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ABSTRACT In this paper, a new method for the mathematical tomographic reconstruction of time-varying
objects (4D tomography) is presented. The method is applicable under the conditions that the amount of
substance at each spatial point does not decrease, and only one projection image is available per time point
during the process of the object changing. The temporal resolution of the proposed method is obtained
by using an iterative approach to reconstruction. Prior knowledge about object morphology is exploited to
improve the convergence of the algorithm by reducing the number of processed spatial points. Verification
of the algorithm operation was carried out using model examples. The presented method was experimentally
tested on the tomographic reconstruction of the dynamics of the capillary rise of a liquid. Our experiments
demonstrated that monitoring fast processes, when the speed of the process does not allow to measure more
than one tomographic projection, is potentially possible.

INDEX TERMS 4D CT, capillary rise, filtration, iterative reconstruction, time-resolved tomography, X-ray
CT, X-ray microtomography.

I. INTRODUCTION
Today, the computed tomography (CT) method is an
all-powerful, non-destructive tool for studying the inter-
nal structure of objects. CT uses a set of two-dimensional
images that are registered while the studied object is illu-
minated by X-rays at several projection angles [1], [2]. The
object may either be stationary or non-stationary. The set-
ups for X-ray tomographic imaging are constantly being
improved [3]–[5] due to the new statements of the tasks
to be solved. Traditionally, in tomographic studies, it is
assumed that the object remains unchanged, and the data
obtained during the measurements are used to reconstruct the
three-dimensional structure of that object.
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The assumption about the stationarity of the object ceases
to be valid when studying dynamic processes. Now, the object
is described not by one three-dimensional digital image, but
by a series of such images. Each of them corresponds to the
state of the object at some point in time. Thus, the method
of 3D tomography turns into a 4D tomography method
(3D + time). One of the first areas in which the task of mon-
itoring non-stationary objects, including tracking of anatom-
ical structures, arose was medicine [6]. Observations were
carried out over the dynamics of the development of organ
anomalies. The observation time for the object, which can be
continued for several hours, days, or weeks, was divided into
bins. The time of observation of the object (total duration of
time bins) and the time of the tomography scan (timeframe)
were two different times. The study was a retrospective study.
If the object is non-stationary, the tomography problem is

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 46963

https://orcid.org/0000-0003-0539-5606
https://orcid.org/0000-0002-3306-2406
https://orcid.org/0000-0002-0609-5659
https://orcid.org/0000-0002-1410-5175
https://orcid.org/0000-0001-5560-7668
https://orcid.org/0000-0002-6974-7327


A. Buzmakov et al.: Iterative Algorithm for 4D Tomography Reconstruction

formulated as follows: To reconstruct a digital image of the
object at different timeframes. Within the timeframe, the
object is considered to be in a quasi-stationary state. To recon-
struct a quasi-stationary object from a set of tomographic
projections, algorithms developed for traditional tomography
are used.

In the early 2000s, real-time high-speed conical computed
tomography [7] was implemented in hardware. The time
of observation of the object and the tomography scan time
become one period of time. Experiments with a bouncing golf
ball andmagic hand phantom have demonstrated the potential
for capturing projections from a non-stationary object in real-
time. Previously, a quasi-static 3D image was reconstructed
by the Feldkamp method [8]. The demonstrated possibility
of a hardware solution for collecting projections of a high-
speed tomographic method has opened up new prospects for
its application in studies of dynamic processes. The concept
of a model of the process itself has been introduced. Thus,
the model of human organ movement, based on the prop-
erty of preserving the local tissue volume, was taken into
account when reconstructing quasi-stationary states of the
organ in [9].

Another type of dynamic process is periodically repeat-
ing processes [10]–[12]. For such processes, projections are
measured over several periods. The sequentially captured
projections are rearranged by phase of the process to belong
to the same quasi-stationary state, after which one of the
reconstruction techniques developed for the stationary case
is applied [13].

The study of dynamic processes at synchrotron stations
can also be considered a separate class of problems. With
a synchrotron source, it is possible to greatly reduce the
projection acquisition time [14]–[16]. Tomographic experi-
ments with insects [17]–[19] have demonstrated the ability
to monitor the movement of their limbs without involving
special reconstruction algorithms. Laboratory experiments
to study the work of muscle groups responsible for various
functional actions have also been carried out with small
animals [20].

At the same time, the improvement of the algorithmic
part of tomographic methods, applied to the study of non-
stationary objects, was begun. An algorithm for calculating
the field of direct and reverse deformation to study the peri-
odic processes occurring in an object has been proposed [21].
It allows the possibility to clarify the result of the reconstruc-
tion of quasi-static objects in the series. A spatial-temporal
regularization approach to studying non-periodic changes in
the state of an object has been presented [22]. The projec-
tions measured during all time frames are used together (not
one by one) in reconstruction algorithms. The result of the
reconstruction is a function of space and time. The usage of a
non-uniform projection acquisition scheme [23] in measure-
ments has made it possible to increase time-space resolution.
The terms of the space and time penalty are combined into
one regularizing term. The further addition of a piecewise

constant function for the separate analysis of stationary
and non-stationary areas of an object in the reconstruction
algorithm has made it possible to increase the accuracy of the
reconstruction, which has been demonstrated using the data
of neutron tomography [24].

To complete this review, we draw a few conclusions. There
are two approaches to the implementation of 4D tomography.
The hardware approach consists of ultra-fast measurement
of several complete sets of tomographic projections, during
which the object is considered to be quasi-stationary. Not
one, but several rotations of the gantry around the object or
rotations of the object are performed if the emitter-detector
system is stationary. 3D reconstruction algorithms are applied
independently for each set of projections. The measurements
require high flux probing and very fast and expensive detec-
tors. In the second approach, most of the work is assigned
to the reconstruction algorithms used. We propose a fast,
novel algorithm to solve the optimization task. As in previous
works [24], we used in the algorithm the information about
stationary areas but instead of the regularization term usage,
we update the parts of the sinogram calculated with the
current solution in agreement with the measured values. The
algorithm works fast enough since a new solution describing
the next quasi-stationary state of the object is built using
only one projection. The algorithm is fast but imposes more
stringent restrictions on the relationship between the rate of
the process under study and the measurement time of one
projection. The time resolution is determined by the exposure
time. We assumed that changes in the object under study
occur in such a way that the amount of matter (and the
absorption of X-ray radiation as well) at each point of the
object does not decrease with time. These processes include
fluid flow in some porous media [25], [26], crystal growth,
and 3D printing. Measurements may be carried out on a
laboratory X-ray source with a parallel tomographic scheme
and a low-dose load. The algorithm uses a digital image of the
object obtained before the start of the dynamic process. The
whole method is performed in several stages: tomography
of the initial state of the object, reconstruction of its digital
image, binarization of the reconstructed image, tomography
of a dynamic process, and slice-by-slice reconstruction of a
dynamic process using an initial state of the object as a binary
mask.

The remainder of this paper is organized as follows:
Section 3 presents a detailed description of the slice-by-
slice reconstruction algorithm. Section 4 describes the ver-
ification of the algorithm on model 2D data (IVA), and
experimental testing of the algorithm with the tomogra-
phy of the capillary rise of a liquid (IVB). It is followed
by the discussion (Section V). Section VI summarizes the
results. A description of the liquid rise model is presented
in Appendix A. Appendix B presents the results of the liquid
rise simulation. In conclusion, the results obtained and the
prospects for the development of the proposed approach are
discussed.
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FIGURE 1. Scheme of obtaining tomographic projections in a parallel
beam.

II. STATEMENT OF THE PROBLEM
In this paper, we consider the filling of a porous object with a
liquid as an example of a dynamic process. However, all the
reasoning is valid for other processes as well, provided that
the conditions listed below are met. Our proposed algorithm
for the reconstruction of dynamic processes images is based
on the following assumptions:

1. We assumed that in the process of changing the object
under study, the amount of matter at each spatial point
does not decrease with time. For example, let us con-
sider the filling of a sample with a liquid. This means
that in each elementary volume (voxel) of the object,
the amount of liquid cannot decrease. The voxel value
can either remain unchanged or increase in the cor-
responding digital image (image of the distribution
of the absorption coefficient, which is in our case an
equivalent to the amount of liquid in voxel).

2. We can obtain only one projection image of the object
per time point while registering the dynamic process
(filling the object with a liquid)

3. The unchangeable structure of the object is known in
advance, which means we have a complete tomog-
raphy of the initial (empty) state in the case of fill-
ing the object with a liquid. We supposed the object
substance will be unchangeable, while the pores will
be a changeable area. A changeable area is an area
in which the dynamic process will take place. This
condition is not necessary, but data on the unchangeable
structure of the object improves the convergence of the
algorithm by reducing the number of processed spatial
points.

4. In the experiment and simulation, the plane wavefront
approximation is used, i.e., the source is far enough
away to consider the incident radiation beams parallel
to one another. In this case, we can consider a 3D object
as a set of horizontal 2D slices, and in the process
of the algorithm operation, each such spatial slice is
processed independently of the others. Figure 1 shows
a scheme for obtaining tomographic projections in a
parallel beam.

Based on these data, it is necessary to restore the dynamics
of the process (filling the object with liquid) — the image of
a 3D object for each time point.

III. DESCRIPTION OF THE ALGORITHM
Before the algorithm begins, the 3D object under study is
separated into an array of horizontal 2D slices. For each such
slice, the algorithm reconstructs the dynamics of changes
in the slice in time. After the algorithm is finished, all the
reconstructed slices are collected into 3D objects for each
time point. A set of such 3D objects in time provides the
desired 4D image of the dynamic process.

To describe the steps of the algorithm, we introduce the
following notations (see Figure 2): N is the number of regis-
tered projection images of the object. By projection, we mean
the linearized [27], [28] value of the detector reading. In the
proposed approach,N also equals both the number of rotation
angles of the object and the number of time points in the
experiment. In is the projection of the object in a dynamic
experiment, obtained at an angle of rotation an, at time tn,
where n = 1 . . .N .

FIGURE 2. Scheme for obtaining and designating experimental data:
t1 < tj < ti < tN are time points; a1, aj, ai, aN and I1,Ij, Ii, IN are
corresponding rotation angles and projections, respectively; Se is the
experimental sinogram. The top row shows the states of one slice of the
object during the experiment at the mentioned time points. The
experimental sinogram Se is shown on the right. Numbers 1–4 on the
first (left) image of the object slice and on the experimental sinogram
denote pores and their projection traces, respectively. Below, under the
states of the object slice, the corresponding projection images of the slice
state are shown. There is a gradual, uneven filling of the pores with liquid
from time t1 to time tN. The lighter the pore, the more liquid it contains
(the absorption coefficient is higher).

The set of projections for each spatial slice of the object
forms the experimental sinogram Se. The slice has a thickness
of one voxel; voxels in the slice are parametrized by a set of
2D vectors r̄ . This set is divided into two parts: unchangeable,
corresponding to the solid structure, and changeable, corre-
sponding to the pores to be filled. The set of reconstructions R̂
consists of N elements Rn that are the reconstructions of the
state of the object at all time points tn. R0 is the reconstruction
of the initial state of the object. We denote the reconstructed
values of the absorption coefficient (amount of liquid in the
voxel) in the given voxel r̄ at time tn by Rn(r̄) and by R0(r̄)
for the initial state.

Based on our assumption about the process (the amount
of material on any point does not decrease), the condition Rn
r̄ ≥ Rn−1r̄ must be met for any n and any r̄ . We define the
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mean L2-norm to the single reconstruction ||Rn||2

||Rn||2 =

(∑
ch.a

R2n (r)

)1/2

and to the set of reconstructions ||R̂||2:∥∥∥R̂∥∥∥
2
=

(
1
N

∑
ch.a

N∑
n=1

R2n (r)

)1/2

where ch.a. stands for the changeable area.
The sequence of steps of the algorithm (Figure 3,

Algorithm 1) is as follows:
Step 0. Data initialization.
Create N identical sinograms Sn ← Se (n = 1 . . .N )

corresponding to the initial state of the object (with no liq-
uid). During further steps of the algorithm, the sinograms Sn,
(n = 1 . . .N ) will change.
Step 1. Use of experimental data.
From the experiment, we know that n-th row of Se cor-

responds to the projection angle an, and n-th row in each
sinogram Sn should be equal to the experimental data cor-
responding to the projection angle an. For every n = 1 . . .N ,
we replace the n-th row in the sinogram Sn by the n-th row in
the experimental sinogram Se. Other N − 1 remaining rows
stay unchanged.
Step 2a. Reconstruction.
Calculate the set of reconstructions R̂ by use of the alge-

braic SIRT method [29] for every updated sinogram Sn.
Step 2b. Use of initial conditions.
For every r of the unchangeable area, replace the value of

Rn(r) with R0(r), if the reconstruction of the initial state of
the object is known.
Step 3. Use of prior information about the process.
For every n and every point r̄ of the changeable area of the

object, check the condition of the non-decreasing amount of
material. If it is not satisfied, correct the corresponding values
for each Rn, and save them into the R̂iter , which consists of
Ritern and will be used at the next step of the algorithm:

Ritern (r̄) = min(Rn(r̄),Rn+1(r̄))

Step 4. Loopback or exit.
Calculate the sinograms Sn from each R̂iter and go back to

Step 1. If the result of Steps 1 – 3 leads to an insignificant
change of the set of reconstructions (the L2 norm change by
a value less than 10−5) we exit the algorithm. Aminor change
of the set of reconstructions means that the replacements
of rows in sinograms (Step 1) and the corrections due to
the information about the process (Step 2) do not noticeably
affect the result. Thus, the calculated sinograms Sn are close
to the experimental sinogram Se and describe the observed
process.
Remark 1: Step 2a can also employ other methods of

tomographic reconstruction, e.g., FBP [29]. The choice of the
specific method depends on the parameters of the experiment

Algorithm 1 Tomography Reconstruction of Time-
Dependent Data

Input: experimental 2D sinogram Se, each n-th (n = 1 . . .N )
row Sne corresponds to the experimental data at the angle an
(at the time moment tn), R0(r̄) is 2D reconstruction of the
empty porous structure, r̄unchangeble– a region on
reconstruction where the reconstruction values shouldn’t
change due to prior information about the sample. ε is the
precision.
Prior information: Concentration of liquid can’t decrease
Rn (r̄) ≤ Rn+1 (r̄) , for n = 1 . . .N − 1
Output: Rn(r̄)– 2D reconstructions of the object at each
moment of the time tn for n = 1 . . .N
Initialization:

Create N sinograms for the iterative procedure
Sn ← Se for n = 1 . . .N

Create N reconstructions to calculate the first
iteration of the reconstruction set Rn = SIRT (Sn)
Step 1: Use of experimental data

do
Update n-th row in each Sn sinograms to be

consistent with experimental data
for n in 1 . . .N :

Snn ← Sne
Step 2a: Reconstruction.

for n in 1 . . .N :
Rprevn ← Rn
Rn ← SIRT (Sn)

Step 2b: Use of initial conditions for every r of the
unchangeable area r̄unchangeble.

for n in 1 . . .N :
Rn (r̄)← R0 (r̄) , ∀ r̄ ∈ r̄unchangeble

Step 3: Use prior information about the process.
for n in 1 . . .N− 1 :

Ritern (r̄)← min(Rn(r̄),Rn+1(r̄))
for n in 1 . . .N :
Rn (r̄)← Ritern (r̄)
Sn = CalculateSinogram(Rn)

Step 4: Loopback or exit.
while

∥∥Rn − Rprevn
∥∥
2 > ε ∀ n = 1 . . .N

return Rn∀ n = 1 . . .N

(signal/noise ratio, the total number of projections, etc.).
The algebraic method works better at a low signal/noise ratio
while FBR is fast for good enough data.
Remark 2: If the initial state of the object is not known the

Step 2b is skipped.
Remark 3: Our calculations showed that the algorithm

either converges within a reasonable number of iterations
or does not converge at all. Thus, the exit criterion can be
replaced by reaching a large enough number of iterations
(e.g. 10 000) and control of the L2 norm change at the last
iteration. In Section IVA the equivalence of these conditions
is shown.
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FIGURE 3. Illustration of the steps of the algorithm. In Step 2, for
points 1 and 3, the condition of a non-decreasing absorption coefficient
is not satisfied, which was corrected in Step 3.

IV. EXPERIMENTAL VERIFICATION
The most evident field of application of the proposed algo-
rithm is the study of the dynamics of fluid movement in
porous media. To test the algorithm, we perform two exper-
iments on the filling of a porous structure when the ground
truth is known. First, we used a model object with artificially
generated data. In this case, we set the ground truth our-
selves. The second experiment deals with a physical object.
We observe a rise of oil in a vertical capillary. The simple
geometry allows comparing the tomographic results with
a theoretical model from hydrodynamics as well as visual
observations. The following subsections give details of these
experiments.

A. VIRTUAL EXPERIMENT
1) SETUP
For the virtual experiment, we generate the object: a two-
dimensional model of a porous structure (one horizontal
slice of a three-dimensional object; see Figure 4). We will
refer to this object as the model object. It consists of 1024
(32 × 32 × 1) voxels. Some of them form the unchangeable
area representing the matrix, the others are pores. The pores
are located in the center of the object to avoid tomography
reconstruction artifacts and form the changeable area. They
are empty at t = 0. The matrix and pores are shown as
white and black in Figure 4, respectively. Further, we simulate

the filling of the space by liquid. We generate the state of
the model object in 100 time points with an equal interval
between them: at any time tn for each voxel r in the change-
able area, we set a number cn (r) between 0 and 1 representing
the absorption coefficient (which corresponds to the amount
of liquid). For fixed r , the sequence cn (r) monotonically
grows with n. Figure 5 shows the model object for several
time points; the color of pores transforms from black to white
while the liquid fills the pore, and the absorption coefficient
grows. We calculate the projections of the model object and
use them as input information for our algorithm.

We generated sets of N projections In for N = 100, 50,
25 considering every first, second, and fourth-time point.
The projection angles are uniformly distributed across the
circle for each case. A comparison of the results for different
values of N gives estimations for the effect of the number of
projections.

FIGURE 4. Model of one slice of a porous object. Pores that can be filled
with liquid are shown in black.

FIGURE 5. Model distribution of fluid in the voxels of a porous object at
different times: (a) point 0, (b) point 50, and (c) point 100. Lighter voxels
correspond to a larger amount of fluid in the pore.

2) DATA ANALYSIS
First, we analyzed data for N = 100 and after that apply the
same procedure for lower time resolution. In this subsection,
the results correspond to the large value of N , unless other
stated explicitly.

The algebraic SIRT method from the ASTRA toolbox
software package was used as a reconstruction method from
Step 2 of the described algorithm. We perform 10,000 iter-
ations of our algorithm. Figure 6 shows intermediate
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reconstructed images for themiddle of thewhole time interval
(50th point in time). By the 1000th iteration of the algorithm,
the resulting image is in good agreement with the ground
truth (RMS deviations of the reconstructed values from those
specified in the model for iterations 1, 200, and 1000 were
0.0322, 0.0095, and 0.0049, respectively). Figure 7 shows
the dependence of the reconstruction norm on the iteration
number (Figure 7a) and the change in the differences between
the norms of successive iterations (Figure 7b). In this case, the
total number of iterations of 1000 seems to be a reasonable
compromise between the reconstruction accuracy and the
algorithm running time.

FIGURE 6. The results of the iterative reconstruction of the voxel filling
with liquid at the 50th point in time: (a) 1st iteration, (b) 200th iteration,
(c) 1000th iteration, and (d) model value (ground truth).

Figure 8 shows the results of reconstruction for different
values of N presenting the dependencies of the absorption
coefficient on time for three selected points. The recon-
structed dependencies are not monotonic and even show
the numbers less than zero and greater than unity. The
deviations of the reconstructed data from the ground truth
decrease while N grows. We observe the best reconstruction
for the point where the signal changes with the smallest mean
slope (purple lines).

The non-monotonic result for the dependence of the
absorption coefficient on time is a drawback of preventing
error propagation. The implemented in the algorithm cor-
rection (Step 3) considers all pairs of reconstructions for
successive time steps but do not make global monotonisation.
As a result, small values erroneously obtained for large n have
no influence on the result for smaller ones.

FIGURE 7. (a) Dependence of the mean L2-norm of the set of
reconstructions on the iteration number (the red dotted line denotes the
L2-norm of the model object); (b) change in the difference of the mean
norms successive iterations; N = 100.

FIGURE 8. Comparison of tomography reconstruction of the model object
(see the image in the upper left corner) for different numbers of
projections (N). Solid lines are ground truth profiles in pixels marked on
the model by corresponding color. Dotted lines are the reconstruction at
the different number of projections (N = 100, 50, 25).

B. EXPERIMENT WITH A REAL OBJECT
We tested the proposed algorithm for the tomographic recon-
struction of the rise of oil in a capillary due to surface tension.
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In this case, we were able to check the obtained data of 4D
tomography visually using shadow X-ray projections, as well
as compare them to simple hydrodynamic calculations.

1) SETUP AND DATA ACQUISITION
The experiment was carried out on a laboratory tomograph
‘‘TOMAS’’ at the FSRC ‘‘Crystallography and Photonics’’
RAS [30], [31]. A conventional X-ray tube with a molyb-
denum anode was used as a source. We used a pyrolytic
graphite monochromator crystal to isolate the characteristic
line. The energy of the probe radiation was 17.5 keV. The
distance from the source to the sample was 1250 mm, and
from the sample to the detector was 15 mm. The ratio of these
distances allowed using the plane wavefront approximation
and working in the approximation of a parallel tomographic
scheme (see Item 4 from Section II and Figure 1). Radiation
was recorded with a XIMEA xiRAY11 detector with a pixel
size of 9 × 9 µm and a field of view of 36 × 24 mm. The
characteristic time for a complete tomographic experiment is
0.5–2 hours, depending on the absorption level of the object
under study.

FIGURE 9. The tested capillary installed in the X-ray microtomography
setup ‘‘TOMAS’’ (left) and capillary holder with a container for working
liquid (right).

The characteristic time of the experiment and the size of the
detector’s field of view define the capillary size ranges and
the working liquid’s viscosity. We took a glass capillary with
a height of 33.4 mm with an internal channel of 200 µm in
diameter and the silicone oil (polymethilsiloxane) PMS-1000
with a viscosity of 1000 cSt, surface tension of 0.019 N/m,
and a contact angle with a glass of 0 degrees. Appendix A
provides details on the calculation of these parameters.

The capillary was installed to a special holder with a
container for working liquid (see Figure 9). The scanning pro-
tocol of the experiment consisted of two parts. First, we per-
formed a tomography study of an empty capillary (without
liquid). After that, oil was poured into the capillary holder,
and in the second part of the experiment, we repeated the
tomography study during the rise of the liquid in the capillary.
In each tomographic scan, we recorded 444 projections with

a sample rotation step of 0.45 degrees. Each projection expo-
sure time was 1.5 seconds, and the pause between projections
due to the sample rotation and detector initialization was
3.1 seconds. The total duration of one scan was 34 minutes.
Thus, for each angle of rotation of the sample, we obtained
projections of both an empty (Figure 10a) and a partially
filled capillary (Figure 10b). For each pair of images, we cal-
culated the logarithm of the ratios of the normalized signal
at each point (the difference in the images), as displayed
in Figure 10c. The obtained differences were used as the
initial data for the algorithm’s operation (see Section III). The
calculations were performed with the Python-based imple-
mentation of the algorithm on Intel Core i7-5930K, 64 Gb
RAM, Nvidia GTX 980Ti. The algebraic SIRT method was
used as a reconstruction method. We made 100 iterations
of the proposed algorithm for each tomography slice since
further iterations do not significantly improve an image’s
quality due to the noise in experimental data. The calculation
of each slice took 20 minutes.

FIGURE 10. Shadow projections of empty (a) and partially filled
(b) capillaries and the difference between these images (c). The filled
area corresponds to dark points in the panel (c).

FIGURE 11. Images of the liquid column in the capillary were obtained
from the projection data and reconstructed by the algorithm of the object
slices at a height of 2.4 mm (red), 9 mm (green) and 16 mm (blue) for the
(a) 380 s, (b) 1120 s, and (c) 1500 s time points. The filled area
corresponds to dark points.

After processing the data with the proposed algorithm,
we obtained reconstructed images of the horizontal slices
of the object at all time points (Figure 11). The subsequent
connection of the slices into a single object allowed obtaining
a 4D image of the capillary rise.

2) COMPARISON WITH THEORY AND MODELING
To assess the accuracy of the dynamic process reconstruction
by the presented algorithm, it is necessary to compare the
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reconstructed 4D image with the experimental data. In the
case of a simple object (e.g., a capillary), the independent
results can be obtained from the shadow projection or the
calculations.

Differences between the shadow projections of the empty
and partially filled capillary provide distinct liquid bound-
aries and give the accuracy of the liquid column height deter-
mination of the order of a few pixels (∼10 µm). Theoretical
dependence of the liquid column height h over the liquid
level far from the capillary on time t follow from the balance
between the lifting force of surface tension, pulling down
gravity, and decelerating viscous friction (see Appendix A).
It is expressed by the formula [32]

t − t0
T
= −

(
1+

h0
H

)
ln
(
1−

h
H

)
−
h+ h0
H

where H = 2σ cos θ
ρgR , T = 16µσ cos θ

ρ2g2R3
are reference height and

time. They are determined by the surface tension coefficient
and the contact angle σ, θ , the radius of the capillary R,
the density and viscosity of the liquid ρ and µ, and the
immersion depth of the lower edge of the capillary h0; t0 is
a free parameter that allows considering the initial interval
when inertia is relevant (see Appendix B for details).

In the tomographic reconstruction, we consider horizontal
layers may be reconstructed independently of each other.
We consider a layer at the height h filled the mean adsorption
coefficient of the voxel inside the capillary reaches a specified
value. The time when the filling criterion is satisfied is less
sensitive to the percentage of the lower layer since the liquid
fills the lower layers quite quickly. For the upper layers,
we have a small number of the projections with the filled
layer, and signal to noise ratio is less than for the lower layers.

FIGURE 12. Comparison of the results of the visual determination of the
height of the capillary rise with the calculated values and with the data of
the tomographic reconstruction.

Figure 12 shows a comparison of the experimental data
of visual observations, a calculation using the non-inertial
capillary rise model (see Appendix B for details), and the
reconstruction of process dynamics by the proposed algo-
rithm. For the latter, three filling criteria are used.

If the object to be filled has a more complex shape
(e.g., a porous ceramic filter or rock core), it can be difficult
to visually determine the quantitative characteristics of filling
the porous medium with a liquid from the projection data.
Approximate analytical methods for calculating the flow are
also not applicable. For comparison, one can use, for exam-
ple, the dependence of the mass of a liquid inside of the
sample on time and estimate the position of the interface
calculated from the tomographic reconstruction. The former
dependence can be measured in the experiment indepen-
dently, the position of the interface can be found numerically,
e.g., by use of the Lattice–Boltzmann equation (LBE) [33],
which results in the same data as the algorithm — the dis-
tribution of the liquid concentration over voxels depending
on time. An example of the application of the LBE to the
problem of filling a capillary is given in Appendix B.

V. DISCUSSION
As can be seen from the results obtained, the proposed algo-
rithm for tomographic reconstruction makes it possible to
reconstruct the dynamics of non-stationary monotonic pro-
cesses. In this case, the temporal resolution is potentially
limited only by the exposure time of one projection. It leads
to a decrease in the total experiment time, and, consequently,
to a lower accumulated radiation dose for the object under
study. It also makes it possible to apply this method for study-
ing dynamic processes on laboratory X-ray radiation sources,
where experiments on 4D tomography with the reconstruc-
tion of quasi-static states by a large set of projections are
severely limited in their capabilities due to the relatively
long exposure time. At the same time, the application of
the proposed algorithm to synchrotron sources will make it
possible to study extremely fast and non-periodic processes.

In our virtual experiment, we observe the monotonic
dependence of the reconstruction quality on the number of
projection images. In real experiments, the accuracy is limited
by noise and at some point, the increase in the number of pro-
jection images does not lead to better reconstruction. The total
duration of the process is a given value. The scanning protocol
provides a tradeoff between a number of projection images
that defines the accuracy of reconstruction and exposure time
per projection that corresponds to signal to noise ratio.

VI. CONCLUSION
Herein, it has been demonstrated that the presented algorithm
for the mathematical reconstruction of 4D tomographymakes
it possible to reconstruct dynamic processes with only one
projection image available per time point while the process
of object change is non-decreasing in terms of the intensity
of the voxels of reconstructed images. We proved the fea-
sibility of the proposed algorithm using the data from two
experiments: a virtual one with a complex structure of the
porous object when the input data were generated artificially
and the ground truth is known a priori, and a real one with the
data obtained by the X-ray tomography of a simple object.
The design of the latter experiment allowed independent
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monitoring of the filling process by shadow pictures and
simple modeling. Experimental verification by studying the
process of filling a capillary with a liquid demonstrated
the possibility of the practical application of the algorithm.
An example of the application of the proposed method is
the study of fluid flows in porous objects. Tomography of
stationary porous objects today are performed on different
scales [34], [35]. This is often connected with the tasks of
mineralogy [36], but not always alone. The study of hier-
archically structured porous morphology is requested in the
manufacturing of batteries [37], for example. Since it is no
longer enough to visually analyze the reconstructed images
of porous objects, methods for the automatic binarization of
tomographic images of porous structures, used as a mask
in our algorithm, have also been developed [38]. We under-
stand that the trade-off between the rotation speed and the
signal-to-noise ratio in the monitoring of dynamic processes
is very important [39]. Our experiments demonstrated that
monitoring fast processes, when the speed of the process does
not allow to measure more than one tomographic projection,
is potentially possible. The second advantage of such an
approach is its possible application in medical studies due to
extremely low doses during CT. An extra small exposition
time produces an extremely bad signal-to-noise ratio; how-
ever, the development of new approaches for working with
tomographic data collected under ultra-low-dose conditions
[40], [41] is in progress.

At the moment, we are working to improve the proposed
4D CT algorithm. We plan to adapt it to such dynamic
processes where changes in the objects under study can be
non-monotonic.

APPENDIX A
MODELING OF CAPILLARY RISE
The reference values for the capillary rise are the height in
equilibrium H = 2σ cos θ

ρgR and the time is given by Wash-

burn’s law [41] T = 16µσ cos θ
ρ2g2R3

. We used silicone oil (poly-
methylsiloxane) as the working fluid since it wets the glass
(the contact angle is close to zero) and allows selecting a
viscosity from a wide range. The surface tension coefficient
of silicone oil weakly depends on its type (viscosity) and
equals 0.019 N/m. The size of the detector’s field of view
determines the value of H as approximately 4 cm and fixes
a capillary radius of approximately 0.1 mm. For a capillary
radius of 0.1 mm and oils with a kinematic viscosity of
ν =

µ
ρ
= 10−3m2/s, the reference time is T = 3260 s, which

is comparable to the typical tomography scan time.
For non-inertial capillary rise when the surface tension

force, gravity, and viscous friction are in balance, the fol-
lowing differential equation describes the dependence of the
liquid column height above the oil level h(t) on time [41]:

2σ cos θ
R

=
8µ (h+ h0)

R2
ḣ+ ρgh

where σ, θ are the surface tension and the contact angle,
R is the radius of the capillary, ρ and µ are the density and

FIGURE 13. Scheme of the flow and dimensions of the computational
domain (not to scale).

viscosity of the liquid, the h0 is the immersion depth of the
lower edge of the capillary (see Figure 13)

The numerical coefficient in the viscous friction term
reflects the assumption that a parabolic velocity profile takes
place in all sections.

A solution to this equation is:

t
T
= −

(
1+

h0
H

)
ln
(
1−

h
H

)
−
h+ h0
H

. (A1)

The non-inertial approximation is valid if the dimensionless

number � = µ
√

128σ cos θ
ρ3g2R5

> 2 proportional to the viscosity

is large enough (exceeds 2 [42], [43]).
The parameters of the present experiment correspond to

� = 5.1 · 104.

APPENDIX B
SIMULATION OF THE FLOW IN AN ARBITRARY CHANNEL
An analytical solution exists only for channels of a simple
shape — for example, a gap between planes, a cylindrical
channel with a circular cross-section. The formulation of
the problem requires explicit expressions for the meniscus
curvature and the ratio between the mean velocity and vis-
cous friction. In other cases, particularly for the flow in a
porous structure, it is necessary to numerically simulate the
flow within the framework of the Navier–Stokes equation,
the Stokes approximation, or other approaches for viscous
fluid dynamics modeling. The use of the Lattice–Boltzmann
equation (LBE) [44] seems an effective tool for the numer-
ical simulation of the flow in a complex domain. Solving
Navier-Stokes equations for two-phase flow by volume-of-
fluid method with OpenFOAM software [45] turned out to
be enormously time-consuming [46].

The main idea of the LBE method is the following. For a
uniform grid in the physical space and in the space of veloc-
ities, one introduces quasiparticles and solves the problem
with respect to the distribution function for the density of
these quasiparticles. At each time step, a particle can move

VOLUME 10, 2022 46971



A. Buzmakov et al.: Iterative Algorithm for 4D Tomography Reconstruction

to a finite number of states in the neighborhood of the initial
one, and the probability of transition to one or another state
depends on the external forces and the forces of interparticle
interaction. The parameters of the equations define the mag-
nitude of the surface tension, contact angle, and viscosity. The
LBE method allows one to calculate the flow of multiphase
media in a region with arbitrary geometry [31]. We used the
Palabos code [47] for calculations with the LBE method.
The applied procedure neglects the effect of air and does not
perform simulation in the points occupied by the air or the
capillary.

We simulated a flow in a vertical channel of D = 2 mm
(Figure 13). There was a capillary in the center of the channel,
and the capillary’s inner diameter was 2R = 0.2 mm, while
the wall thickness was d = 0.3 mm. The configuration used in
the experiment and shown in Figure 12 (left) was set with the
following initial conditions: The liquid formed a layer 19 mm
deep, and the empty capillary was immersed to a depth of
13.3 mm. We performed the calculation of unsteady three-
dimensional flow, despite the fact that the initial and boundary
conditions had axial symmetry. The grid step in space was
1/50 mm and the capillary diameter equaled 10 grid steps;
this spatial resolution is sufficient to reproduce the maximum
capillary rise height value with an accuracy of 2.7% [44]. The
time step was equal to 10−5 s, which is close to the max-
imum value that ensures the stability of the computational
scheme. The shape of the liquid surface is shown qualitatively
in Figure 13 (right), while Figure 14 shows the results of
calculations using the LBE method.

FIGURE 14. Results of the numerical simulation. The area filled by liquid
is shown in black, the capillary is gray, and the air is white.

The calculations showed that the time of rising to a certain
height linearly depends on the kinematic viscosity for ν from
10−6 to 10−3 m2/s, which is consistent with the non-inertial
approximation. To reduce the computation time, we set
and then rescaled the obtained time multiplied by 10−3.

The calculation of 1 s of physical time took 54 s on CPU
Intel (R) Core (TM) i7-5930K, 64 Gb RAM

A comparison of the experimental results with the calcula-
tion and analytical solution (A1) is shown in Figure 15, where
the value h = 0 corresponds to the initial oil level outside of
the capillary.

FIGURE 15. Dependence of the capillary rise height on time.

Calculation using the LBE method improved the accuracy
in the initial stage when the liquid entered the capillary,
although the assumption of a parabolic velocity profile was
not fulfilled. The same conclusion was obtained in [43]. The
discrepancy between the results of the calculations by the
LBE method at large values of time can be explained by
the influence of the outer boundaries of the computational
domain. In other words, the capillary pressure in the gap
between the channel and the outer boundaries reduces the
pressure drop that drives the fluid.

The time for the capillary to rise to a certain height based
on the non-inertial modeling and the experiments differed
by a value close to constant (42 s for the parameters used).
This difference corresponds to the time required for the initial
acceleration of the liquid. The thin lines in Figures 11 and 14
show the curve obtained with a shift of 42 s as a result of
modeling
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