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ABSTRACT The ease of use and advancements in drone technology is resulting in the widespread
application of Unmanned Aerial Vehicles (UAVs) to diverse fields, making it a booming technology. Among
UAVs’ several applications, livestock agriculture is one of the most promising, where UAVs facilitate
various operations for efficient animal management. But the field is characterized by multiple environmental,
technical, economic, and strategic challenges. However, the use of advanced technological techniques
like Artificial Intelligence (AI), Internet of Things (IoT), Machine Learning (ML), Deep Learning (DL),
advanced sensors, etc., along with the assurance of animal welfare while operating the UAVs, can lead
to widespread adoption of drone technology amongst livestock farmers. This paper discusses livestock
management research where UAVs monitor farm animals via detection, counting, tracking animals, etc.
In this article, an attempt has been made to elucidate different aspects and broader issues around livestock
management while highlighting the associated challenges, opportunities, and prospects. This work is the
first review paper on the subject matter with all the necessary information and analysis, to the best of our
knowledge. Therefore, the article promises to provide interested researchers with detailed information about
the field, guiding future research.

INDEX TERMS Unmanned aerial vehicle, cattle, livestock management, livestock agriculture.

I. INTRODUCTION electronics, communications, and embedded technologies,

Unmanned Aerial Vehicles (UAVs) are aircraft designed to
fly without a pilot on board, also called mini flying robots,
miniature pilotless aircraft, and drones (in this paper UAVs
and drones terms are used interchangeably to refer to the
same thing). The mutual collaboration of three major compo-
nents is required to operate such an aircraft system: aircraft
body, ground control station, and the sensor support [1], [2].
Their strength is the capability to reach a remote location
with minimum time, effort, and energy, without human pres-
ence. In addition to their high mobility, low maintenance
requirement, and easy deployment, UAVs have also eased
the collection of outdoor aerial images and facilitated easy
monitoring and analysis. Due to the recent advancement in
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the fall in prices has increased its availability in the military,
commercial and civilian applications. According to the Asso-
ciation for UAV Systems International, over 100 thousand
new job opportunities will be created in the UAVs industry
by 2025 [3]. By 2027, the estimated global UAV market
value will reach $3 billion, led by North America, Asia, and
Europe, respectively [4], [5]. The UAV-driven paradigm has
been described with its applications and challenges [6].

The world first saw the use of drone technology during
the First World War in military applications by the USA
and France. However, it has witnessed a vast expansion of
applications, global awareness, and a surge in interest in
drones over the last few decades. Presently, the commer-
cial drone market has a steady momentum and is expected
to get more prominent in the nearest future [7]. The long
list of UAV application fields includes, but is not limited
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FIGURE 1. Different aspects of livestock management related to UAVs.

to, remote sensing, real-time traffic control, rescue opera-
tions, disaster monitoring, the inspection of civil structures,
delivery of goods to remote areas, military applications,
marine industry, border patrol, agriculture, livestock man-
agement, imaging and mapping, aerial photography, journal-
ism, power transmission line and other cables inspection,
etc.

One of the most promising sectors for UAV deployment
is agriculture, where the farmer gets a bird’s eye view of the
entire field. Such technology can optimize a farmer’s effort
by helping him to seamlessly analyze the whole ground, alle-
viating the hassle of manual inspection. Livestock farming,
being an essential part of agriculture, is not an exception.
Drones can significantly contribute to monitoring, detecting,
and tracking the animals, searching for grazing lands, and
reporting any abnormal situation to the farmer to safeguard
herds from potential threats [8]. A graphical view of the
various aspects of livestock management, where the UAVs
play a significant role to modernize the field, is presented
in Figure 1.

Significant research has been done on the detection and
counting of animals using drone images. Earlier approaches
involved the capture of the targeted area’s video footage for
manual analysis [9]. Later, the process improved in several
ways like thresholding [8], sliding window approach [10],
thermal imaging [11], etc. With the help of image segmen-
tation, the detection and counting process can be further
improved. The challenging task of online tracking of ani-
mals is discussed in several articles. The works presented
in [12], [13] make use of Long-term Recurrent Convolutional
Networks (LRCN) to track the cattle across frames. The work
in [14] extends the task of identification and tracking to open-
set identification. The identification of misplaced livestock
is formulated as an optimization problem to maximize the
probability of detection of livestock in [15]. Another research
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dimension is the coordination and communication between
multiple UAVs in tracking tasks, which has been attempted
to be solved using a high-speed local network [10], long-
distance WiFi access points [16], etc. Besides health mon-
itoring [17], the impact of exploratory agency to ease the
process of online monitoring [13], behavior monitoring [18],
livestock roundup [19], optimal distribution of cattle [20]
in the grazing land, etc. An intelligent surveillance system
in [21] monitors the behavior and health issues where drones
are used to collect pictures and video clips. An Automatic
Veterinary System (AVS) is proposed in [22] for livestock
monitoring systems where the customized UAV can work
autonomously, without requiring any frequent check by the
operator. RFID code, color code band, and various sen-
sors can improve the accuracy and performance of such
AVS, where smartphone applications may ease the decision-
making process.

With the advancement of sensor technology and connec-
tivity, there have been some research efforts on Internet of
Technology (IoT) applications with drones with a particu-
lar interest in livestock management [23], [24]. The data
collection, analysis and real-time decision-making process
are entertained with the use of artificial intelligence (AI),
machine learning (ML), and deep learning (DL) tools in this
field [25]-[27]. Softwarization of UAV network is described
in [28] along with the various application fields and research
directions. An exciting research direction focuses on the
behavioral changes of cattle in the presence of UAVs. For
example, the authors in [29] assessed the heart rate and move-
ment rate of livestock in the presence of UAVs with varying
time and flight conditions. Livestock welfare management is
also discussed in several papers in recent times while operat-
ing with UAVs over cattle fields [30]. However, the above-
mentioned issues are surrounded by numerous challenges.
Some technical challenges include dealing with the aircraft,
sensors, and image processing tools, whereas other strategic
challenges constitute government policies, economic con-
straints, environmental issues, etc.

As a promising field of future research, UAVs and their
different application fields are discussed in various review
articles. A well-written review paper succinctly reviews the
recent development of the addressed issue, summarizes the
present status, and suggests directions of future progress.
In literature, it has been found that several papers have been
written on the use of UAVs in diverse fields. The application
of UAVs in the mining industry, forestry application, agri-
cultural modernization, disaster management, ray research,
communication network and power transmission line moni-
toring, remote sensing, mapping and inspection of structural
models, etc., are presented in review articles by researchers.
A list of review papers written on the use of drones in different
applications has been presented in Table 1. However, live-
stock management using UAVSs is not visible among review
articles even though many works have been done on the
topic.

The key features of this paper are as follows:
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TABLE 1. The review papers related to the use of UAVs.

— It is the first review article on the use of UAVs in

FIGURE 2. Detailed structure of the review process.
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. Year of -
Topic Reference publication
3D mapping and modeling [31] 2013
Forestry applications [32] 2016
Inspectlop of brlfjge and other 331, [34] 2018
construction projects
Remote sensing and
photogrammetry [33] 2019
Preqswp Agriculture 1361, [37] 2019
applications
Monitoring in mining areas [38] 2019
Structural disaster damage
detection and characterization [39] 2019
Communication network issues [40] 2020
Inspection of power system
transmission lines and fault [41] 2020
diagnosis
Sustainable weed management
and spraying technologies [42] 2021
Ray research [43] 2021
Smart agriculture management [7] , [44] 2021
Civil applications [45] 2019
UAYV assistance paradigm [6] 2020
Software implementation of
UAYV network (28] 2020
Cattle and other livestock
No record
management
Section 2: Section 3:
UAVs in livestock Challenges in the
management field and the ways
. research to overcome
Section 1: . .
Introduction *Detection and *Economic
Literat tracking of animals +Operational
- Juerature * Searching grazing *Environmental
review lands
. o *Image capture and
- thSt‘gft' +Health monitoring processing
contributions *Grazing support *Government
policy

Section 4:

Few broader
aspects

*The use of Al, ML
and DL

eloT
implementation

*Smart farming

*Dealing with
cattles behavior
and safety

livestock management research.
It discusses different fields related to cattle management
where UAVs are being used and presents a detailed
literature review on the subject matter.
— It highlights the various kinds of challenges related to
the field and itemizes the solutions proposed by different
researchers.
— It highlights the broader aspects and the concurrent
research directions in UAV based cattle management.
— It identifies the research gaps in the field where more
research is needed.

Section 5:
Conclusion

- Research
gaps

- Future
resaerch
directions

The paper has been structured in the following way: it starts
with the general introduction to the topic, which includes the
current potentials of the drone industry, different application
fields where UAVs are being used, the necessity of using
UAVs in the addressed area, the literature view, in short,
the list of review papers on the topic and the critical con-
tributions of the article. Section 2 elucidates the different
research directions for UAVs in livestock research. The next
part, section 3, highlights the challenges impeding the imple-
mentation of promising ideas on the topic and the suggested
solutions by the researchers. Some of the broader issues,
which may make the research field compatible with modern
technologies and help overcome the identified challenges,
are discussed in section 4. Finally, the concluding remark
discusses the research gap as well as the recommendations
for future works. The paper structure is summarized in a
graphical flow chart, presented in Figure 2.
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TABLE 2. Summary of the articles on livestock detection and counting by UAVs.

Year of Livestock
publication Type UAYV Type Country Method Reference
2016 Cattle 3DR IRIS+ USA Count manually from captured video [9]
2017 Cattle Custom-made UK Python astropy library to detect thermal image [11]
2017 Cattle DIJI Inspire M1 UK Faster-R-CNN with VGG-CNN M-1024 [12]
. . Apply sliding window on images, use CNN to
2018 Cattle Multirotor Spain check whether each window is livestock or not [10]
2018 Sheep Information not | 10 7. 1and R-CNN [10]
provided
2019 Cattle SenseFly eBee USA DisCountNet with StM [48]
2019 Cattle DIJI Phantom 4 Japan YOLOV2 with VisualSFM [49]
2019 Sheep lnforma?lon not UK Single-Shot Multibox Detector [26]
provided
2019 Cattle DJI Matrice 100 UK YOLOvV2 [13]
2019 Cattle DIl P};?Etom 4 Brazil 15 pretrained transfer-learning architectures [50]
Information Information . . .
2019 not provided Quadcopter not provided Segmentation using U-Net and Inception-V4 [51]
2020 Cattle DJI Mavic Pro Australia Segmentation using Mf‘glf R-CNN with ResNet- [52]
2020 Cattle and DI Mavic Pro Australia Segmentation using Mask R-CNN with ResNet- (53]
Sheep 101
2020 Cattle DJI Mavic 2 Pro Brazil NASNet-Large [54]
2020 Sh Quadcopt Qat Image processing with morphological operators; [8]
eep uadcopter atar YOLOV2
2020 Cattle DIJI Mavic 2 Pro Brazil Xception architecture [55]
2021 Sheep DIl Pl;)a;roltom 3 New Zealand Segmentation using U-Net and custom CNN [56]
2021 Cattle DIJI Mavic Pro Brazil Faster R-CNN with Inception-ResNetV2 [57]

Il. DIFFERENT ASPECTS OF USING UAVS IN

LIVESTOCK RESEARCH

A review of available literature on UAVs for livestock
revealed several areas that dominated the field. Some of the
main areas identified are discussed in this section.

A. DETECTION AND COUNTING OF LIVESTOCK
The task of detecting and localizing livestock from the fields
can be considered as object detection. These tasks focus on
locating livestock from images or videos and count them.
Table 2 summarizes all the works done in the field of livestock
detection and counting.

The following subsections will discuss about different
approaches of cattle monitoring using UAVs:

1) PRIMITIVE APPROACHES
Earlier approaches on livestock detection using UAVs [9]
simply captured video footage of the pasture, and human
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observers were employed to detect and count the livestock
manually. This process was beneficial for detecting and
counting diseased cattle living in quarantine. To automate
the process of detection and counting, [8], [46], [47] applied
thresholding on each image frame on the video sequence to
separate livestock from the background. Then morphological
operations and binary masks were used to remove noisy
pixels. Finally, the remaining blobs were counted to get the
number of livestock in the frame.

2) R-CNN-BASED APPROACHES

Although these methods were computationally inexpensive,
their low accuracy resulted in better systems [10] that relied
on the Sliding Window approach to analyze individual frames
and detect livestock from fields. The system considered the
distance of the UAV from the field to determine the esti-
mated livestock size. Then sliding windows of three sizes
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(85%, 100%, 115% of the estimated size) were applied on
different frame patches. Each patch was then supplied to
a Convolutional Neural Network (CNN) to determine the
probability of that patch being livestock or background.
Recent advances in ML and Al-based approaches allowed
us to accomplish this task by combining pretrained
CNN-based architecture with Region Proposal Networks
(RPN). These networks take images or videos as input and
produce Regions of Interest (Rols) as bounding boxes around
the livestock. Then the regions are classified using a pre-
trained network. For example, [46] uses a modified version
of R-CNN [58] to detect and count sheep on a field. The
method applied selective search to generate region proposals
and CNN for feature extraction from the regions. Then the
features are fed to an SVM for classification, and to a linear
bounding box regressor to get the confidence value.

[12], [57] utilize Faster R-CNN [59] to detect and local-
ize cattle. Reference [12] uses the VGG-CNN M-1024 net-
work [60] as the pretrained base CNN architecture. In con-
trast, [57] utilizes Inception-ResNet-v2 [61] to detect cattle.
As shown in Figure 3, in Faster-R-CNN, the base network
is followed by a trainable RPN and a classifier network.
In between the two networks, the RolPool [62] layer is used.
Using the feature map extracted by the base CNN archi-
tecture, RPN produces bounding boxes as region proposals.
In the case of rectangular bounding boxes, each proposal
takes the form of an N x 5 matrix, where N denotes the
number of Rols. The first column of the matrix denotes the
index of the Rol, and the remaining four are the coordinates of
the top left and bottom right corners of the proposed bounding
box. The RolPool layer then takes these bounding boxes and
resizes them to some predefined size. Sometimes overlapping
proposals are discarded to reduce the computational cost
using different suppression techniques. The extracted feature
maps can be slightly off by 1 or 2 pixels, but that does
not reduce the accuracy much. The Rols are then fed to
the classifier network. Based on the classified result and the
confidence score, predicted Rols can be discarded or retained
accordingly. In addition to that, [57] computes projections
of the image vertices using GPS position and altitude of
the drone in relation to the ground before detection. After
calculating of the global coordinates of the drones from all
the images, by creating a bipartite graph and using maximum
flow, duplicate cattle are identified and removed to avoid
counting the same cattle multiple times.

3) SEGMENTATION BASED APPROACHES

To further improve upon detection, some works consider this
work as image segmentation. For example, in [51], [56],
the authors utilized a combination of U-Net [63] and
a CNN network to segment livestock images to count
them. The U-Net architecture, shown in Figure 4, makes
use of a contraction and an expansion part. The contrac-
tion phase combines convolution, non-linear activation, and
max-pooling layers to down-sample the input livestock image
to generate high-resolution features. By concatenating output
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FIGURE 3. The architecture of R-CNN-based approaches for generating
bounding boxes and segmentation masks to detect and count livestock
(Adapted from [59], [64]. Input image taken from [49]).

from the contraction phase, the expansion phase performs
up-convolution on those features to extract the segmenta-
tion masks for the livestock. In [56], the segmented images
are then classified using a seven-layer CNN architecture to
ensure the correct livestock count. On the other hand, [51]
utilized Inception-V4 [61] to classify the segmented images.

Other works on segmentation-based counting [52], [53]
utilize Mask R-CNN [64] to segment cattle from frames
of video sequences to count them. They detect the body
or the head of cattle, treating the task as image segmenta-
tion. Depicted in Figure 3, Mask R-CNN is an extension
of Faster R-CNN since most of the baseline architecture is
similar. Mask R-CNN corrects the misaligned feature map
provided by the Rol Pooling layer by replacing it with the
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FIGURE 4. U-Net architecture for livestock segmentation (Adapted from [63]. Input image taken from [49]).

RolAlign layer. This layer utilizes Bilinear Interpolation to
avoid quantization and compute the exact feature map for the
cattle to be segmented. The generated segmentation masks
are then counted to find the number of cattle.

4) SSD AND YOLO-BASED APPROACHES

The problem with these R-CNN based architectures is that
they generate lots of proposal regions by applying classifiers
on multiple locations for each image which takes up a lot
of processing time. Additionally, they perform poorly for
smaller targets [65]. For this reason, some works [26] pro-
posed the use of Single Shot Multibox Detector (SSD) [66]
to detect livestock from images captured at S0m altitude.
The network is faster than previous R-CNN-based methods
as it only requires a single forward pass through the detec-
tion network to localize livestock. As seen in Figure 5, the
architecture builds upon VGG-16 [67] by replacing its fully
connected layers with a set of auxiliary convolutional layers
enabling it to gradually decrease input size to extract features
in multiple scales. The bounding box around livestock is
generated using a CNN architecture considering both the
confidence of the network and the distance of the proposed
box from the ground truth. The architecture starts with a
set of bounding boxes in the input image and based on the
confidence values provided by the classifier, the ones with
the highest confidence are retained.

To perform faster and more accurate detection, recent
works on livestock detection [8], [13], [49] utilize a variant
of “You Only Look Once” (YOLO) architecture [65], known
as YOLOvV2 [68]. This is an improvement over previous
architecture YOLOv1 that applies a single neural network on
the entire image. As a result, the network can reason about
the entire image globally, considering all objects in the image.
First, the image is divided into multiple grids for predicting
bounding boxes. The architecture produces an area of interest
with a corresponding confidence score based on whether
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FIGURE 5. SSD and YOLO-based architectures for generating bounding
boxes to detect and count livestock (Adapted from [65], [66], [68]. Input
image taken from [49]).

the bounding boxes are the center of any object. Based on
the class probability map of those confidence scores, final
detections are made. YOLOvV2 makes several improvements
to the baseline architecture. As shown in Figure 5, the archi-
tecture utilizes fine-tuned classifier network with high input
resolution enabling it to only focus on object detection instead
of adjusting to a new resolution. It utilizes k-means clustering
to pick better priors.

With the grid cell localized anchors, the model can easily
learn to predict better bounding box dimensions. For faster
feature extraction, it replaces VGG-16 with Darknet-19 that
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uses 19 convolutional layers and 5 max-pooling layers reduc-
ing the total number of operations to gain speed. By hierarchi-
cally classifying the images using directed graph-based ideas
from WordNet [69], the model can predict detected objects
better. This makes YOLOV?2 ideal for livestock detection.

Reference [49] further extended detection and counting
using YOLO variants by generating bounding boxes using
YOLOV2 and constructing a 3D model of the area using
VisualSFM [70], [71], a Structure from Motion (SfM) system
to avoid recounting the same cattle multiple times. To esti-
mate the shape of the model, Scale-Invariant Feature Trans-
formation (SIFT) is used to find matching feature points
in images to merge them using bundle adjustment. To get
the point cloud from the model and the surface from the
point cloud, Dense Reconstruction [72], [73], and Screened
Poisson Surface Reconstruction [74] are performed. From
that, the world coordinate for each cattle location is extracted.
Finally, each coordinate containing cattle is matched with a
pre-existing list using the Hungarian Algorithm [75]. A sim-
ilar SfM approach [76] was also followed by [48] to create
an orthomosaic reconstruction of the field. The authors used
DiscNet to extract foreground information containing cattle.
From the extracted foreground features, CountNet is used to
generate the per-pixel probability of a cow being in a given
pixel, counting the number of cows in the image.

5) DETECTION UNDER VARYING

ILLUMINATION CONDITIONS

Considering the varying illumination and contrast of the cap-
tured images and the overlap of clustered livestock, color-
space transformations, morphological operations and the
result produced by CNNs can be utilized. Reference [54]
considers the Rol provided by NASNet-Large architecture
and generates binary masks to pinpoint the cattle. The authors
superimpose the Rol on the original image and convert it
to different color channels. Then different masks are gener-
ated by applying various thresholding techniques in different
channels. By separately counting the masks and combining
them, a final count of cattle is generated. In addition to
that, to avoid counting the same cattle from multiple images,
Speeded Up Robust Features (SURF) [77] and Binary Robust
Invariant Scalable Keypoints (BRISK) [78] are applied to
identify and match cattle in different images.

6) OTHER APPROACHES

Various deep CNN-based architectures pretrained on the
ImageNet Challenge [79] can also be applied for detecting
livestock. Reference [50] inspected the performance of pre-
trained architectures for two similar-looking cow species in
different weather conditions, times of day, soil conditions,
etc. They also experimented with the positioning of UAVs.
They found that if the ground samples have 2 cm/pixel
occupancy in 112 x 112 input images, it provides the best
accuracy for most models. Among all the architectures tested,
NASNet-Large [80] was the best performing one. The archi-
tecture is a combination of Normal Cell and Reduction Cell
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designed by AutoML [81], which utilizes Reinforcement
Learning to develop neural network architectures.

Authors in [55] captured images from an angle to cover
more ground at a time and utilized Xception architecture [82]
to detect whether cattle exist in image blocks or not. The
base architecture relies on pointwise convolution followed
by a depthwise convolution that gets rid of non-linearity
leading to efficient model parameters. The authors also exper-
imented with the input image size and distance to the cattle.
Smaller image blocks are more suitable for detecting distant
animals. Howeyver, it also increases misdetections since minor
anomalies become more prominent. Other approaches to the
detection of livestock include thermal images which can help
in separating livestock from the background based on the
temperature [11].

B. TRACKING LIVESTOCK WHILE GRAZING

Tracking livestock from a video or a sequence of frames
introduces an additional temporal dimension to the detec-
tion phase. Considering the slow walking speed of livestock,
and minimal sudden movements, information of subsequent
frames can be incorporated to identify and track them.
However, tracking livestock across successive frames can be
computationally expensive. In this regard, [47] utilized shape
features of the detected contour around goats, such as area,
aspect ratio, convexity, contour moment, extent, equivalent
diameter, eccentricity, form factor, perimeter, roundness, etc.
to track them across frames. These features were then fed
through different machine learning-based classifiers to detect
the actions.

References [12], [13] make use of Long-term Recurrent
Convolutional Networks (LRCN) to track the cattle across
frames. For each frame, the visual features are extracted
using the pool3-layer of Inception V3 architecture [83]. These
features are then fed to LSTMs, which generate IDs for the
cattle in the entire input sequence. The recurrent architecture
can be seen in Figure 6.

Reference [14] extends the task of identification and track-
ing to open-set identification. It focuses on a flexible scenario
where the system can recognize already seen livestock, and

Input Livestock Video

Feature
Extraction
using CNN

Architectures

Recurrent ID
Generation
using LSTM
Architectures

Generated
IDs for Each
Livestock
for Tracking

FIGURE 6. Long-term recurrent convolutional network architecture for
tracking livestock (Adapted from [12]. Input images taken from [49]).
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TABLE 3. Summary of the articles on livestock tracking by drones.

Livestock

Year of Livestock
publication Type UAYV Type Country Method Reference
2017 Cattle DJI Inspire M1 UK LSTM and LRCN with InceptionV3 [12]
2019 Goat DJI Phantom 3 West Indies Shape features fed into Machine [47]
Learning-based classifiers
2019 Cattle DJI Matrice 100 UK LSTM and LRCN with InceptionV3 [13]
2021 Cattle Mixed UK Map 11.Ve.stoc.k images into class- [14]
distinctive latent space
. . . . . Motion-Encoded Electric Charged

2021 Simulation Simulation Not applicable Particles Optimization [15]
((( ))) As depicted in Figure 7, paper [10] utilizes a high-speed
AV fitted s d= =t local network built over long-distance WiFi access points [16]
Ra:;‘)i;‘e‘"y >\ T s to establish communication with UAVs. These UAVs are
Pi ‘,x" " controlled using Raspberry Pi model 3, which is a low-
L= H b cost small board computer. These devices also manage the
-'15 - ((( ))) communication using 76MHz to 108MHz radio frequency

A . X WiFi Access
equipped with .
< Point
Transceiver

Ground

control

station
Human

Operator

FIGURE 7. Communication among UAVs, Livestock, and ground control
station using WiFi access points (Adapted from [10], [85]).

at the same time, identify and re-identify livestock that has
not been seen before without further training. The authors
consider the task as learning to map livestock images into
class-distinctive latent space, where the images of the same
livestock are mapped closer and different livestock further.
After that, k-Nearest Neighbors clustering is used to find an
existing or new cluster for the detected livestock.

Another dimensionality that can be added to tracking live-
stock is the identification of misplaced livestock. One of the
critical challenges in this problem is to locate the missing tar-
get as fast as possible. Because the probability of finding the
target decreases rapidly with time. Reference [15] approaches
this by modeling “it” as an optimization problem to max-
imize the probability of detection of livestock. It combines
the motion-encoding mechanism with Electric Charged Par-
ticles Optimization (ECPO) algorithm [84]. The trajectory for
searching the target livestock is modeled as a series of UAV
paths. These paths are updated using the Motion-Encoded
ECPO (ECPO-ME) algorithm. Table 3 presents the summary
of articles written on the topic.

C. COMMUNICATION AND EXPLORATORY

AGENCY OF UAVS

Communication among UAVs shepherding livestock is cru-
cial for establishing multirotor systems to control large herds.
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band [10]. A ground control station software is set up that
facilitates manual control, exchanged information logging
among UAVs, status updates for the human controllers,
prevention of access to restricted areas, and prevention of
collisions. The UAVs can be programmed to cover a particular
area by coordinating for minimum overlap and maximum
coverage. Similar approach is followed in paper [85], which
utilizes GPS collar fitted on cattle and sheep to monitor the
livestock’s position, health, and behavior as seen in Figure 7.
First, the pasture is modeled as a convex polygon. To get an
initial estimate of the position of the livestock, the optimal
sweeping direction is calculated by following [86]. After
determining the GPS coordinates of the livestock, the data is
fed to a streaming K-means clustering algorithm to determine
the optimal UAV trajectory to minimize the distance between
the target livestock group and the UAVs. This reduces the
overall flight time of all the UAVs to cover the entire ground
while also reducing power consumption. After that, the UAVs
periodically cover the whole pasture to collect health and
behavior data and update the coordinates of the livestock.

The purpose of UAVs having exploratory agency is to move
with the livestock’s movement to keep track of them easily.
Reference [13] considers this task as a “dynamic traveling
salesman” where the cities are discovered on the fly. As illus-
trated in Figure 8, the authors use a dual-stream deep learning
architecture to combine exploration strategies learned from
previous experiences with instantaneous sensory inputs. The
sensor data capturing the movement of the cattle is interpreted
with AlexNet [87] and combined with positional history inter-
pretation using long-term positional memory and a shallow
CNN to predict the next action to be carried out by the UAV.
The actions are also stored for future use.

The article [88] focuses on utilizing Long-Range Wide-
Area Network (LoRaWAN) to locate cattle herds tagged with
LoRa transceiver to cover all the herds in an optimal path.
The locations are used to model a traveling salesman prob-
lem, where a Hamiltonian loop visiting all the locations at
most once is determined using a modified version of Particle
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TABLE 4. Summary of the articles on communication exploratory agencies of UAVs while tracking livestock.

Year of Livestock
publication Type UAY Type Country Method Reference
2017 Simulation Simulation Not Applicable Collision avo1dange using altitude [19]
alteration
High-speed local network using long-
2018 Cattle Multirotor Spain distance WiFi access points to [10]
communicate
. Long-Term Positional Memory with
2019 Cattle DIJI Matrice 100 UK AlexNet and a shallow CNN [13]
2019 Simulation Simulation Not Applicable Streaming k-Mea(r;:tzlustermg on GPS [85]
AeroHawk . . L
2021 Cattle VTOL Drone Malaysia Enhanced Particle Swarm Optimization [88]
TABLE 5. Summary of the articles on cattle behavior monitoring with drones.
Year of Livestock
publication Type UAY Type Country Method Reference
3D Robotics RTF Manually check feeding pattern of cattle
2016 Cattle Y 6 Multicopter USA from captured video [18]
2019 Cattle DIT Phantom 4 Canada Measure distance among livestock using [90]
a marker-calibrated scale

Swarm Optimization (PSO) algorithm [89] called Enhanced
Particle Swarm Optimization (EPSO). The algorithm utilizes
mutation operators to avoid falling into local optimum, find-
ing a globally optimal path that reduces the total path length
covered. This, in turn, reduces the continuous operation time
alleviating the need to replace drone batteries while on the
operation.

To avoid collision among the traveling UAVs, [19] employs
a collision avoidance technique by altering the altitudes of
the UAVs. During traveling, if the distance between two
UAVs goes under a certain threshold, the UAVs are moved
towards opposite directions in altitude to avoid the collision.
Table 4 presents the summary of articles written on the
topic.

D. LIVESTOCK HEALTH MONITORING WITH UAVS
Monitoring the health of the livestock requires inspection of
temperature, blood pressure, etc. In this regard, UAVs can be
helpful. Reference [17] used UAV with a Radio Frequency
Identification (RFID) repeater to capture temperature data
emitted from the RFID tags attached to the ear of a cattle.
They also experimented with the altitude of flight of UAVs.
They found 150 feet to be the optimum altitude where they
could gather data using the repeater and at the same time
capture good quality images from the attached camera to the
UAV operator for manual visual inspection to detect any other
problems. On the other hand, [92] utilized UAVs and software
to capture and analyze videos to measure feeding cattle’s heat
stress and respiration rate.
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E. LIVESTOCK BEHAVIOR MONITORING WITH UAVS
Feeding behavior monitoring can help detect diseased live-
stock. To monitor this, [18] utilized UAVs to capture the
feeding pattern of cattle. By counting the number of times, the
muzzle of the cattle was inside the feeding bowl, the authors
tried to estimate the food intake of the cattle. They found a
strong positive correlation between the estimated food intake
for long Alfalfa hay and long Sudangrass hay.

Cattle often exhibit complex social structures. This can be
determined through their spatial proximity. To this end, [90]
employed UAVs to acquire images of cattle herds. Those
images were combined using photogrammetric software to
create an orthomosaic of the entire herd. Using different
objects in the image as reference to calibrate the scale, the
distance between calves and their mothers, and the distance
between calves and non-related cows were estimated. The
authors estimated the distance within £1.96m of the actual
value 95% of the time. Table 5 has presented the summary of
two papers found on this topic.

F. LIVESTOCK ROUNDUP

Rounding up livestock requires gathering livestock together
from a scattered position. Multiple UAVs can be employed
to accomplish this task. Reference [19] simulated one such
scenario where 4 coordinated UAVs are used to perform
cattle roundup. From the satellite image of the pasture,
GPS coordinates of the cattle are extracted. This extraction
can be improved by placing GPS modules on cattle. UAVs
determine the optimal flying trajectory to drive the cattle to
the desired location based on the region’s shape and target
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FIGURE 8. Navigation path determination using multiple CNN
architectures (Adapted from [13]. Input image taken from [49]).

position. Inter-distance between the cattle and the aircraft is
tracked continuously to optimize the trajectory of the UAVs.
Proportional-Integral-Derivative (PID) controller is used to
control the UAVs. The authors also experimented with how

Point
A A

Drag Drag

the UAVs can be positioned if their numbers change which
can be seen in Figure 9.

G. ESTIMATION OF LIVESTOCK DISTRIBUTION

To manage the grassland ecosystem, it is crucial to understand
the Spatio-temporal distribution of the livestock. In [91], the
authors divided the study area into multiple grids and counted
the number of detected livestock per grid from UAV images.
The count was then modeled with a negative binomial dis-
tribution and logarithmic link function [93]. Reference [20]
tackled this task by taking aerial photographs from UAVs
flying over Yak herd. The photographs are then merged to
create a georeferenced orthomosaic. It was then trimmed to
only cover the yak herd and ortho-rectified. The herd was
counted using software called HerdCounter to identify and
count yaks. Missed and mistakenly selected yaks were man-
ually corrected. Ten rectangles were placed randomly on the
orthomosaic, and the density and dispersion were calculated
with the help of ArcGIS. Table 6 has presented the summary
of two papers found on this topic.

IIl. CHALLENGES FOR LIVESTOCK RESEARCH USING
UAVS AND WAYS TO OVERCOME

Monitoring vast land mass for cattle detection, tracking,
counting, health monitoring, etc., is practically infeasible
without aerial surveys. Satellite image sources can be one
of the ways to conduct such studies. However, the spatial
information of such data is inadequate as the object of interest

! Right
Flank

FIGURE 9. UAV positioning in livestock roundup considering the number of available UAVs (Adapted from [19]).
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TABLE 6. Summary of the articles on cattle distribution estimation.

Year of Livestock
publication Type UAYV Type Country Method Reference
2015 Cattle Custom-made Spain Manually count livestock from the grid [91]
2020 Yak DJI Phantom 3 China Manually count livestock using software [20]

will be represented with only a few pixels. Another way to
execute such surveys is using Manned Aircraft, but it is not
cost-effective, and noise levels might disturb animals’ normal
behavior. Considering these facts, utilizing UAVs can go a
long way to provide feasible solutions.

In recent times, the use of UAVs in different applica-
tions has been ever-increasing, and researchers are having
trouble keeping pace with it [94]. Particularly in livestock
research, people from different parts of the globe are getting
more familiar with these technologies, and new doors are
being opened [95]. However, despite this vast potential of
UAVs, there are different technical and practical challenges
which are needed to be considered while proposing any
Unmanned Aerial System (UAS). This section discusses a
few of such aspects.

A. SELECTING THE APPROPRIATE UAV

Selecting the proper UAV with a suitable set of sensors
out of various choices is challenging and depends solely on
the application. The UAV ideal for precision agriculture or
wildlife monitoring might not fit in livestock research [96].
There are two types of UAVs suitable for livestock applica-
tions: rotary-wing and fixed-wing UAVs. Each type has its
advantages and disadvantages.

The wing-type considerably affects the drone’s maneuver-
ability and endurance. While a fixed-wing UAV is easier
to fly, it is not appropriate for hovering, where a rotary-
wing UAV excels. Fixed-wing drones have flat wings that
are better adapted to cover long distances quickly, spending
less energy than rotary-wing drones. The flight endurance
of such UAVs is higher, and they can fly at high altitudes
[97]. So fixed-wing UAVs are recommended to be used for
extended missions or to collect as much info as possible in one
flight, such as tracking livestock for an extended period [12],
[14], [47], [13], identification of misplaced livestock [15],
livestock roundup from a scattered position [19].

Fixed-wing drones are an excellent choice if a big load
needs to be carried due to the installation of extra equipment
in the aircraft. Their wing construction provides remarkable
stability, often allowing the aircraft to carry up to 50 kg
loads. Such a requirement might be helpful in UAVs that are
employed to serve multiple purposes. For example, UAVs can
be used to capture images to detect and count livestock, col-
lect health information, and maintain communication among
each other. In this case, each of the UAVs has to carry camera
equipment, microcomputer, and transceiver.

On the contrary, the flexible flying capability of
rotary-wing aircraft facilitates vertical takeoffs and landings.
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Such aircraft can be easily flown in small grazing fields
and around livestock. They can hover over fixed targets,
and the modern ones can stay airborne even if one rotor is
damaged. Therefore, they are suitable for inspecting cattle,
hovering at a certain place for an extended amount of time.
Moreover, rotary UAVs will be a better fit if the grazing field
has obstacles like high trees, electric wires, etc. Additionally,
hybrid constructions exist that combine the advantages of
both types. They are quick and stable, have longer flying
endurance, and can take off and land vertically. They are not,
however, designed to hover.

Endurance is another essential factor while choosing air-
craft. The fight endurance of UAVs varies from less than
a quarter of an hour to even 24 hours. This mainly varies
due to the wing type and weather conditions. Fixed-wing
devices have higher flight endurance than rotary ones. More-
over, flying against the wind results in the consumption
of a lot of energy, having a high impact on the aircraft’s
endurance. So depending on the geographic location and
expected weather conditions of the grazing field and the span
of tracking or monitoring livestock, a particular UAV can be
chosen.

Finally, the UAV’s payload is an important consideration.
UAVs already have a fixed weight due to built-in equipment
such as measuring devices, video cameras, sensors, and so on.
So, if extra sensors are required to be installed in the aircraft,
UAVs should be chosen with higher payload limits.

B. CHOICE OF SENSORS

After choosing the suitable aircraft, the choice of the sensors
is another crucial factor to be considered. Installing more
sensors increases the aircraft’s capability, adding to the eco-
nomic impact and payload limits. However, in this era of
modern technological revolution, the size of sensors is being
scaled-down and becoming a less limiting factor [98], [99].

RGB sensors offer the closest depiction like a human
eye, whereas thermal sensors work with heatmaps and work
well at nighttime [100]. Thermal cameras measure temper-
ature by recording infrared light undetectable to the naked
eye. Since the livestock has a higher temperature than their
surroundings, thermal sensors can be used to detect live-
stock [11], [101]. However, they sometimes offer a lower
spatial resolution, and surface emissivity and reflections may
affect temperature measurements.

Images are captured using multispectral cameras at spe-
cific wavelengths, some of which are in the visible, infrared,
or thermal bands. Some characteristics of the objects of inter-
est may be more visible at specific wavelengths, which might
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be investigated to improve the detection process [102]. Since
different species have unique spectral signatures, multispec-
tral sensors can be used to detect and count cattle from mixed
flocks [103]. On the other hand, these sensors have a lesser
spatial resolution than RGB sensors [104].

Hyperspectral sensors can detect even higher spectral res-
olutions than multispectral ones. These sensors are more
expensive, but they are excellent for detecting delicate fea-
tures such as the presence of specific breeds or diseases in
cattle [105]. However, such spectral resolution is not required
for livestock detection and counting applications.

Video cameras are better at detecting movement and track-
ing specific subjects [106], [107]. On the other hand, high-
resolution still photos can also be used to count livestock as
an alternative. Furthermore, RFID sensors can be used for
cattle health monitoring [108], and a combination of different
sensors along with GPS might be helpful to guide the aircraft
for intelligent monitoring applications [85]. Other sensors can
include RFID transceivers for receiving data emitted from
RFID tags attached to the body of the livestock [17], GPS for
tracking position in order to generate georeferenced orthomo-
saic [20], single-board computers to establish communication
and handle small processing tasks [109], etc. Careful analysis
of the trade-off between the potential gain and associated cost
can give further insight into which sensor to pick [110].

C. ISSUES REGARDING FLIGHT TIME AND

AREA COVERAGE

Once the UAV and sensor set is chosen, several factors still
need to be considered, like aircraft, environmental, opera-
tional, and image processing issues [98]. The lightweight
ones often offer a limited payload, less battery life, and
cannot cover large fields. Since the flight time and speed
are often limited for such UAV, one solution can be to fly
higher to cover large areas at once. However, this might not
be feasible for certain applications since the quality of the
captured image will be compromised. For example, tracking
gets benefitted from pictures taken from a close proximity of
the livestock as it helps the tracking model to find patterns
to identify the livestock quickly [13]. This additional height
might have to tackle communication failure with the opera-
tion center and several environmental factors.

Flight time and area coverage can be increased by installing
bigger batteries in larger UAVs. But it becomes expensive,
adds to the payload, and sometimes it may require sepa-
rate pilot licenses to operate such drones. Aerial livestock
monitoring in large areas can also be divided into chunks
and completed step by step. But it might not be suitable for
applications like cattle counting, where the target of interest
is constantly moving. Multiple UAVs can be used to handle
such situations. But it might not hold in cost-benefit analysis,
and communication between these devices may impose dif-
ferent technical constraints that need to be considered [111].
However, loss of communication between the UAVs or with
the Ground Control Station (GCS) can result in loss of data
and cause UAVs to crash into each other or on the livestock.
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In case of such communication loss, the aircraft may go
to some pre-specified ground stations, notify a predefined
station if the network is accessible, and wait for further
instructions.

Introducing solar panels can be another solution to increase
flight time [112]. Although this idea is now primarily avail-
able for larger UAVs, it can be more prevalent in the nearest
future. Charging stations can be placed in several places of
the grazing field so that the UAVs can charge themselves in
between flights.

D. OPERATIONAL ISSUES

Several challenges might be faced regarding operating the
UAVs. Taking-off and landing policies for different UAV
can be challenging to grasp initially. Fixed-wing drones are
simple to fly, while rotor drones require sophisticated and
ongoing maintenance due to their intricate design. With the
rotor-wing, vertical take-off is conceivable and not with the
other. Explicit licenses might be required to operate specific
UAV, especially the larger ones with higher payloads.

In the case of livestock monitoring with fixed-wing UAVs,
landing in rough terrain is very challenging. Uncontrolled
landing in such spaces may cause damage to the aircraft
sensors and even hurt the livestock. To avoid such scenarios,
the payload weight is suggested to be kept well below the
typical limits [98]. Paper [113] presented a path planning
algorithm for rotary UAVs in environments with rough ter-
rain. Nevertheless, UAV's are now coming with more compact
designs with less strict issues regarding landing requirements.

Furthermore, there are chances of crashing due to machine
failures. Recent solutions come with GPS enabled autopilots,
battery health monitoring, emergency landing, etc. Moreover,
UAV routes can now be remotely customized and altered in
the middle of a mission using smart applications.

E. ECONOMIC FACTORS

Several factors like size of UAVs, cost regarding data storage,
design of software to control process and interpret collected
data, the human-hours spent setting up and conducting the
surveys, as well as the training required to operate the entire
system, etc. adds to the economic factors. Often agricultural
applications require small UAVs, but livestock farms are usu-
ally large and require UAVs capable of covering large areas
in less time. Furthermore, low-cost UAVs are more prone to
mechanical failure, which could damage not only the aircraft
but also the sensors and livestock. In the end, costs and
benefits will be heavily influenced by these properties and
intended usage; therefore, a thoroughly economic and tech-
nical review is recommended before choosing if UAVs are
beneficial or not. Applications that do not require a UAV on
a regular basis can use third-party services with fewer risks.

F. ENVIRONMENTAL CHALLENGES

Different environmental constraints like a strong wind, loss
of signal, trees, raptors, power lines, etc., might cause the
UAV to crash. Although loss can be avoided with careful
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planning and aviation, such occurrences are occasionally
inevitable, disrupting the aircraft and sensors. Furthermore,
if the grazing land contains rough terrain or high shades, it is
even more difficult to prevent such losses. High winds can
make the monitoring tasks of the cattle harder by deviating
the UAV from its path. Different stabilization algorithms
can be introduced to tackle such cases [114], but it requires
additional power consumption and impacts flight time. Usage
of rotary UAV is more vulnerable to wind, and it impacts the
overall quality of the sensed data. UAVs with more blades are
found to be more robust in unfavorable weather conditions.

G. GOVERNMENT REGULATIONS

To maintain a balance between the security of mass people
and the practical usage of UAVs, different government regu-
lations are imposed in different countries. There are separate
bodies in different governments to provide the regulations
regarding the usage of UAVs, such as the Federal Aviation
Administration (FAA) in the United States, the European
Aviation Safety Agency (EASA) in the European Union, etc.

Many of the rules are common in most countries. For
example, for different applications in livestock research using
UAVs, the aircraft should be registered, the pilot has to meet
the minimum age criteria and pass the certification from an
approved organization of govt. During the flight, the aircraft
has to maintain a visual line of sight, payload limit, and main-
tain the maximum height limitation. It has been observed that
the typical payload is below 25kg and the average allowed
altitude is around 100m [115]. However, if this limit needs to
be extended for specific applications, each govt has specific
procedure.

Moreover, there can be requirements such as passing an
aeronautical knowledge test, transportation safety security
screening, etc. Based on the type of the grazing field, there are
constraints regarding the maximum velocity of the aircraft.
Often there are obvious clauses like flying without endanger-
ing people, keeping safety distance from urban areas, lost-link
management policy, etc.

Among these regulations, keeping a Visual Line of
Sight (VLOS) all the time is difficult for cattle monitoring.
To conduct broad surveys in vast livestock farms, maintain-
ing the VLOS may need multiple-person visual observers.
Although waivers to this requirement are possible, the process
is complicated and time-consuming. Despite this being one of
the barriers, it is being normalized with the ever-increasing
popularity across the globe in different practical applications
[116]. As aresult, it is recommended to check the most recent
documentation on the matter.

H. ISSUES REGARDING IMAGE CAPTURING

Several challenges can occur while capturing and processing
livestock images. Firstly, the image sensors are subject to
geometric distortions which need to be corrected [90], [117].
Otherwise, such distortions can hamper the detection and
tracking of livestock. One solution can be combining sev-
eral overlapped images to create an orthomosaic of the
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entire grazing field [118]. Some of the other common issues
like instrumental calibration, atmospheric correction, line-
shift correction etc., can be considered depending on the
application.

On the other hand, thermal imaging has been demonstrated
to have great potential for livestock monitoring, but there are a
few things to keep in mind. If the image is sensed with thermal
cameras, collecting images when the ground temperature is
lower. If the temperature of the cattle and its surroundings
do not vary that much, it is challenging to differentiate these
two [11], [119].

Furthermore, if the images aren’t saved in the UAV, any
communication failure with the ground receiver stations will
result in data loss. To avoid data corruption, one method is
to capture images with a 50% overlap between them, guaran-
teeing that every point on the ground is covered twice [115].
However, it can result in double counting of the same live-
stock if the images are not merged correctly. To alleviate this
problem, a 3D model of the entire grazing field can be created
using VisualSFM [49]. Then using SIFT features, matching
feature points can be identified to combine multiple images
without any overlap in order to generate an orthomosaic.
A similar approach is followed in [20], [48], [90]. Then using
SIFT features, matching feature points can be identified to
combine multiple images without any overlap to generate an
orthomosaic.

I. ANALYZING THE COLLECTED DATA

Once the image data is captured, manually identifying and
counting livestock is infeasible as it requires enormous
person-hours and is still prone to error, human bias, and
optical illusions [120]. Designing automated algorithms can
go a long way to solving this issue. But it will have to
handle the change in pixel values due to different illumina-
tion and camera conditions, livestock orientations, shadows
of a cattle and its contrast with surroundings, etc. [50].
Finding suitable algorithms offering high performance
considering such diversified constraints is a challenging
task.

In this regard, the advent of the recent deep learning algo-
rithms can achieve high accuracy with the excellent ability to
find patterns. For instance, using deep learning architecture
in the detection and counting of livestock using R-CNN,
UNet, and YOLO-based models have reduced the need for
human input [12], [13], [49], [51], [56], [57], [121]. Long-
term Recurrent Convolutional Networks have removed the
need for handcrafted feature extraction and manual livestock
tracking from video feed [12], [13]. Even charting a path
for UAVs to traverse the entire grazing field is handled by
deep neural networks [13]. However, an extensive collection
of images is required to train such models, which might
be challenging to obtain. Since this vast number of images
might not be available for all applications, the concept of
transfer learning is getting popularized where the pre-trained
networks can be reused and fine-tuned with available
data [8], [52], [54], [56], [57].
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It can be challenging to analyze RGB images due to the
lack of contrast between cattle and surroundings. Although
modern Deep learning algorithms can tackle this issue to
some extent, preprocessing techniques can be adopted in
this regard for better performance [122]. Utilizing thermal
sensors can be handy in this regard. If the livestock group
together, it is also tricky for segmentation tasks to analyze
them. One possible solution can be the development of soft-
ware like HerdCounter that facilitates adding missed ones
manually [20].

J. FACTORS REGARDING THE BEHAVIOR OF CATTLE

Since animals move over time, if the entire area can’t be
covered using a single image, some animals might not be
considered despite several efforts. Also, in some images,
cattle might be partially visible or occluded by other objects,
making the task even harder. One potential solution to live-
stock appearing in multiple images can be flying the UAV
faster so that the livestock get less time to move between adja-
cent images [90]. To account for the occlusion, a ‘correction
factor’ can be used to compensate for the loss of different
sensors in this regard [123].

Furthermore, animal behavior is sometimes dependent on
the time of the day. If the temperature is high, cattle might
rest under shade, making it an inappropriate time for counting
[57], [124]. This heat issue is even more severe for ther-
mal imagery as the system considers different-sized rocks
as cattle. Shadows might be increased or decreased during
sunrise or sunset, making segmentation tasks difficult [47],
[56], [57], [109]. Thus based on the behavior and psychology
of the livestock, the appropriate time to conduct a particular
survey should be estimated [125]. To remove the influence of
shadow, thresholding techniques and image adaptive correc-
tion algorithms can be employed [47], [126]. Detection mod-
els can also be trained to ignore the shadow [56], [57], [109].

Considering the ever-increasing popularity of UAVs in
shepherding livestock, it is essential to monitor how UAVs
flying near them impact the physical and physiological well-
being of the livestock. Paper [125] investigated the physiolog-
ical and behavioral responses of a few black Angus heifers to
UAV flights carried out 9 meters above the ground surface.
Before and after multiple UAVs flew in different patterns,
the heart “‘rates” and movement rates were observed, which
did not vary much due to UAV flights. Paper [18] trained
cattle using prerecorded UAV flight sound files to make them
get used to random UAV flights. In experiments conducted
in [17], the cattle initially noticed the UAV flying overhead.
However, it did not seem to elicit any violent or scared behav-
ior. And eventually, the cattle got used to it. Similar research
into how UAVs affect livestock behavior could be done in the
future.

Table 7 has presented a summary of various challenges of
using drones in this field, the reason behind those, and the
probable solutions.
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IV. BROADER ISSUES OF USING UAVS IN LIVESTOCK

The use of UAVs as valuable tools in farm operations is
growing. Livestock herding and management are some of the
areas in which UAVs have the potential to transform. As such,
there is a growing research interest in the role of drones in
livestock management. The different areas of this research
have been discussed in the proceeding sections of this paper.
However, some broader issues dominate or promise to dom-
inate the discussion around the use of UAVs in livestock-
related operations and research.

The development in sensor technology and connectivity
means that IoT and related technology can be leveraged to
generate more livestock management-related data. Hence, the
synergy of IoT and drone technology is an area of great
interest. Research attempts are being made on the Internet
of Drones (IoD) [88], and further work is expected before
this becomes widespread in livestock management. DL tech-
niques are commonly employed in livestock detection from
images acquired using drones or otherwise [115], [127].
ML techniques can come in handy to make sense of the
resulting data. ML has also been used in animal behavior
studies [128], and improvements are expected with the advent
of data.

Over the years, there have been interests in the effect of
UAVs on animal welfare [129]. Recently, more interest has
been evident in the impact of UAVs on livestock welfare
[130]. Moreover, one of the primary reasons for consider-
ing using UAVs in livestock management and research is to
improve the targeted species welfare [129], [130]. However,
drones may induce new forms of stress in animals due to
the nature of flights [29], [131]. The behavior of animals in
response to drone activities is a measure of the effects of
UAVs on the welfare of different species. More so, herding
livestock with UAVs requires an understanding of the behav-
ior of various species in response to UAVs operations.

A. THE USE OF DEEP LEARNING AND OTHER MACHINE
LEARNING APPROACHES

The success of most shepherding operations depends on
the extraction of information from aerial images. Hence,
advancements in image processing and ML techniques are
essential to complement UAV technologies for improved live-
stock monitoring. A systematic review of the application of
DL to precision cattle farming is given in [132]. The use of DL
was found in two broad areas [132]: health monitoring [133],
[134] and cattle identification [10], [49], [13], [135]-[138].
As evident in [132], CNN is the most adopted of the over
20 DL models employed to solve various problems in the
reviewed papers. Only about 18% of the 55 papers used
UAV-based images, while the remaining used ground-based
images. However, all UAV based implementations focused
on either counting [135], detection [135], [138], or both
detection and counting applications [49], [52]. The work done
in [138], for example, focused on the detection of cattle from
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TABLE 7. Summary of various challenges for using drones in cattle management.

No Name of the Reason for consideration Probable solution
challenge
Select UAV after proper requirement analysis of the
1 Selecting the Choice of UAV depends on application domain and exploring the features of different UAVs
appropriate UAV domain such as wing-type, manoeuvrability, endurance, payload,
etc.
. Various kinds O.f SCNSOrs are avallabl;, b,m Exploit the advantages of different sensors- keeping the
2 Selection of sensors | the proper selection will ease the application . L
cost, payload, battery life etc., in mind.
process
Issues regarding UAVs might face difficulties in area . . . . .
. . . Cover larger areas by increasing altitude, installing
3 flight time and area coverage due to speed and battery life . ; . .
N bigger batteries/ solar panels, employing multiple UAVs.
coverage limitations
D1fﬁf:ulty to grasp taking-off qnd lgndlng Keep payload substantially below normal limits, explore
. . policies, operating rough terrain might be . o
4 Operational issues . . GPS enabled autopilots, battery health monitoring
challenging, crashes might occur due to .
. . system, emergency landing features
machine failures
5 Economic factors Cost of data storage, softwarg design, Rigorous analysis on the potential gain vs associated
person-human-hour and other risk factors. cost.
6 Environmental Heavy wind, signal loss in bad weather, Apply different stabilization algorithms, employ UAVs
Challenges obstacles in flight path with more wings,
Govt. regulations might impose policies due UAV usage is being normalized leading to less strict
7 Government to security concerns regarding licensing, policies by different govts. Consider the most recent
Regulations payload, line of sight, speed, area coverage documentation of the concerned govt. May apply for
etc. special consideration in needed.
Geometric distortions, vibrations, . . . .
. . Combine multiple frames to produce a single image,
Issues regarding unfavorable weather conditions, loss of data . . .
8 . . .. . . apply atmospheric corrections, capturing frames by
1mage capturing due to communication gap with operation . .
keeping overlaps with them
center
9 Analyzing the Manual analysis of such huge data is Propose advanced algorithms offering high performance
collected data infeasible. with the ability to tackle diversified constraints
. Cattle are often in a group causing difficulty | Algorithms may employ a correction factor. Consider the
Factors regarding the | . . R, . . .
10 behavior of cattle in segmentation, partial visibility, change of psychological and behavioral changes due to time,
behavior in different time of the day daylight, temperature, etc. before scheduling flights

aerial images by considering those factors that may limit
detection, such as weather conditions, pasture conditions, and
time of the day. The work aimed to make practical operations
of drones feasible, which is a deviation from earlier works
that focused on proving the concept. Most of the applications
found are in cattle-related fields with minimal applications
in other livestock species. Certain challenges identified are
similar to those faced in other applications of DL [132].
However, there are challenges peculiar to UAV collected data.

Most UAV operations depend on the detection of objects of
interest. The autonomous operation of UAVs also promises
to improve their ease of use, performance, and scalability
while reducing cost and enabling new applications. However,
achieving full autonomous UAV operation remains a research
problem that heavily relies on situational awareness, which
is dependent on object detection [132]. Moreover, object
detection has been extensively researched since the inception
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of computer vision. Excellent results are often achievable,
sometimes even outperforming human performance. Hence,
the natural inclination is to adopt traditional image processing
and deep learning techniques in UAV based applications.
However, this is not always feasible due to the unique scenery
and other operating conditions associated with UAV based
images. Generally, the height of UAV operation affects the
nature of captured images and hence the requirements for
operation. Hence, methods have been classified based on
flying heights [139]. The three identified heights are eye-level
view, low to medium heights and aerial images as presented
in Figure 10. The eye-level corresponds to flying at 0 to 5 m
above ground level. The low to medium height corresponds
to flying between 5 to 120 m above ground level. The aerial
imaging level corresponds to flying at heights greater than
120 m above ground level. UAV operations on at the aerial
imaging level are rare and generally limited by government
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policies. Operations at the aerial imaging level require special
permissions.

In a farm setting, UAVs generally operate either at human
height or low to medium altitude, thereby having the same
viewpoint as humans or wide angles of view, respectively.
Because of the similarity of perspective with the humans
at the eye level, classical computer vision techniques can
quickly be adopted for UAV operations. However, specific
computational and scientific challenges peculiar to UAV
operations exist. UAVs’ limited onboard computational capa-
bilities present a challenge on the real-time detection and
tracking of objects for obstacle avoidance and other opera-
tional purposes. However, there is improvement in this regard.
The work presented in [140] performed on-board real-time
detection and tracking of pedestrians using UAV sensor data
integrated with a particle filter. Similarly, [141] used seman-
tic segmentation to detect and track people using drones
autonomously.

In real-time operations of drones at the eye-level, recent
advancements in deep learning techniques could be explored
in two main ways: either moving to off-board computations
or developing ad-hoc architectures and adapting existing
backbone networks. The former could leverage develop-
ments in the areas of cloud computing and IoT. One such
application is found in [119], where R-CNN was used near
real-time to detect objects using a consumer UAV. On the
other hand, [142] used ResNet-18 [143] and YOLO modi-
fication for real-time on-board object detection and obstacle
avoidance. The afore discussed issues present challenges and
directions for research.

Other issues of interest at flight altitude of 0 to 5 m
include (i) Human-drone-animal (livestock interaction) and
(i1) indoor navigation. A drone operating at the eye level
height interacts with humans and animals, livestock being
the animals of interest in this case. Human-drone inter-
action (HDI) presents a wide area of research that has
developed over the past decade. However, animal-drone inter-
action (ADI) has not been adequately studied. Typical works
in this area are on dog-drone interactions [144]-[146]. Hence,
the area of Human-drone-animal interaction is a virgin area
requiring attention from the computer vision and ML com-
munity as it will go a long way in consolidating the benefits
achievable in the autonomous coexistence of humans, drones,
and animals (livestock). This interrelationship is depicted in
Figure 11. Therefore, the operation of UAVs at the eye level
presents a lot of research opportunities and challenges for the
DL community.

Some considerations may be similar to the eye-level opera-
tion for indoor navigation and autonomous operation, even at
heights slightly above 5 m. Moreover, several indoor naviga-
tional architectures have already been proposed [147]-[150].
For example, [149] demonstrated that indoor inspection of
event-triggered cameras could also be exploited to detect
critical events under indoor conditions.

Most current UAV operations in livestock management
occur at low to medium altitudes. However, certain features
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FIGURE 10. UAV operational heights.

of low altitude UAV images make object detection at this
level challenging compared to standard images and often
lead to a difference in mean average precision (mAP). These
include small-sized objects, large image volume, inconsis-
tent resolution, complex background and non-uniform object
class [151]. There is also a noticeable object blurring due
to arbitrary object orientation, the relative motion of objects,
atmospheric turbulence, huge scale variation and dense dis-
tribution of objects [152]. As such low-level scene features
and deep features are considered in the development of
object detection techniques for low-altitude aerial images.
These factors negatively affect the accuracy of object detec-
tion from low-altitude drones. A discussion on using deep
learning-based object detection algorithms where the detec-
tors were classified as two-stage, one-stage, and advanced
detectors is presented in [153]. Amongst all other factors,
the viewpoint variation inherent in low altitude UAV images
makes object detection challenging because features are non-
transferrable between images captured at different angles.
Therefore, unique techniques are essential for data capture,
processing and object detection [154].

Initial success in deep-learning-based object detection
was achieved using two-stage detectors such as Faster R-
CNN, Mask R-CNN, Cascade R-CNN, FPN and R-FCN.
However, speed limitation was a significant challenge in
adopting these for low altitude UAV based object detec-
tion. Therefore, the research community considered single
stage detectors such as YOLO (and its improved versions
YOLOv2/v3/v4), SSD, RefineDet and RetinaNet for their
relatively higher efficiency. Because of their higher speed
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and lower memory requirements, these single-step detec-
tors provided better results faster than single-stage detectors.
As highlighted in [153], YOLOV3 achieved good results in
detecting small objects with very high localization errors,
while RetinaNet improves the class imbalance problem due
to the extreme foreground-background ratio.

However, despite the gains with single-stage detectors,
more advanced detectors may be necessary to achieve better
results mainly because of the problem due to altitude vari-
ation. Hence, more advanced anchorless detectors such as
CornerNet, CornerNet-lite and objects as points have also
been considered. These anchorless detectors have excep-
tional performances when applied to the standard dataset.
But for low-altitude UAV images, the performance improve-
ment is still meagre compared to the standard dataset.
Therefore, available results suggest a need for significant
research efforts in deep-learning-based object detection on
low-altitude UAV images. These research efforts will prove
helpful for livestock-based and other applications.

Another wide dimension that is closely related to the area
of machine learning is the issue of data management. The
adoption of UAVs to various fields has resulted in the gen-
eration of vast data by very diverse and multi-disciplinary
groups. However, issues relating to data management have
not received the required attention from both the indus-
try and academia. Hence, research groups and individuals
often resort to developing ad hoc data management strategies
that are costly, inefficient and non-transparent [155]. These
data management related issues cut across all application
areas, including livestock management research. However,
the challenges present a host of opportunities for UAV data
management such as the need for FAIR (Findable Accessible
Interoperable Reusable) data [156]. Also, the maturation of
other technologies such as developments in Big Data ana-
lytics, cloud resources and Googles’ Dataset search engine
need to be explored. Finally, the lack of existing accepted best
practices for UAV data management minimizes the cost of
adopting new practices.

Moreover, the net quantity of captured scientific data is still
relatively small. This limited availability of scientific data is
even more prominent for livestock-related data. Furthermore,
the uniqueness of UAV data itemized in [155] underscores the
need for unique data management infrastructure. Although
deep-learning frameworks have been widely adopted for pro-
cessing images captured with UAYV, the inherent characteris-
tics of the data mean that special considerations are necessary
to derive maximum benefit from the considered data.

Another aspect of ML research can be found in animal
behavior studies, where the learning abilities of ML can be
explored to understand issues such as social structure, collec-
tive behavior and general welfare [128]. Humans are already
able to understand the emotional state of animals based on
facial cues [157], physiological cues [158], vocal cues [159]
and gestures [160]. These cues could be integrated using
ML for enhanced detection of emotional states [160], [161].
The data needed for the application of ML to achieve these
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could easily be collected using drones, and some of the
computations could be completed online or using edge and
cloud computing resources for interconnected drones. More-
over, it is possible to collect social interaction data using
passive integrated transponder tags (PIT) and proximity log-
gers [162]. ML applied to accelerometer readings have been
successfully used in the study of Cattle behavior [163],
[164]. In [115], SVM and KNN were used with accelerom-
eter readings to study five different behaviours in lactating
cows to monitor their well-being. However, techniques using
accelerometer readings often lead to some misclassifications.
Some misclassification examples include: resting vs ruminat-
ing, standing still vs feeding and feeding vs moving.

Therefore, additional UAV's monitoring could be explored
to solve these misclassification issues. Moreover, in [126],
DL techniques, implemented on an embedded system, was
used to classify cattle behavior based accelerometer graz-
ing cattle dataset. As such, the adopted techniques could be
adapted for use onboard UAVs. For example, drones could
use jaw and head movements to solve the misclassifica-
tion problem earlier highlighted. The application of ML to
livestock behavior is growing. In this line, significant work
has been done in behaviour monitoring for livestock graz-
ing [165]. Some of these could easily be adapted for use on
UAVs. The behavior of sheep was classified using embedded
edge devices and KNN [166]. Similarly, sheep behavior was
studied using the hierarchical ML method with RF, SVM and
Deep Belief Network (DBN) [167]. In [168], CART, LDA,
QDA and SVM were used for ethogram in sheep.

Using drones to study the livestock will mean that the
drones will be flying closer to the livestock. This practice
may lead to a response, from the animals, to the presence
of the UAVs. Hence the need to study the interaction
between drones and animals. While some efforts are visible
in the study of ADI, very little is available on drone-
livestock interaction. Some works in dog-drone interactions
include [144]-[146]. The area is generally unexplored, and
the learning capabilities of ML can be explored. Hence, there
are many opportunities for research and studies for proof
of concept and beyond. Another area is for the drones to
learn from animal and human gestures. Using reinforcement
learning, drones can learn to take actions based on human
emotions [169]. Future works could explore achieving the
same with livestock and other animals of interest.
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B. LIVESTOCK WELFARE

Over time, there have been concerns on animal welfare both
in traditional and modern approaches for herding. Routine
animal inspection is expected to consolidate the benefits (both
welfare and otherwise) of outdoor livestock grazing over
the strict rearing of animals indoors. Moreover, daily live-
stock inspection is a legal requirement in some jurisdictions
such as Sweden [130]. Using UAVs and other digital tech-
nologies can automate sensor-based monitoring of livestock,
especially in large and dispersed pastures. This automated
monitoring can continuously capture environmental factors
and animals’ welfare and physiology. Therefore, the use of
UAVs has increased the possibilities for improving animal
welfare through monitoring and management. Drones allow
for efficient monitoring, increasing production efficiency,
lowering environmental impact, and improving animal wel-
fare [170]. However, there are concerns that drones could lead
to abnormal behavior in livestock.

Therefore, the effects of UAVs on animal welfare need to
be well understood to improve livestock welfare in general.
In previous studies, the presence of UAVs has been shown to
lead to stress in wildlife [30]. Nevertheless, there is limited
information on the effect of drone UAVs on the behavior
and welfare needs of livestock and other domesticated ani-
mals. Generally, the effects of drones, for cattle herding,
on animal welfare is not well researched [130]. However,
some researchers believe domestication and interaction with
machinery may make domestic animals less susceptible to
stress from UAV activities. While some work has been done
on the effect of UAV's on animal welfare, these studies are still
limited and require further research.

Herders have employed sensors to monitor animal behav-
ior and other physical and physiological indicators that guide
them to take proper actions [171], [172]. However, their usage
in commercial outdoor applications is somewhat limited.
The limited application is partly due to data transmission
requirements and energy supplies limitations, an area where
drones could be explored. Moreover, real-time data transfer
approaches are needed to be developed for their wide adop-
tion. Since most existing sensor-based monitoring technology
was developed for indoor use, it may not be suitable for
drones in large outdoor applications. Indoor use of fixed
cameras has proved helpful in small-scale settings [129].

Moreover, top-mounted cameras were particularly suc-
cessful in detecting social interactions [124]. Therefore,
drones could easily be harnessed to achieve the same.
Different considerations may be required for indoor and
outdoor operating drones. Some technological challenges
associated with flying drones indoors include: (1) limited
hovering due to obstacles, (2) insufficient navigation accu-
racy due to limited access to GPS data, (3) safety concerns
due to drone failure, collision and battery explosion and inte-
gration into existing system or process. These have led to the
relatively low use of drones for indoor livestock management
compared to outdoor applications.
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For drones operating indoors, where GPS support may be
limited, advancements in computer vision, robotics mapping
and localization may be explored. Some of the discussions
related to computer vision have been addressed in the previ-
ous section on ML. Some indoor mapping technologies such
as Light Detection and Ranging (LiDAR) and Visual Simul-
taneous Localization and Mapping (VSLAM) [173] have
potential. The use of VSLAM for agricultural purposes is still
at an early stage with very few applications [174]. In [175],
a feasibility study was done to compare the performance
of two VSLAM algorithms for indoor precision livestock
farming. This work proved the concept of the feasibility for
autonomous real-time mapping and localization of drones for
indoor livestock farming. However, more work is needed to
address other issues regarding energy usage, computational
requirements, and the maximum area of jurisdiction for indi-
vidual drones. Further work will also be required to cater for
multi drone operations.

In outdoor applications, drones have been successfully
used in getting landscape overviews. However, mining useful
information from drone images is a challenging and labori-
ous manual task. Therefore, the development of vision-based
systems is required for automated and accurate detection and
tracking of the species of interest to monitor animal welfare
indicators. A comparative study on the position accuracy of
images demonstrated a drone-based system’s superior perfor-
mance over collars with position receivers [91]. The use of
multiple drones has been proposed in [176], [177]. However,
more work is also needed in this area. Other camera applica-
tions in animal welfare monitoring are [178], [179].

C. LIVESTOCK BEHAVIOR TOWARDS UAVS

As discussed in the previous section, welfare concerns have
generated interest in understanding the general behavior of
livestock in response to the presence of UAVs. Previous
works have shown that UAVs have an excellent potential
for application in Livestock management [180]. However,
there are concerns about the likely effects of UAVs on ani-
mal behavior, such as stress inducement [181]. Different
researchers have identified the factors that elicit animals’
responses to UAV activities. These include characteristics of
the UAV (such as size, noise, speed, and angle of approach),
the condition experience, and nature of targeted species (i.e
avian or terrestrial, domesticated or wild, gender, etc.) [182],
flight patterns [183].

Most of the previous studies on the effects of UAVs
on animal behavior focused on wildlife [184], [185]. Nev-
ertheless, some research attempts have concentrated on
cattle [90], [115]. Therefore, it is pertinent to understand
livestock behavior in response to UAV operations. Using
non-invasive heart rate and movement rate measurements,
it was observed that even at UAV flight height as low as 9 m
above ground level, beef cattle had no negative behavioral or
physiological response [29]. In this regard, [29] studied beef
cattle’s physiological and behavioral response to UAV flights.
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This study focused on changes in the heart rate and movement
rate in response to UAV operations. As with other researchers,
the animals demonstrated habituation with time either to the
environment or the UAV operations. This study showed no
significant behavioral and physiological change in heifers
responding to the grid and circular pattern flights at 9m AGL.
More importantly, studies have demonstrated that low-cost
sensors and UAV cameras can be used to study livestock
behavior towards UAV operations [29], [186].

In general, while previous studies have investigated the
links between genetics and temperament to the response of
cattle to external stimulus, the influence of stimulus from
UAVs has not been conclusively studied. Similarly, the pos-
sibility of using multiple UAVs in cattle health monitoring
and herding has been explored [19], but its behavioral and
physiological impact has not been quantified. The effects of
UAV characteristics such as speed, color, approach angle on
cattle behavior are also unknown. Another work [131] looked
at the impact of drones, with auditory cues such as sounds
of a barking dog, on sheep. Even though the initial response
showed that the sheep’s behavior was affected by UAVs, the
animals were quick to adapt, and their heart rates did not go
beyond when a herding dog was used. Also, drone maneuver,
speed or height, and flock size did not significantly affect the
sheep, while auditory cues improved response/alertness.

There are some preliminary results for sheep and cat-
tle behavior. Another paper focused on the monitoring of
goats [47]. However, more work is needed to understand the
general response and factors that affect such responses. There
is also the need to study other livestock species like camels,
sheep, and goats. Future research is necessary to understand
how different characteristics of flight agents (UAV) and the
condition of livestock may influence response to the UAV.

D. UAV BASED SMART LIVESTOCK MANAGEMENT,
MODERN COMPUTING PARADIGM AND

10T APPLICATION

Smart farming is currently receiving significant attention to
solve some challenges associated with enhancing agricul-
tural productivity. UAVs have an essential role in developing
and the commercialization precision agriculture [36]. They
could be employed in operations ranging from pest identifi-
cation and control to asset management. Modern computing
paradigms such as cloud computing, fog computing, edge
computing and IoT are beginning to play a critical role in
agricultural research and practices, including livestock [187].
These technologies could be explored via integration using
IoT-based sensors and devices interconnected via wireless
sensor networks.

Drones have been used for indoor livestock monitor-
ing [8] and providing reliable wireless network commu-
nication for smart farming. Another recent application of
drones that could benefit livestock farming is the provision
of reliable and energy-efficient IoT connectivity [24], [188].
In [8], [41], drones were used to monitor and track sheep
using image processing techniques. However, the application
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was power-hungry due to the requirement for onboard image
processing algorithms. Generally, when integrated with IoT
and WSN technologies, drones’ role in smart farming focuses
on data collection, which is significantly impacted by bat-
tery limitations. Drone path planning optimization is often
adopted to optimize drone flights. This optimization typically
focuses on flight time, drone speed, ““and’ flight altitude.

Cloud computing could be considered as the most
advanced computing paradigm allowing for centralized com-
putations for reduced cost, improved efficiency, scalability
and reliability. However, the large amount of agricultural
data which is further exasperated using drones leads to low
latency, high internet bandwidth requirements, load balancing
and high energy consumption, security, and privacy issues.
Hence, the need for a constant high-speed network and other
identified problems are bottlenecks for its widespread use
of drones in livestock management. That notwithstanding,
most agricultural applications of IoT use the cloud computing
paradigm.

On the other hand, Fog computing allows for more dis-
tributed real-time, low-latency data processing. The Fog node
serves as a bridge between the cloud and IoT sensors and
devices within an IoT network. Fog computing has the advan-
tage of more security, low latency, lower cost, and low energy
usage over cloud computing. Unique characteristics of Fog
computing such as low latency, real-time interaction, mobility
support, improved security, efficiency, and bandwidth conser-
vation makes it suitable for livestock and other agricultural
purposes [189], [190]. Edge computing is often confused with
Fog computing due to their similarity in function. However,
edge computing occurs on edge devices with relatively lim-
ited computational and storage resources focusing mainly
on the IoT level without support for multiple IoT applica-
tions. Also, while Fog computing collaborates with the cloud,
edge computing works without the cloud. A typical architec-
ture for smart livestock farming integrating cloud, fog and
edge computing paradigms is presented in Figure 12 [187].
This architecture aims to solve the problems associated with
the cloud limiting its performance for agricultural purposes.
In the proposed architecture, the drone is seen to operate at
the edge, and the on-board computational capabilities of the
drone could be harnessed. However, the communication link
between the edge and fog layers is typically implemented
using ZigBee, Sigfox, LoRa and Bluetooth in the proposed
architecture. The long-distance lower power communication
of LoRa often makes it the preferred connectivity for IoT
applications. Another edge-based architecture for improved
quality of data (QoD) and latency performance, summarized
in Figure 13, was proposed in [191]. Any suitable IoT connec-
tivity technology that satisfies the requirements for a given
application can be employed at the relevant layer. We adopt
this architecture to propose two possible architectures for
drone-based livestock management.

In the first proposed architecture shown in Figure 14, the
drones will be placed at the sensing layer. This is the natural
approach since drones are often equipped with sensors, and
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actuators could also be integrated. The drones can coexist
with other sensors and actuators at this layer, and they will
send captured data to the second layer for processing and
onward transmission. The drones will mainly communicate
with the control center and other devices in the edge com-
puting layer in this set-up. There will be minimum direct
intercommunication between drones.

The second proposed architecture, shown in Figure 15,
allows the UAV to function at the second layer. In this
approach, since the UAVs have sensors onboard, the sensors
will still be considered to function at the first layer. However,
the UAVs will also collect data from other dispersed sen-
sors and sensors attached to livestock for initial processing
and onward transmission to upper layers. Here, the UAVs
can communicate and exchange data with each other. This
means that additional onboard computation and communica-
tion infrastructure may be necessary. Another problem with
this approach is the power limitation of the drones. However,
low power technologies such LoRa can easily be explored.

The use of IoT and WSNs has found widespread applica-
tion in precision agriculture, and the same concept is extended
to the application of drones. In WSNs, drones can enhance
connectivity and extend wireless coverage. Drones can also
be used in dynamic data collections from distributed sensor
nodes, thereby reducing energy consumption, improving net-
work coverage, and enabling efficient operation of WSNs
in different environments [88]. However, the role of drones
in WSNss is still limited by some technical challenges such
as the availability of reliable drone-sensor node communica-
tion links, network planning, sensor placement/positioning,
trajectory planning/optimization and battery limitations. One
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way of tackling the highlighted challenges is by integrating
IoT, LoRaWAN, and drone technologies [90].

Multi UAVs are often connected to form flying ad-hoc
networks (FANET) [192], [193]. FANET is characterized
by high-speed (30 to 460 km/h) and three-dimensionally-
mobile nodes. UAVs’ mobility and limited resources mean
that FANETSs have unique design and protocol requirements.
Some of the challenges associated with FANET with UAV
nodes and ways of addressing them are summarized in Table 8
[45]. Table 8 also gives relevant references for the respective
technologies and their modifications for UAV deployment.
The consolidation of these technologies and their integration
could be harnessed to solve the challenges identified with
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TABLE 8. Summary of challenges associated with FANET using UAV.

Brief Description of Possible Solutions

Challenge

Limited resources such as: | Deployment of energy-
battery and hardware aware networks low power
(memory and computation) | and lossy networks (LLT)

[194]-[198] [199]and other
technologies such as RPL
[194] and IEEE 802.15.4

[197]
Network management and | The use of software-
hardware configuration defined networks (SDN)
difficulties and Network function

virtualization (NVF) [28] ,
[200], [209]212], [201]—

[208]
High node mobility leading | The use of delay tolerant
to data loss and high networks (DTN)[213]-
network delay [216]

FANET, which can come in handy in UAV livestock man-
agement.

Major issues that need research attention in this area
include issues related to security protocols in FANET, the
need for the development of new protocols in FANET [217]
and the standardization of FANET bands. These develop-
ments will go a long way in improving the current perfor-
mance of FANET.

Drone path planning problems could be solved online or
offline depending on the nature of the operating environ-
ment. The online approach is often required for dynamic
environments and requires more onboard hardware and com-
putational power. DL and heuristics intelligent optimization
methods are needed for real-time online planning. However,
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sensors can be pre-installed for large farms, making the
environment less dynamic. Furthermore, metaheuristics can
be used offline to solve the associated path planning prob-
lem. A UAV could then fly through the area of interest in
an optimized way to collect data from sensors for onward
transmission via a suitable gateway. Another approach will
be for the drones to dynamically acquire the appropriate data
using onboard sensors during the optimized flight. However,
the technical challenges identified earlier in this section are
equally applicable to drone-based applications.

V. CONCLUSION

UAVs are getting popular in today’s world and becoming
ubiquitous in many outdoor activities. Agriculture is one of
such applications fields, where drones have a high potential
to be used. Livestock management is an essential part of
agriculture, which deals with the issue of managing cattle
animals, both inside the farmhouse, or outside while graz-
ing. The outdoor aspect of cattle farming can be eased and
modernized mainly with UAVs as the farmer can readily get
the birds-eye view of the whole herd, which is impossible
to have with conventional methods. Therefore, lots have
been talked about and researched on this issue in the recent
past. This survey discusses UAV applications, opportunities,
challenges, solutions to those challenges, and future research
directions in livestock management. The paper has gathered
all the important articles related to the topic and presented
them concisely, wherever suitable. Various aspects of cattle
monitoring like detection, counting the numbers, identify-
ing the types, tracking while grazing, health issues monitor-
ing, rounding up the cattle, behavior monitoring, estimating
the herd distribution, surveilling animal’s behavior, etc., are
well summarized in this work. Moreover, a few broader but
impactful issues like smart farming with IoT implementation,
taking care of animal welfare, practicing machine learning
approaches, improving inter-communication skills between
drones, etc., are addressed with relevant references. The paper
also highlighted the challenges in the field, the reason behind
those, and the probable solution approaches.

Based on the experience of detailed literature review,
some research gaps have been identified in this field, which
requires intensive research to contribute more. Therefore,
a list of future research directions is suggested below:

— To carry out studies on animal welfare issues while

operating the UAVs around them.

— To study the benefits and challenges of ML and DL,
applied to livestock farming using UAVs, to ease data
processing and management, pattern recognition, real-
time monitoring, etc.

— To develop DL architectures suitable for UAVs limited
resources or adapt existing backbone networks.

— To develop FAIR data management processes for
livestock-related operations

— To explore the automation of the process of grazing
assistantship and monitoring using UAVs. Multiple lay-
ers of UAVs can be operated in such cases. The first
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layer can communicate directly with the operator, and
the second layer only communicates with the first.

— To investigate the synergy with other smart farming
strategies under IoT and IoD concepts.

— To carry out studies to increase the run-time of the
UAV by optimizing flight schedules, battery size, etc.,
as it will be required to operate them while grazing the
animals. Here, renewable sources might be an excellent
solution to this issue.

— To improve existing systems to automatically detect
any abnormal behavior to safeguard the animals from
any potential threat, not only the cattle identification,
counting, and tracking. A possible direction is to explore
artificial intelligence to train the system to recognize
more patterns and situations to respond to those.

— To study the area of HDAI and develop strategies to
prove existing and proposed concepts.

— To develop suitable architectures or adapt existing ones
to integrate drones and other livestock resources using
IoT and other modern computing paradigms such as
Cloud, Fog and Edge computing.

— To address issues related to FANET such as protocols,
standardization of bands

— To study and address the issues surrounding the opera-
tion of drones in different Farm environments such as
the indoor operation of drones. Operation of drones at
low altitudes and others discussed earlier.

Therefore, ample opportunities for contribution are present
to strengthen this crucial agriculture sector. The well-
summarized presentation of the research attempts and the
suggestion of future research directions, done in this article,
will help flourish the future world’s drone revolution.
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