation in the above four cases are found to be 30, 69, 189,
and 240 ms, respectively.
It is evident from the tabular analysis that the proposed

DERMANC scheme is superior to the method of using
an average of 3 channel accelerometer data as a reference
signal to the ANC scheme or to the method of using 3
channel accelerometer data separately. Again from Case III
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FIGURE 11. The performances of independent soft, moderate or hard
denoising schemes are compared with the proposed 3-level denoising
scheme in the V-DERMANC algorithm. Here it is evident that the combined
scheme offers the best result in terms of average absolute error (AAE).

and Case IV, it can be concluded that the VMD-based
DERMANC offers better performance although it requires a
little bit more time for implementation than the EMD based
DERMANC. Furthermore, the performances of the four
cases are compared with some state-of-the-art HR estimation
methods reported in [2], [9], [15], [26] and [27] in TABLE 2.

To compare with the reported methods in TABLE 2, it can
be noted that in the methods of TROIKA [2] and JOSS [9],
some initial time windows are excluded by the authors of
those papers for performance evaluation. However, in the
proposed method (for all four cases), all time windows are
taken into consideration. In [15], both LMS and RLSmethods
are applied to utilize their logical combinations. In [26],
Normalized LMS is applied followed by adaptive frequency
tracking. Again in [27], the NLMS and RLS-based MANC
techniques are applied alongwith logical combinations which
have led to better results. But in each case, the reference
signals are applied directly to the ANC scheme without
decomposition and here lies the uniqueness of the proposed
DERMANC scheme. Case-wise analysis has been explained
earlier and case IV i.e. VMDbasedDERMANC scheme is the
best choice among the performed analysis. In brief, it is found
that the performance of the proposed method is superior in all
subjects in comparison to that obtained by other methods.

2) GRAPHICAL ANALYSIS
In view of investigating the quality of the best choice among
the applied methods (V-DERMANC), the estimated HR is
plotted against the ground truth considering all time frames
of all 12 subjects in Figure 10a. It is observed from the
figure that a linear relation exists between the ground truth
HR and the estimated HR, and the approximated linear
curve passes close to the origin. The Pearson value of the
correlation coefficient is found as 0.997, which indicates a
very consistent estimation. As it is almost nearly 1, it indicates
the validation of a highly accurate estimation of HR.

Next, using all time frames of all 12 subjects Bland-Altman
plot is shown in Fig. 10b. It is found that a reasonable

limit of agreement (LOA) [−3.26, 3.04] (for the proposed
VMD-based DERMANC) is obtained when more than 95%
of data exist within 1.96σ . No matter whether the ground
truth is very small or large, the difference between estimated
values and ground truth is found within a satisfactory limit.
Furthermore, the effect of different levels of denoising on
the proposed V-DERMANC algorithm is investigated and
depicted in Fig. 11. Here, in each case a particular type of
denoising (ie. soft, moderate or hard) is applied irrespective
of the spectral gap between the MA and estimated HR in
the previous frame. The average absolute errors (AAEs)
for individual soft, moderate, and hard level of denoising
are found to be 1.13 BPM, 1.21 BPM, and 1.56 BPM,
respectively. On the other hand, the proposed algorithm with
three levels of denoising offers a better solution and can
restrict the AAE within 0.95 BPM.

V. LIMITATIONS OF THE STUDY
Similar to the most of the schemes reported earlier, the
estimated HR of the previous frame is required to determine
the current HR which is a limitation of the proposed method.
Although this is a common approach used in different
methods, it may cause bias error propagation. Additionally,
data used in the proposed scheme are recorded from
different subjects using identical devices. For this reason, the
robustness of the algorithm for various devices could not be
verified here. Furthermore, the data were collected from a
group of healthy people within the age range between 18 to
35 which excludes a large portion of the demography.

VI. CONCLUSION
The proposed DERMANC method offers effective denoising
of PPG signal by utilizing the modes from decomposed
acceleration data as the reference to the MANC scheme, and
thus very satisfactory HR estimation is achieved with the use
of such denoised PPG signals in a simple spectral estimator.
The use of decomposed acceleration data as a reference
allows the ANC to deal with a relatively precise target (even
when the noise components reside in the close proximity
of the HR) and which is found very effective in obtaining
better noise reduction in comparison to the case where the
reference is used without decomposition. For decomposition,
both EMD or VMD are taken into consideration. In each
stage of the proposed DERMANC scheme, the ANC needs to
handle a single mode instead of more complicated combined
signals, which allows a precise ANC operation. Moreover,
the use of amplitude normalization along with variable step-
size and filter length enhances the controllability of the
denoising process in different scenarios.Thus, MA related
components are suppressed or removed from PPG signal
without deteriorating HR information which was not possible
in all frames by using acceleration data directly. Moreover,
a unique spectral peak searching scheme based on prior
noise estimation and neighbouring HR estimates are also
formulated here to compute the desired HR. It is clearly
evident from theResult and Analysis section that the proposed
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VMDbased DERMANC scheme is far better thanmost of the
existing methods and it can satisfactorily be used for practical
implementation.
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