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ABSTRACT Every year, maritime accidents cause severe damages not only to humans but also to maritime
instruments like vessels. The authors of this work therefore propose a machine learning-based maritime
accident prediction system that can be used to prevent maritime accidents from happening by predicting and
interpreting the accidents. This work overcomes the limitations of the existing works that lack practicability
in the sense that the ex-post analyses are conducted to suggest accident prevention strategies but maritime
accidents are not analyzed holistically. Using extensive literature reviews and expert interviews, a large
number of risk factors associated with maritime accidents are identified, and related data are collected and
utilized in the work. Throughout variable selection, data retrieval, hot-spot identification, and the maritime
accident prediction model construction process, various machine learning algorithms are exploited in order
to construct an organized system. In addition, interpretations for the resulting accident predictions are
given using interpretable machine learning algorithms so as to provide explainable results to users. Finally,
the proposed system is evaluated using a SERVQUAL model and proves its effectiveness in real-world
applications.

INDEX TERMS Maritime accident, ocean engineering, accident prediction, interpretable machine learning.

I. INTRODUCTION
A maritime accident is defined as an accident that occurs
in oceanic areas. These accidents are not only confined to
vessels (i.e., ships) used for the transportation of people and
logistics but also include fishing vessels that catch, store, and
transport fish [1]. Even though the rate of maritime acci-
dents is relatively low compared to other kinds of accidents,
each maritime accident incurs significant loss in diverse
ways, such as marine pollution due to oil leaks, casualties
due to crashes, costly vessel repair, etc. In addition, even
though more advanced sensors are employed in vessels and
related technologies are improving, the number of maritime
accidents is increasing. For instance, maritime accidents
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FIGURE 1. The number of maritime accidents in the Republic of Korea.

in the Republic of Korea have been steadily increasing
since 2015 (Fig. 1).

There are a variety of causes of maritime accidents includ-
ing crash, collision, grounding, tangling with suspended
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particles (solids), instrument/machinery malfunction, fire,
explosion, etc. [2]–[4]. In fact, some causes of maritime acci-
dents are man-made and are thus preventable if enough pre-
cautions are followed [5]. For instance, regular checkups of
vessel instruments could prevent instrumental malfunctions.
Some accident types are affected by unpreventable natural
phenomena. For instance, a typhoon accompanied by drastic
wind or waves might capsize a vessel. In this regard, maritime
accidents associated with unpreventable causes are excluded
from the analysis as well as the construction of the prediction
model in order to eliminate uncertain noise. Most maritime
accidents, however, are caused by latent factors that could be
quantitatively measured and used. In other words, these types
of maritime accidents are predictable and thus preventable
to some degree. In fact, a number of existing works on
maritime accident risk assessment use quantitative logs for
developing accident prediction models [6]–[8]. This work
proposes a maritime accident prediction system that uses
accident logs, most of which are deemed to be predictable
to some extent, and various risk factors associated with these
accidents.

Although there are a large number of latent risk factors
that influence the occurrence of maritime accidents, only
factors that can be accurately identified and qualified are
used to establish an accident prediction system in this work.
Like existing works on maritime accident prediction, this
work also assumes that there are certain complex regularities,
which could be partially identified and modeled with sophis-
ticated data mining or machine learning techniques, behind
the occurrence of accidents [9]. Provided that sufficient wave
and wind data are collected, more accurate prediction models
for influencing variables could be constructed so as to give
a more realistic estimation of maritime accident risks. In this
work, latent risk factors assumed to affect maritime accidents
are gathered from an extensive literature review as well as
multiple surveys with maritime domain experts. To the best of
our knowledge, there has not been a machine learning-based
framework for a system that provides maritime accident
prediction and corresponding interpretations. In addition,
there is a lack of studies on maritime accident predictions,
especially compared to extensive research development on
risk analysis, safety assessment, and accident analysis in the
field of ocean engineering [10]. Developing a maritime acci-
dent prediction system usingmachine learning techniques not
only provides a novel research direction and contributes to
data-driven maritime approaches [83] but also sets up practi-
cal applications in many fields, such as autonomous vessel
navigation, smart vessel maintenance, and big data-driven
maritime safety analysis.

This work proposes a maritime accident prediction system
based on machine learning techniques. Furthermore, this sys-
tem not only gives predictions and risk scores for maritime
accidents are also provides interpretations to system users.
An overview of the proposed maritime accident prediction
system is shown in Fig. 2. This work’s contributions to the
literature are as follows:

1) Maritime accident log data and associated risk factor
data are utilized to improve prediction performance for
accident prediction tasks in a novel framework.

2) Compared to existing data-driven accident prediction
approaches, diverse and new accident risk factors
including fishery information are used and validated.

3) A holistic approach based on machine learning meth-
ods, including variable selection, data retrieval, and
maritime accident prediction, is conducted.

4) The proposed system not only predicts future maritime
accidents but also provides reasons for the predictions
using interpretable machine learning IML) techniques.

The remainder of this work is organized as follows.
Section II discusses existing literature related to this work.
Section III illustrates a design of the proposed system, includ-
ing identification of risk factors, description of data used
for the system, data preprocessing, and variable selection in
detail. The detailed methods, as well as the components of
the proposed framework, are explained, and an overall mech-
anism of the system is provided in Section IV. The service
quality evaluation of the proposed system is conducted in
Section V. Finally, a conclusion is drawn, and future research
topics are discussed in Section VI.

II. LITERATURE REVIEW
This section illustrates previous works related to 1) maritime
risk assessment and accident prevention and 2) maritime
accident prediction.

A. MARITIME RISK ASSESSMENT AND ACCIDENT
PREVENTION
There are a number of works that have addressed the risk
assessment/estimation of maritime accidents. These works
naturally lead to practical suggestions, such as strategies
or policies for the prevention of maritime accidents. For
maritime risk assessment, identification of risk factors is
essentially conducted in advance of the risk assessment step.
In particular, there is a large body of literature on the analysis
of the latent risk factors that affect maritime accidents. While
the identified risk factors associated with maritime accidents
vary across studies, existing studies addressmultiple common
risk factors. Zhang et al. categorize risk factors into four
groups according to their inherent characteristics: human,
vessel, environment, and management [11]. Wan et al. iden-
tify major risk factors associated with maritime risk and
safety from five perspectives: society, environment, manage-
ment, technology, and operation [12]. Similarly, risk factors
associated with vessel characteristics as well as meteorology
have been identified and used to develop a maritime risk
assessment framework [13]. This framework is further devel-
oped with additional variables including factors related to
vessel speed and location with respect to shipping lanes [14].
Li et al. have proposed a Bayesian network-based mar-
itime risk analysis using quantitative accident data resources
instead of expert estimation information [15]. The proposed
work also utilizes fully quantitative maritime accident log
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FIGURE 2. An overview of the proposed maritime accident prediction framework.

data for developing a prediction model. Jiang et al. use a
Bayesian network for accident risk analysis and identify
risk factors that influence the occurrence of maritime acci-
dents [16]. Accidents associated with fishing vessels are
analyzed using a Bayesian network and Chi-squared test [1].
Multiple fishing vessel characteristics are used to determine
causal factors for various types of maritime accidents.

Human factors, such as working conditions and individ-
ual factors, have also been considered as risk factors for
maritime accidents [5], [6], [17]–[19]. Zhang et al. explore
various combinations of human factors that have been shown
to affect outbreaks of maritime accidents [20]. Fan et al.
exploit a Bayesian network to incorporate human factors for
maritime accident analysis [21]. Human decisions and actions
that directly affect the occurrence of maritime accidents are
investigated for accident analysis [22]. In addition, human
factors that affect psychological conditions, such as welfare,
stress, and communication between ship personnel, includ-
ing crews and captains, have shown to influence maritime
safety [86], [87]. In particular, Sutherland and Flin discuss
the effect of crew working conditions and stress levels in the
maritime industry [85]. Despite the considerable effects of
human factors on maritime accidents, this work’s proposed
framework does not incorporate them due to several reasons.
First, the effects of human factors are relatively difficult to
measure and are more costly to accurately collect. Second,
the inherent variability in human factors has a high possibility
of compromising the performance of the prediction model.
Associated matters are discussed in detail as future works
in Section VI.

For the purpose of accident prevention, multi-criteria
decision-making (MCDM)methods have beenwidely used to
develop safety strategies. In particular, the Bayesian network
has been utilized in numerousworks because it provides prob-
abilistic interpretation and modeling of the decision-making
process [11], [23]. Guo et al. exploit the analytic hierar-
chy process (AHP) and neural network to analyze historical

maritime accident data and propose preventivemeasures [24].
Fan et al. exploit Bayesian networks and the Technique
for Order of Preference by Similarity to Ideal Solution
(TOPSIS) to develop maritime accident prevention strategies
using qualitative risk factors [17]. Hänninen also exploits
Bayesian networks for maritime safety modeling [25].

Compared to existing works, this system uses more diverse
and detailed exogenous variables, such as marine weather
or fishery information, associated with maritime accidents
in marine environments. These variables will be discussed
later in Section III. In addition, many existing works that
use Bayesian networks and MCDM methods explain mar-
itime accidents that have already happened rather than pro-
vide concrete risk estimations. Thus, Bayesian network-based
approaches are limited in providing high-level explana-
tions and prevention strategies. However, this work proposes
local/low-level predictions for each voyage. Furthermore, the
proposed system uses quantitative data to offer accurate and
detailed accident prediction results.

B. MARITIME ACCIDENT PREDICTION
There are many studies on maritime accident prediction,
some of which are coupled with risk assessment and acci-
dent prevention analysis. Otay and Özkan develop a sim-
ulation model for accident prediction by modeling vessel
positions using associated variables that include geograph-
ical characteristics [26]. Although simulation-based meth-
ods are effective in situations when not enough data exist,
data-driven accident predictions that use real accident logs
like the proposed system of this work are more accurate.
Weng et al. utilize a binary logistic regression model to
construct a maritime accident prediction model that uses his-
torical accident logs [27]. However, this approach is not easy
to use in practice because the variables used include ex-post
parameters like accident type. Considering these prediction
methods’ limitations, ex-ante risk variables should be used
only for accident prediction. Since predictions should aim to
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forecast future maritime accidents, variables that can be
collected and measured before potential accident outbreaks
should be used.

Poisson regression and the negative binomial regres-
sion model are employed for accident prediction [28].
Zhang et al. propose a real-time maritime accident risk pre-
diction model using multiple independent variables, such as
human factors, environmental factors, and navigation opera-
tional factors, and information diffusion specialized for the
Arctic route [29]. Li et al. propose a machine learning-based
maritime accident prediction model for developing an effec-
tive emergency response strategy [30]. However, there are
few inherent limitations in existing accident prediction stud-
ies. First, maritime accidents are low-probability events [31]
that very seldom take place. Thus, there are not enough data
to accurately measure the effectiveness of a prediction model.
Second, since the variables used in prediction models vary
across studies, the developed methods are not universally
applicable. The proposed accident prediction system is devel-
oped using relatively large-scale data consisting of around
13,000 accident logs. In addition, the proposed framework
can be easily adapted to different data that have various
features.

The risk factors associated with maritime accidents, which
are used for prediction in existing works and the proposed
system, are illustrated and compared in Table 1. Compared
to existing works, the proposed system utilizes more diverse
variables for accident prediction and analysis. In addition, the
utilized risk factors are identified not only through domain
expert interviews but also through quantitative methods.
However, there are two risk factors that could not be used in
this work due to practical reasons: vessel size and visibility
(fog). These two factors were excluded due to a lack of data
and an inability to match existing accident logs. First, existing
maritime accident logs used in the proposed system lack
vessel size data and could not be collected via other sources.
Second, visibility (fog) data could not be matched with exist-
ing accident logs, as there was not a key (e.g., location,
time, ID) that both data share. Fortunately, it is postulated
that vessel size could be substituted with gross tonnage to
some extent, as in other works [88], [89]. The details for risk
factors used in this work are elaborated upon in the next to
section.

III. SYSTEM DESIGN
This work aims to propose an effective and practically useful
maritime accident prediction system. To this end, specific
system dimensions should be clearly identified and defined
prior to actual implementation and provision. In particular,
who will be utilizing the system in practice, what potential
users want from the system, and which factors of the system
would fulfill needs should be specified in advance. In order
to concretize the system, expert interviews are conducted
first.

A. EXPERT INTERVIEWS
Interviews are conducted with eight maritime experts from
diverse domains, such as government ministries, port/harbor
managements, fisheries cooperatives, shipbuilding compa-
nies, and autonomous vessel navigation developing compa-
nies. The semi-structured interviews contain multiple shared
questions and related conversations. The questions belong to
three topics regarding the proposed system: potential users
and the needs of a maritime accident prediction system,
including the one this work is proposing; the characteristics
or functions that would be helpful in a maritime accident
prediction system; and the risk factors considered significant
for maritime accidents and the variables that would be helpful
for accident prediction.

All experts involved in the interviews agree that maritime
accident prediction is an important task, since it is directly
related to vessel safety. In addition, seven experts agree
that accident predictions for fishing vessels would be more
effective in real-world applications. As such, stakeholders in
the fishery industry and maritime safety management would
need the prediction system. The efficacy or accuracy of
the prediction system is considered most important by the
experts. Some interview responses imply several indicative
implications, too. Few responses indicate that the prediction
results should be delivered in real-time despite technical con-
straints. For instance, weak mobile connections on the ocean
or the computational capacity of local devices must be taken
into account. Most importantly, some experts mention that
interpretations (i.e., explanations) of the prediction results
would increase user satisfaction and assurance. In accordance
with these responses, the proposed system incorporates and
reinforces interpretability as a distinctive feature. Intuitively,
considering the fact that accident predictions are provided by
machine learning techniques, interpretable predictions would
make the proposed framework more trustworthy by users.
Some expert responses identify some maritime risk factors
that should be taken into consideration: oceanic characteris-
tics, including sea weather; fishery catches; and vessel char-
acteristics. Even though many risk factors identified by the
experts coincide with those that have been frequently used
in existing works in maritime risk assessment and accident
prediction/prevention, a few variables are selected to be taken
into consideration. In fact, data selection and collection are
conducted according to responses from expert interviewees.

B. DATA COLLECTION
Datasets collected from various sources are gathered and
used in this work, and all variables are explained in detail
in Table 2. Detailed explanations of the datasets/variables,
as well as the reason for use, are illustrated. Among the
factors determined to be associated with the occurrence of
maritime accidents based on expert interviews, some are
selected and collected, whereas those that are difficult to
collect, like vessel characteristics (e.g., block coefficient),
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are abandoned. The maritime accident log data used in this
work are collected from January 2010 to December 2020 in
Korean waters, mainly in offshore or coastal waters. There
are 12,584 accident logs (i.e., instances) in total. However,
based on variable gross tonnage, several outliers are removed.
As Fig. 3 shows, the gross tonnage (GT) values of vessels
engaged in accidents are highly skewed. Thus, data that have
a GT value smaller than the 90th quantile, which is 228 tons,
are only selected and used in later analyses. Since there are
various types of dominant causes of maritime accidents given
in the data, accident categories are used to separate the data
into groups for more precise analysis and prediction suited for
each cause. The number of occurrences of maritime accidents
for each cause is shown in Table 3.

FIGURE 3. Histogram of gross tonnage values.

In addition to themaritime accident log data, the associated
data containing maritime risk factors identified in various
pieces of literature, as well as the results of interviews with
experts discussed in the previous section, are utilized. In par-
ticular, risk factors related to maritime/oceanic characteris-
tics, including subsurface topology, maritime weather, and
wave, are used. Depth of water, which indicates geographical
features associated with the bottom of the sea, is used as
representative of subsurface topology. Variables associated
with maritime weather include wind speed, wind degree,
atmospheric pressure, humidity, and temperature. Wave, one
of the most intuitive risk factors, is represented by various
types of wave heights and wave periods.

In addition, 69.5% of total maritime accidents have been
shown to be those of fishing vessels. The remaining accidents
are those of bulk cargo vessels, passenger vessels, container
vessels, etc. Because fishing vessel accidents are deemed to
be more affected by the identified risk factors, only these
accidents are selected and analyzed in this work. As a result,
7,871 accidents logs are eventually used. Thus, as previously
mentioned, the fishing vessels whose GT value is below or
equal to 228 tons are analyzed in this work, since a large
portion of maritime accidents that happen in coastal waters
are that of fishing vessels [77].

Compared to existing works on maritime risk assess-
ment and accident prediction/prevention, the proposed
framework utilizes novel risk factors, such as fish

catch and fish distribution. According to interviews with
maritime experts, fishery information might help construct
better maritime accident prediction models. The potential
effects on fisheries can be twofold. First, in the case of
the Republic of Korea, certain kinds of fish are caught in
different and distinct seasons. For instance, shads are caught
in fall, squid or octopus in summer, and mackerel from
spring to summer. Furthermore, fish type catch varies by
locations. These catching trends indicate that the density of
fishing vessels may be affected. Second, the distribution of
fishing vessels has a close relationship with the occurrence
of maritime accidents, especially collisions or contact/crush.
For instance, fishing vessels that use fish-luring lights for
catching squid might interfere with the visibility of other
vessels, thus increasing the risk of crash or collision. As such,
the total fish catch is used as a proxy for the number of vessels
nearby or the density of fish.

C. DATA PREPROCESSING
In advance of the analysis and prediction model construction,
all data are normalized and scaled so that each variable falls
into 0 and 1. The data are normalized along with each variable
according to (1).

xscaled =
x − xmin

xmax − xmin
. (1)

where:
x: original independent variable
xmin: minimum value
xmax : maximum value
xscaled : scaled independent variable

In order to merge multiple data logs, a certain ID, which
is shared across different data sources, is required. The geo-
graphical information for each accident log, such as longitude
and latitude, is used as a key for data merge. In particular, the
Haversine distance measure is used to calculate an accurate
distance between two coordinates. This measure provides
a distance approximation considering the nearly spherical
surface of the Earth [80]. Given two coordinates p1 and p2,
the distance between the pair of locations is calculated using
the Haversine distance measure (2).

dHaversine(p1, p2)

= 2r · arcsin [sin2(
ψ2 − ψ1

2
)

+ cos (ψ1) cos (ψ2) sin2(
λ2 − λ1

2
)]

1
2 . (2)

where:
pi: each location point = (ψi, λi)
ψ : latitude
λ: longitude
r : radius = 6,371 (km)

Because accident severity is not explicitly given in the data,
it is calculated using collected variables that exist in the acci-
dent logs, such as the number of deaths, missing, and injured.
Accident severity is assumed to be linearly proportional to
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TABLE 2. Description of variables.

TABLE 3. Number of maritime accidents by cause.

the number of deaths and missing [77] as does the number of
injuries but to a half degree [78]. Thus, in this work, severity
is calculated according to (3).

severity = #death+ #missing+
1
2
#injury. (3)

D. VARIABLE SELECTION
After delicate data preprocessing and data aggregation,
53 variables (columns) in total remain. In order to reduce
the dimensionality of the data and complexity of the model
for better generalization performance, a variable selection
process is conducted using regression analysis. In particular,
an ordinary least squares (OLS) regression model is used (4),
where yi is the severity of the i-th accident and xip the p-th
independent variable associated with maritime accidents.

yi = β0 +
53∑
p=1

βpxip. (4)

where:

β0: intercept term
βp: regression coefficient (p = 1 · · · 53)
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The estimates of the fittedOLSmodel are shown in Table 4.
Only variables that have been shown to be significant at a
significance level α = 0.1 among the total 53 original vari-
ables are shown in Table 4. Interestingly enough, the variables
found to be significant align well with the risk factors that
existing works on maritime accident prediction have used,
which are shown in Table 1. Furthermore, only variables in
the table are later used as input (i.e., independent) variables
for maritime accident prediction models. According to the
regression analysis, the GT and catch of squid have been
shown to be most significant. In addition, risk factors related
to fishery information, such as catch of mackerel, catch of
crab, and catch of shad, and those related to sea states, such
as a depth of water and average wave height, have shown to
be significant.

TABLE 4. Estimates of the ordinary least squares (OLS) model.

IV. METHOD
An overview of the framework of the proposed maritime
accident prediction system is shown in Fig. 2. Various
methods have been used appropriately in parts of the pro-
posed framework: 1) data retrieval from a maritime accident
database, 2) maritime accident prediction and analysis, and
3) interpretation of maritime accident predictions.

A. DATA RETRIEVAL
Given the historical maritime accident log data, the construc-
tion and validation of the prediction models are discussed
in a later section. During actual system use, however, the
inputs, which should be provided for the predictionmodel, are
difficult to be obtained before a voyage. In other words, the
associated values for the independent variables used in the
proposed system should be generated or retrieved in advance
of accident prediction. Thus, the proposed framework

exploits a proximity-based data search (i.e., data/information
retrieval) algorithm for generating pseudo-inputs for the exe-
cution of accident prediction. In particular, k-nearest neigh-
bors (kNN) is used to find similar historical data points whose
input variables could be used for future prediction of the new
instance. kNN has been widely employed in domains dealing
with similar tasks as the one this framework has faced, includ-
ing data/information retrieval, data imputation, and search
system [32], [33]. kNN is used to predict each value for risk
factors using queries, including voyage time and destination
location. First, based on geographical information, kNNfinds
the closest neighbors (i.e., accident logs) and later uses the
voyage time to further narrow down the k-nearest neighbors
that could be used for input value imputation. The Haversine
distance (2) is again used as a distance measure between
the locations of the data points. The kNN process for data
retrieval in the proposed system is illustrated below. The input
is a query point consisting of time (month; day; hour) and
the voyage destination (latitude; longitude), where the output
is a set of input values that are imputed using the selected
k-nearest neighbor accident logs.

Algorithm 1Modified kNN for Data Retrieval
Input: Q, a set of queries andR, historical accident logs
R = {x1, x2, . . . , xn}
for all query point q ∈ Q do
compute distances between q and r ∈ R using geograph-

ical information;
sort the computed distances based on temporal informa-

tion;
select 2k nearest accident logsR2k ;

end for
for all query point q ∈ Q do
compute proximities between q and r ∈ R2k using

temporal information;
sort the computed proximities based on temporal infor-

mation;
select k nearest accident logs;
return average input values of k nearest accident logs

end for
Output: The imputed input values xnew

For validation of the usage of kNN-based data retrieval
system components, the proposed approach is compared
with existing alternatives, such as k-dimensional tree
(K -d tree) [34] and Ball tree [35]. Since the proposed sys-
tem has not yet been made publicly available, thus lacking
real-world queries from users, randomly generated queries
(1,000 in total) containing the time and location of the voyage
are used for validation. The comparison results, shown in
Table 5, indicate that the proposed kNN-based data retrieval
approach outperforms other alternatives with respect to three
measures: precision, recall, and F1 score (i.e., a harmonic
mean of precision and recall). As the number of actual queries
and accident/non-accident data will increase when the system
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TABLE 5. Performance comparison of data retrieval methods.

is made public, the retrieval performance of the proposed
system would also increase spontaneously.

precision =
true positives

true positives+ false positives
. (5)

recall =
true positives

true positives+ false negatives
. (6)

F1 = 2 ·
precision · recall
precision+ recall

. (7)

B. HOT-SPOT IDENTIFICATION
In advance of the development of the maritime accident pre-
diction system, regionswhere accidents have frequently taken
place, called hot-spots, are identified. Given the assump-
tion that future accidents can be forecasted using historical
accident log data, spatial hot-spots with historically high
occurrences of accidents could be helpful for primary acci-
dent prediction. For spatial clustering, Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) is
used [36]. DBSCAN is an effective clustering algorithm that
computes data point clusters and assignments using the data’s
density information. DBSCAN is robust to noise because it
uses the minimum density threshold as well as the distance
threshold while conducting clustering [37]. As accident hot-
spots are defined as regions with a high rate of accident
occurrence, the clusters derived by DBSCAN could be used
as hot-spots. For clustering evaluation, the Davies-Bouldin
score [38] and Silhouette coefficient [39] are used to compare
the proposed DBSCAN clustering algorithm with alterna-
tives, such as K-means, agglomerative clustering, and spec-
tral clustering. Each clustering algorithm is performed for
each maritime accident category, and the number of clusters
found in the DBSCAN algorithm has been used for the prede-
fined number of clusters for other clustering algorithms. The
scores for clustering measures are averaged over the accident
categories. The comparison results are shown in Table 6,
where the lower Davies-Bouldin score (min = 0) and higher
Silhouette coefficient (min = −1, max = 1) indicate better
clustering results.

Accident hot-spots are identified usingDBSCAN. For each
accident category, spatial clusters (i.e., hot-spots) are identi-
fied and plotted in Fig. 4. In addition, for each category, the
density of maritime accidents is visualized using a spatial ker-
nel density estimation. For each group of clusters, the centroid
is used as an accident hot-spot. The centroids of the clusters
indicate that there are certain water locations where vessels
may have a higher accident risk. During accident prediction,

TABLE 6. Performance comparison of clustering methods.

FIGURE 4. Accident hot-spots using DBSCAN results by accident category.
(a): collision, (b): contact/crush, (c): grounding, (d): flooding, (e): capsize,
and (f): sinking.

if the planned voyage destination is within a certain boundary
(e.g., 3 km) from accident hot-spots, the risk score is elevated.
Thus, the distance from the hot-spots is used to calculate
potential risk.

C. MARITIME ACCIDENT PREDICTION
Decision tree-based models are deemed appropriate for acci-
dent prediction. First, due to the algorithm’s structure, the
data instances that have similar characteristics in terms of
features are set into the same leaf node, thus locally behaving
as the nearest neighbors algorithm [82]. In addition, since
the nodes are selected after calculating information gain,
compared to naïve nearest neighbors that consider every
feature equally, the decision tree spontaneously takes the
feature importance into consideration. In this work, a gradient
boosting-based algorithm called XGBoost (i.e., extreme gra-
dient boosting) [40] is used as a backbone prediction model
for the prediction system. Currently one of the most widely
used machine learning algorithms, XGBoost not only is com-
putationally efficient but also provides high prediction perfor-
mance in various tasks. For a comparison and validation of
the selection of the backbone prediction algorithm, XGBoost
is compared with other existing machine learning algorithms
used for prediction, such as linear regression (LR), support
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vector machine (SVM), multi-layer perceptron (MLP), and
random forest (RF). Accident prediction is a regression task
on a dependent variable called severity, which is computed
for every accident in the previous section. R2 is used as a
metric for evaluation, and the comparison results are pro-
vided in Table 7. Predictions are conducted for each maritime
accident category separately. All experiments are conducted
independently using a 10-fold cross-validation scheme [41].
The hyper-parameters for the prediction models are selected
based on a random search algorithm [42].

TABLE 7. Performance (in R2) comparisons of accident prediction
methods including XGBoost and other existing machine learning
algorithms.

According to Table 7, XGBoost outperforms other
machine learning prediction algorithms in most maritime
accident categories. Thus, XGBoost is selected as a valid
backbone prediction model that can be exploited in the pro-
posed maritime accident prediction system. To further vali-
date the effectiveness of the XGBoost model, it is again val-
idated for each accident category. Prediction performance is
evaluated in a 10-fold cross-validation scheme, and the results
are shown in Table 8. For most accidents categories, the
average values of the R2 on training folds are relatively higher
than those of the validation fold used in cross-validation.
This is due to the characteristics of the XGBoost model since
the decision tree-based models tend to fit the training data.
In addition, the variability of the R2 values tends to be high in
certain categories, such as flooding or capsize, because the
accident data are small (see Table 3). Since the prediction
performance as well as the training for some categories of
maritime accidents, such as flooding and others, are inappro-
priate to be loaded into the proposed prediction system, the
two categories are not further used.

D. INTERPRETATION
XGBoost as well as other gradient boosting-basedmodels can
provide interpretable results due to the inherent properties of
a decision tree. The important variables identified by the fea-
ture importance values computed by each prediction model

TABLE 8. Prediction performance of the maritime accident prediction
models.

for accident categories are detailed in Table 9. Since the
constructed predictionmodels for categories like flooding and
others seem to have insufficient prediction abilities, the two
are excluded in later analysis as well as in the proposed frame-
work. Five variables that show higher relative importance
values most commonly throughout the accident categories are
shown in bold. It is important to note that fishery-related risk
factors, such as catch of Spanish mackerel and distribution
of anchovy, are relatively important factors across multiple
accident categories. This aligns with the survey results from
maritime experts discussed in Section III. GT and depth of
water are significant in several accident categories.

TABLE 9. Top-5 accident risk factors found by prediction models.

A partial dependence plot (PDP) is a method that can
be used to show the marginal effects of a variable on the
prediction outcome of a certain model [43], [44]. The x-axis
of the PDP shows the value of the selected accident risk
factor, where the y-axis is the associated target value, which
is the accident severity or risk. PDPs are applied to the five
variables showing the highest importance from the trained
model, as shown in Fig. 5. The plots of the variables indicate
that they have a peculiar relationship with respect to the
predicted severity of maritime accidents. For instance, the
PDP of GT indicates that as the value of GT increases,
the accident risk is likely to decrease.
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FIGURE 5. Partial dependence plots of five important variables. (a): gross
tonnage, (b): depth of water, (c): average wave height, (d): catch of
Spanish mackerel, and (e): distribution of anchovy.

In addition, interpretable machine learning (IML) algo-
rithms are utilized in order to provide a more detailed inter-
pretation of maritime accident predictions in the proposed
framework. IML algorithms have been widely used in a
variety of fields where trust and transparency of AI-based
systems are emphasized, such as healthcare, finance, legal,
and public services [44]–[46]. In this work, the two most
widely used interpretable machine learning algorithms, also
known as explainable artificial intelligence (XAI) models,
are employed. They are local interpretable model-agnostic

explanations (LIME) [47] and Shapley additive explanations
(SHAP) [48]. Both algorithms are used for providing local
interpretations or explanations, which are given for each pre-
diction result from the constructed maritime accident predic-
tion model.

First, LIME is a proxy model-based approach, in which the
explanation model (linear model) approximates the original
prediction model. The original prediction model is treated as
a black-box, of which the weights, as well as the inner mech-
anism, are ignored, and only the behaviors are approximated.
Because themethod can thus be applied to anymachine learn-
ing prediction model, these method types are called model-
agnostic approaches. LIME interprets individual predictions
based on locally approximating the model around a given
prediction [47]. The inputs are minutely distorted via local
perturbations, and the model outputs are used to compute the
relative feature importance scores. In other words, randomly
generated neighborhood samples are used for the explanation
of the prediction model in LIME [68].

Second, SHAP value is based on a Shapley value from
cooperative game theory [49], which is used as a fea-
ture importance for linear models [50]. SHAP is a uni-
fied approach of additive feature attribution methods for
retaining three desirable properties: local accuracy, miss-
ingness, and consistency. Similar to LIME, SHAP works
model-agnostically and assigns each feature a feature additive
importance score for a particular prediction, thus providing
local interpretations [51]. SHAP is able to compute not only
the positive but also the negative effects of variables on
prediction.

Because LIME and SHAP are model-agnostic IML meth-
ods, both methods aim to find surrogate model g for the
explanation of the original prediction model f , where low
model complexity for interpretability of g is desired [52].
Thus, the approaches optimize the loss function (8).

L(f , g, πx) =
∑
x ′∈X ′

[f (x ′)− g(x ′)]2πx(x ′)+�(g) (8)

where:
x: original input
x ′: locally perturbed version of input
πx : proximity between x and x ′

�: model complexity
Both LIME and SHAP are used in the proposed maritime

accident prediction system, especially for ex-post interpreta-
tion of the prediction results. For each prediction, LIME and
SHAP are used to generate interpretations including the rela-
tive feature importance scores. Based on the scores, whether
consensus of the two methods has been made is checked as
shown in Fig. 6. In particular, risk factors determined to be
significant by both methods are only selected and provided
to users. In this way, predictions and interpretations can be
delivered in a more robust and deliberate way.

For further validation of the interpretability of the pro-
posed accident prediction system, 500 accident predictions
are randomly selected.With 100 prediction test cases for each
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FIGURE 6. Provision of interpretation results of the proposed prediction
system.

TABLE 10. Top-5 significant risk factors identified by LIME and SHAP.

accident category (i.e., collision, contact/crush, grounding,
capsize, and sinking), the five most significant risk factors
determined by each method (i.e., LIME and SHAP) on aver-
age are selected. The results are shown in Table 10. Even

TABLE 11. Ratio of consensus of interpretations from IML methods.

though some results are different from that of Table 9, since
the results show significant risk factors identified by the
IML methods in test prediction cases, there are still some
common factors in each accident category. Table 11 shows
the percentage of consensus that has been made for each
accident category. For the same test case predictions and cor-
responding interpretation results, the percentage of consensus
(i.e., when two IML methods output the same results) has
been checked. The results indicate that two IML methods
agree on local interpretation results throughout most accident
categories.

E. CONTINUOUS IMPROVEMENT OF THE PROPOSED
SYSTEM
The proposed system has room for improvement in two ways.
First, one limitation of the current version of the proposed
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TABLE 12. Criteria and sub-criteria for evaluating the quality of the proposed system framework.

system is the insufficiency of normal data, which consist of
sailing logs without accidents. As the system is used further
by users (i.e., installed base), sailing logs, in which acci-
dents have not happened, will be continually collected. These
normal voyage logs would help improve the performance of
the maritime accident prediction model [81]. In addition, the
level of interpretation of the prediction system is expected
to be enhanced. Second, in a similar manner, the identified
accident-associated variables will be collected from actual
voyages, thus improving the quality of data used in the data
retrieval phase of the framework. As the amount and vari-
ability of data increase, the proposed framework will become
more robust to changes in maritime factors.

V. SERVICE QUALITY EVALUATION
After designing and implementing the maritime accident pre-
diction system, a qualitative evaluation is conducted. Because
the proposed system is basically a service, a proper means of
service quality evaluation is used. A SERVQUAL analysis
method [53] is employed in a bid to specify the dimensions
of the proposed maritime accident prediction system and
evaluate the quality level. SERVQUAL analysis is one of
the most widely used methods for measuring and evaluating
service quality considering five dimensions: reliability, assur-
ance, tangibility, empathy, and responsiveness [53]–[55].
This method evaluates the difference between service expec-
tations and perceptions in order to determine system quality.
It has been used in various fields, such as healthcare, retail,
banking, information systems, transportation systems, etc.,
for a long time [55]–[60]. Demir et al. exploit SERVQUAL
when evaluating the quality of occupational health and safety
systems [61]. The quality of service provided at commercial
ports associated with customer satisfaction is analyzed using

TABLE 13. Demographic data of survey respondents. (N = 31).

SERVQUAL [62]. Lopez also uses SERVQUAL in order to
identify attributes affecting customer satisfaction at maritime
ports [63]. Pantouvakis et al. use SERVQUAL-based surveys
to determine the perceived level of quality of passenger ship-
ping services [64].

According to [54], SERVQUAL is adequately adjusted
(i.e., simplified) to the topic of this work, the mar-
itime accident prediction system. Equivalent to other
SERVQUAL-based evaluation methods, the five dimen-
sions are set: reliability, assurance, tangibility, empathy, and
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TABLE 14. System quality scores using SERVQUAL items.

responsiveness. Each dimension has been given sub-criteria
in order to specify the subject of measurement. In order
to simplify the questionnaire, the number of sub-criteria is
smaller than the original SERVQUAL. The proposed system
attributes associated with each dimension are described in
Table 12. The survey questionnaire is also constructed based
on SERVQUAL. Each question requires a Likert-type five-
point scale response. The survey is distributed to maritime
experts including potential users of the proposed system, such
as fishing vessel captains and crews, government ministry
workers, the naval industry, etc.

The demographic information of the survey respondents
is shown in Table 13, and the detailed results of the survey
are provided in Table 14. The average Cronbach’s alpha
value of the survey responses is 0.8109, which is consid-
ered acceptable [75]. Table 14 shows the mean, standard
deviation, minimum, and maximum of quality expectations
and perceptions. In addition, the difference between the two
(i.e., P-E), called the quality gap score, is provided. Although
respondents show quite high levels of expectations on most
service dimensions, the results on perceptions indicate that
the proposed system fulfills user expectations in general. The
total mean expectation score is 4.4476, and the perception
score is 4.2322, thus showing an average mean gap score
of -0.2154. The mean expectation score of the dimensions
ranges from 4.0131 (A2) to 4.9487 (A3), while the perception
scores span from 4.0322 (A1) to 4.6451 (R1). On average,
the responsiveness dimension expectations show the highest
score (i.e., 4.5698) among the five dimensions, meaning that
the prediction system also fulfills potential users’ service-
related needs. In addition, the reliability dimension percep-
tions show the highest score (i.e., 4.4112), revealing the

strength of the proposed system in providing trustworthiness
to users. Furthermore, in terms of the mean gap score, the
proposed system has shown the best score (0.0053) among
the five on average, thus fulfilling criteria associated with the
reliability dimension. Considering the fact that the proposed
system requires credibility to be widely used in the real-
world, the results indicate the validity of the system.

VI. CONCLUSION AND FUTURE WORKS
The authors propose a machine learning-based maritime
accident prediction system. Compared to existing works
on maritime accidents, including risk assessment, accident
prevention, and accident prediction, the proposed system
utilizes diverse risk factors associated with the occurrence
of maritime accidents. Using various data sources, multi-
ple risk factors pertaining to maritime accidents, such as
maritime weather and fishery information, are identified,
validated, and used as independent variables for accident
prediction. In particular, a new maritime accident risk factor,
fishery information that includes fishery catch and distri-
bution, is used for accident prediction. In addition, various
machine learning techniques are employed to serve indis-
pensable roles in the accident prediction system. From vari-
able selection, data retrieval, hot-spot detection, and accident
prediction, a variety of assorted machine learning techniques
comprise the proposed maritime accident prediction system.
Furthermore, the proposed accident prediction system pro-
vides explainable results to users through IML algorithms
(i.e., LIME and SHAP).

The proposed research is comprised as follows. First,
expert interviews are conducted with eight maritime experts
in order to clearly identify and define specific dimensions
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of the proposed system, including risk factors. Then, var-
ious datasets related to maritime accident logs, subsur-
face topology, maritime weather, waves, fish catches, fish
distributions, etc., are collected, and data preprocessing,
including data normalization, is conducted. An OLS regres-
sion model and kNN are used for variable selection and
for generating pseudo-inputs for the execution of accident
prediction, respectively. Then, machine learning-based
models, which are based on DBSCAN and XGBoost, are
proposed for identifying hot-spots (i.e., the regions where
accidents have frequently taken place) and maritime accident
prediction, respectively. IML techniques, which are LIME
and SHAP, are used for the ex-post interpretation of the
prediction results, including the relative feature importance
scores. Finally, the proposed system is evaluated using
a SERVQUAL model and proves effective in real-world
applications.

The proposed maritime accident prediction system has
the potential to be applied to various real-world applica-
tions, including not only predicting the risk of maritime
accidents and preventing potential accidents from happen-
ing [71], [72] but also managing and preparing for emer-
gency situations [30], [70]. In addition, predicting maritime
accidents would help develop and establish safe and optimal
maritime routes for vessels [65], [83], [84]. Furthermore, the
system can be effectively used in autonomous vessels and
navigation systems [74]. For instance, there is a possibility of
the system being loaded onto autonomous vessel navigation
systems [76].

Remaining future works are associated with the improve-
ment and diversification of the proposed system. First is to
extend the scope of the prediction system so as to predict
and take other types of maritime accidents into account. For
instance, including unpreventable natural phenomena, such
as typhoons or tsunamis, would improve the completeness
of the system. To improve the proposed system’s predic-
tion performance, supplementing risk factors, such as ves-
sel size, visibility (fog), and human factors that affect the
psychological conditions (e.g., welfare, stress, communica-
tions) of ship personnel including crews and captains, plan
to be included. In addition, incorporating human factors for
maritime accident prediction would also improve the pro-
posed system. In particular, combining existing methods
on managing human factors in maritime voyages, such as
mental fatigue of personnel (e.g., crews, captains) [69] and
tiredness of personnel [73], would make the system more
practically useful. Furthermore, combining with other pop-
ular accident prediction systems based on deep learning and
fuzzy systems in diverse domains, such as railway, transporta-
tion, and industrial safety, would be helpful for improving
completeness of the prediction system. Last, a mobile con-
nection problem in maritime situations is needed in order
for users to use the system during a voyage. In particular,
maritime networking ability is required for the system to
effectively conduct predictions and interpretations during a
voyage [66], [67].
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