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ABSTRACT Machine learning (ML) algorithms that are used in decision support (DS) and autonomous
systems commonly train on labeled categorical samples from a closed set. This, however, poses a problem
for deployed DS and autonomous systems when they encounter an anomalous pattern that did not originate
from the closed set distribution used for training. In this case, the ML algorithm that was trained only on
closed set samples may erroneously identify an anomalous pattern as having originated from one of the
categories in the closed set, sometimes with very high confidence. In this paper, we consider the problem of
unknown pattern recognition from a generative perspective in which additional synthetic training samples
that represent anomalies are added to the training data. These synthetic samples are generated to optimally
balance the desire to place anomalies all along the boundary of the training set in feature space, while
not adversely effecting core classification performance on the test set. We demonstrate the efficacy of
distance-based probabilistic anomaly augmentation (DPAA) that is proposed in this paper for a diverse set of
applications such as character recognition and intrusion detection, and compare its combined classification
and identification performance to both recent open set and more traditional novelty detection approaches.

INDEX TERMS Machine learning, outlier and novelty detection, open set recognition, anomalies, generative
and discriminative architectures.

I. INTRODUCTION
Novelty and outlier detection are popular approaches for
recognizing anomalies and/or anomalous behavior and
are commonly used in decision support and autonomous
applications such as medical diagnostics, fault detection
in manufacturing processes, fraud and intrusion detection
[1]–[4]. The objective of novelty detection is to identify
patterns that are not representative of the data used to train the
detector, and can broadly being characterized as either being
discriminative or generative in nature [5]. Discriminative
approaches can further be categorized as being statistical
or distance-based [6]. Popular examples of distance-based
approaches include the one class support vector machine
(OC-SVM) [7], isolation forests (IF) [8], and the deep
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neural network (DNN) autoencoder (AE) [9] each of which
uses a distance measure from the training set boundary to
identify anomalies. An OC-SVM identifies support vectors
that encapsulates the training set, and rejects any new sample
that falls on the other side of the boundary [10]. Autoencoders
compress the data down into a lower dimensional latent
space, and measures the (typically 2-norm) reconstruction
error after decompression to determine if the sample is
an anomaly [11]. Isolation forest is a tree ensemble based
method that measures anomalies by the depth of decision
before reaching a leaf node. The more shallow and the fewer
the cuts needed to reach a leaf node, the more likely it is that
the sample is an anomaly [12]. Although OC-SVMs, AEs and
Isolation Forests use different distance measures to identify
anomalies, they represent some of the most mature and
commonly employed discriminative approaches to novelty
detection [13].
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Statistical approaches to anomaly detection, in contrast
to distance-based methods, try to model the distribution of
the training samples from the known categories and reject
any sample that is statistically dissimilar by applying a
threshold. The so-called reject option was defined in [14]
to indicate when the posterior probability of a sample x
belonging to any class ωi is such that ∀i ∈ [1, 2, · · · ,K ],
p(ωi|x) < T is less than a prescribed threshold T . This
approach was found to be highly sensitive to the accuracy
of the posterior estimates, and that a per-class threshold
may improve performance [15], [16]. A direct approach to
modeling the multivariate distribution of the known data is by
constructing an empirical copula and then using this model to
predict extreme events in subsequent data during operation or
test to detect anomalies [17].

Although novelty detection is useful for accept/reject type
of applications, it is not capable on its own in multi-category
classification tasks, where the objective is to differentiate not
only between known and unknown (anomalous) categories,
but also to differentiate between different classes within
the known categories [18]. Multi-category classifiers in
supervised learning applications are commonly trained on
data from a closed set. So, when these classifiers are
presented with data that originates from a category outside
of the training set, the classifier will potentially identify this
sample as originating from one of the existing categories,
and not uncommonly with high confidence [19], [20]. This
can have devastating consequences, such as the time in
2016 when a lack of diverse training data resulted in a
series of catastrophic failures in a CNN-based vehicular
autopilot [21]. In contrast to closed set classification and
reject/accept type anomaly detectors, open set recognition is
the process of predicting both classes from the closed set and
identifying anomalies originating from the space of unknown
categories at query time. In [22], open set risk minimization
was formulated as

argmin
f ∈H
{RO(f )+ λRε(f )} , (1)

which is a trade between empirical risk Rε(f ), or the risk
of misclassification within the closed set, and open space
risk RO(f ), or the risk of assigning a label to the unknown
space, with H representing the set of recognition functions.
One approach to address the open set problem is the extreme
value machine (EVM) which was derived using aspects of
Extreme Value Theory (EVT) [23], [24], which has been
shown to provide an abating bound on open set risk [25].
A core outcome of EVT is that the extreme values (tails)
of a well-behaved continuous distribution can only assume
a limited number of parametric forms, in particular, the
Gumbel, Frechet and reverse Weibull distributions [26]. The
EVM algorithm identifies the minimum (or transformed
maximum) pairwise distance of a query point to the closest
sample in the closed set and uses EVT to show that this
distance follows a Weibull distribution. This enables the
construction of an inclusion function to determine if the

sample belongs to the class with the smallest pairwise
distance, or belongs to the unknown (anomalous) class. The
parameterization of the Weibull distribution and the choice
of a statistical threshold δ is obtained using the closed set
samples by parametric fitting and cross validation, respec-
tively [27]. EVM represents one of the highest performing
statistical approaches to open set recognition that is capable
of kernel-free nonlinear variable bandwidth recognition in
open set multi-category classification applications [28]. Like
any of the approaches that model a distribution, there needs
to be a sufficient and representative set of data for parametric
fitting using EVT [29].

EVM, OC-SVM, IF, copula outlier detection (COPOD)
and AE represent discriminative approaches to either open
set recognition or accept/reject detectors. In this paper,
we present a generative approach to open set recognition.
The approach we take - distance-based probabilistic anomaly
augemtation (DPAA) - directly addresses the open set
recognition problem by reformulating (1) as a constrained
optimization. The objective of DPAA is to minimize open
space risk subject to an empirical risk constraint and can
work with any classification algorithm. We comparatively
demonstrate the open set recognition efficacy of DPAA using
well-known multi-category data sets against state of the art
discriminative and statistical approaches.

The rest of this paper is organized as follows. In Section II
we review popular approaches to open set recognition.
In Section III, we describe the DPAA algorithm and its
formulation to address open set risk. In Section IV, we present
a graphical assessment of how DPAA works, as wells as
quantitative assessment of its performance on both open set
recognition tasks as compared to EVM using an F1-measure,
as well as in accept/reject applications against OC-SVM, IF,
COPOD and AE. We then conclude with a brief summary.

II. RELATED WORK
The term open set recognition was popularly coined by
Schreirer in [22] to refer to the scenario in machine
vision applications that not all classes present at query
time are available during training. There has been a
significant research thrust in the deep learning community
to address this problem, and one early popular discrimi-
native approach was OpenMax [30]. OpenMax calculates
a ’mean activation’ value derived from the penultimate
layer of a deep learning network prior to the SoftMax
output to generate an EVT-based weighting function. This
weighting function modulates the SoftMax decision so
that if an anomalous pattern were present, then the max-
imum categorical ’probability’ would ideally be smaller
than a threshold chosen to balance correct classification
and open set rejection. An extension of OpenMax is
Classification-Reconstruction learning for Open Set Recog-
nition (CROSR) [31]. In CROSR, a deep hierarchical
reconstruction net is formed in which intermediate layers
of the network are compressed into latent space and
reconstructed. CROSR uses this to construct a per class
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distance measure that is the L2 norm difference between both
the activation and latent vectors and the per class means,
using an OpenMax EVT-based framework to reject outliers.
In the so-called Objectosphere approach [32], there are two
modifications made to the loss function during training.
The first is to define an entropic loss which treats known
and unknown classes during training separately. Although
the known class losses remain unchanged, unknown classes
have their score uniformly distributed across all the known
classes, i.e., the maximum entropy response. The second
modification is to create an Objectosphere loss in which
known classes that have small feature vector magnitudes
that are inside the Objectosphere boundary are penalized,
as are unknown classes with large ones. OpenMax, CROSR
and Objectosphere each represent discriminative approaches
to open set recognition in deep learning networks. Both
OpenMax and CROSR leverages EVT, while Objectosphere
modifies the loss function and requires that there be negative
examples (outliers) during training.

A generative approach that builds on OpenMax is
Generative OpenMax (G-OpenMax) for Multi-Class Open
Set Classification [33]. Like OpenMax, G-OpenMax uses
Weibull calibrated scores based on distances from the mean
activation vectors in the penultimate layer of the network.
However, in addition, G-OpenMax uses a conditional gen-
erative adversarial network (GAN) to create samples from
the unknown category to generate well-calibrated probability
scores for anomalies. Open generative adversarial networks
(OpenGAN) [34] augments a classifier that already has
access to open set samples with GAN generated data. Train-
ing is conducted in amanner that is similar to traditional GAN
training. In the class conditioned auto-encoder (C2AE) [35],
an encoder-classifier is trained in tandem and the weights are
frozen. Then, the encoder (with weights frozen) and decoder
are trained to generate images using a class conditional label
that results in a large reconstruction error when the label does
not match the class identity, and a small reconstruction error
when it does. EVT is used to model the reconstruction errors
with an associated threshold to identify outliers.

Each of the approaches to open set recognition described
above are designed to work with deep learning networks that
are principally operating on images. These discriminative and
generative techniques, however, were not designed to work
with other high-performance machine learning algorithms
such as the Light Gradient Boosting Machine (LGBM) [36]
in DSS applications. Further, generative models that rely
on GANs are subject to instability during training, which
may require access to negative examples (outliers) during
training for stabilization [34]. There are also traditional
approaches to open set recognition that rely on distance-
based discrimination. The Nearest Non Outlier (NNO) [37]
builds on the Nearest Class Mean (NCM) [38] classifier to
identify both categorical samples and outliers based on their
Euclidean distance. NNO uses the concept that non-negative
combinations of abating functions (e.g., distances) can be
thresholded to minimize open space risk. In [25], thresholded

TABLE 1. Symbolic notation definitions.

scores from a Weibull-calibratd SVM (W-SVM) are used
to reject outliers. Traditional methods, however, may not
represent the highest performing closed set classifier for the
intended application.

III. TECHNICAL APPROACH
The DPAA algorithm generates synthetic anomalies at a
statistically prescribed distance to the closed set boundary.
This distance is balanced against a constraint that the
empirical risk be no greater than a differential error rate ε, that
is, the difference between classification performance on the
closed set trained with and without anomalies. The distance
used to generate and accept synthetic samples that represent
anomalies is directly related to a divergence measure that
relates the relative difference in the the anomalous and closed
set distributions. DPAA directly addresses (1) by bringing
samples in as close as possible to the boundary (irrespective
of the boundary shape) to minimize open space risk, while
ensuring that the differential error rate - or empirical risk - is
no greater than ε.

To generate candidate synthetic anomalies, each of the
data points in the closed set is used as a pivot, from which
samples are randomly generated. The distance to the pivot
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from which samples are generated is directly related to the
empirical distribution of distances within the closed set itself.
The statistical measure of distances is used to quantify the
(dis)similarity of the distribution of synthetic anomalies and
closed set samples, and the choice of (dis)similarity is used
in the process of minimizing the open set risk in (1). Because
points in the ‘interior’ that are used as pivots will result in
samples being generated inside the closed set as opposed
to on or outside its boundary, sample generation is a two-
step process: 1) generate candidate synthetic anomalies and
2) accept only those candidates on the boundary. The
following subsections describe both the mechanics and
mathematics of each of the points above in detail, and the
notation used throughout is defined in Table 1.

A. CANDIDATE SYNTHETIC ANOMALY GENERATION
To generate synthetic anomalies, we use a 1-nearest neighbor
(1NN) distance measure of an anomaly with respect to the
closed set and the distribution of 1NN distances within
the closed set itself. To that end, consider the empirical
cumulative distribution (ECDF) of 1NN distances calculated
from every training sample in the closed set to all other
samples, i.e., {D1NN (xi, x∀j 6=i)}, ∀i ∈ [0, 1, · · · ,N ]. Using
these distances, a single distance is selected which satisfies

dp = α1 ·min
{
d : p(d ≤ D1NN (xi, x∀j 6=i)) ≥ Q1

}
, (2)

where Q1 and α1 > 1 are hyperparameters that are used
to define the 1NN ECDF quantile and distance from that
quantile, respectively. In (2), dp is used as pivot distance from
which synthetic anomalies are generated as

ac = xi + dp
ρc

‖ρc‖2
∈ Ac, (3)

where

ρc ∼ N (0, ID) (4)

is sampled from a D-dimensional isotropic Gaussian distri-
bution. The intuition behind Eqs. (2), (3) and (4) is that a
random D-dimensional sample is generated at a fixed pivot
distance dp with respect to each of the samples in the closed
set. This distance is greater than or equal to the distance of the
Q1th quantile (depending on the value of α1) of the closed set
pivot and is instantiated at an angle [θ1, θ2, · · · , θD−1] that
is uniformly distributed over (0, 2π ] [39]. This process of
generating anomaly candidates ac is graphically illustrated
in Fig. 1 for three cases of interest. The first case (C1)
has a synthetic sample generated at a distance dp from the
pivot xi that lands squarely within the closed set boundary.
In cases C2 and C3, the synthetic samples are are also
generated at a distance dp from the pivot, but in this case
fall outside the closed set boundary with varying degrees of
proximity. These three cases graphically illustrate the sample
generation process to help visualize the intuition behind the
sample anomaly generation and acceptance process, which
is quantified in the next section. It is clear that the sample
associated with C1 landing within the boundary of the closed

FIGURE 1. Various outcomes from synthetic anomaly sample generation.
The triangles represent samples from the closed set, while crosses are
examples of synthetically generated anomalies each landing at different
angles at a distance of dp from the pivot.

set might be mistaken for a closed set sample, or vice versa,
increasing empirical risk. The anomalies C2 and C3 land at
various distances outside the boundary, but are potentially too
far away from the closed set boundary to mitigate open space
risk. The question becomes which synthetically generated
anomalies should be accepted and which should be rejected?

B. CANDIDATE SYNTHETIC ANOMALY ACCEPTANCE
The mechanics of candidate acceptance partially mirrors that
of candidate generation, i.e., we look to find candidates
whose kNN distance to the training set is sufficiently
greater than the kNN distances within the training set. The
mathematical justification for this observation [40] follows
from divergence between the distribution of closed set sample
f (X ) and the distribution of synthetic anomalies f (A)

DKL(f (x)||f (A)) ∼
D
N

S∑
i=1

log
DkNN (xi,A)
DkNN (xi, x∀j 6=i)

+ K (5)

where the constant K = N/(S − 1). Eq. (5), which is
an application of the general result in [41], states that a
consistent estimate of the divergence between the training set
multivariate distribution and the distribution of synthetically
generated anomalies is directly related to kNN distances.
Maximizing the numerator in (5), however, would push
anomalies far away from the boundary of the training
set, geometrically leaving a gap in open space into which
anomalies could fall and remain undetected. To address
this concern we consider the formulation of a constrained
optimization to geometrically surround the (possibly non-
convex) training set with anomalies without suffering a
significant loss in core classification performance on the test
set after training. To this end, and in an analogous manner
to (2), we first define a decision rule with

dk = min
{
d : p

(
d ≤ DkNN (xi, x∀j 6=i)

)
≥ Qk

}
, (6)

which represents the minimum distance from the set of
kNN distances greater than or equal to the Qthk quantile,
where synthetically generated candidates in Ac are accepted
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according to the rule:

A = {an : DkNN (an,X ) > dk}. (7)

The problem then becomes one of deciding how to select
an optimal α1, Q1 and dp in (2) to generate synthetic
candidates in (3), and dk and Qk to screen anomalous
candidates in (7). To this end, let fX∪A(·) and fX (·) represent
the classifiers trained with and without the synthetically
generated anomalies, respectively, and I(·) the indicator
function defined as

I(x) =

{
1, if x = 0
0, otherwise,

(8)

with

PX (X ) =

∑M
i=1 I (fX (χi)− ci)
|CX |

PX∪A(X ) =

∑M
i=1 I (fX∪A(χi)− ci)

|CX |
(9)

where | · | represents that cardinality of the set with PX (X )
and PX∪A(X ) representing the classification accuracy on the
test set. Then, with c = [1, 1, 1]T , and θ = [α1,Q1,Qk ]T ,
the constrained optimization

max
θ

cT θ

s.t. PX∪A(θ )(X ) ≥ PX (X )− ε,

0 ≤ Q1,Qk ≤ 1, α1 ∈ R+ (10)

finds the tightest boundary around the training set to place
anomalies while ensuring that the classification performance
on the test set when the classifier is trained with and without
anomalies suffers a differential error rate no greater than ε.
This effectively trades empirical risk (differential error rate)
against open space risk (tightness of boundary) from (1) in
the form of a constrained optimization in (10).

C. A PRACTICAL PROCEDURE FOR CANDIDATE
GENERATION AND ACCEPTANCE
Although (10) quantifies a mathematically precise way of
optimizing the generation of synthetic anomalies, a closed-
form solution may not be possible due the fact that
PX∪A(θ )(X ), which is calculated using a classifier trained
using synthetically generated anomalies, is a highly nonlinear
function of θ , cf. (2), (6), (7) and (9). To address this
challenge, a fixed point iterative approach to approximately
solve (10) is summarized in Algorithm 1. The parameters that
control the generation and placement of synthetic anomalies
are the same as those in (10), namely α1, Q1 and Qk . These
parameters form the core search space over which Alg. 1
operates. The parameters α1 and Q1 influence the generation
of samples in (2), where increasing these parameters push
samples in Ac further from the boundary of the training
set, making it more likely the candidates are accepted into
the set A. In concert with α1 and Q1, Qk controls the
likelihood of candidates fromAc being accepted intoA. But,

Algorithm 1 Generate Synthetic Anomaly Sample Set A
Require:
1: k , ε, 1ε , Q1, Qk , Q1max , Qkmax , Q1min , Qkmin , α1, α1max

2: while Qkmin ≤ Qk ≤ Qkmax do
3: In (6) compute dk
4: while α1 ≤ α1max do
5: In (2) compute dp
6: From (3) compute candidate anomaly samples Ac
7: Accept candidate to formA using (7) ((12) for AK )
8: if |A| > minCandSamples then
9: break
10: else if Q1 ≤ Q1max then
11: Q1← (Q1 + Q1max )/2
12: else
13: α1← (α1 + α1max )/2
14: end if
15: end while
16: if ε −1ε < PX∪A(X )− PX (X ) < ε then
17: break
18: else if PX∪A(X )− PX (X ) ≤ ε −1ε then
19: Qkmin ← Qk
20: Qk ← (Qk + Qkmax )/2
21: else
22: Qkmax ← Qk
23: Qk ← (Qk + Qkmin )/2
24: end if
25: end while

unlike α1 and Q1, decreasing Qk increases the likelihood of
candidate selection.

Consider the first the adaptive selection of Q1 and α1.
A modified binary search for the values Q1 and α1 is used to
find the minimum number of samples that meet the candidate
selection requirement as specified in (7). Once the candidates
are selected, a test is used to determine if the differential
error is within the range [ε −1ε, ε]. If the differential error
is outside of this range, then Qk is adjusted. This is in
contrast to (10), where only a single differential error is
specified. The rationale is as follows. In the constrained
optimization approach as specified in (10), minimizing Q1,
α1 and Qk brings samples in towards the boundary, and this
is balanced against the constraint that the addition of synthetic
samples in the training dataset preserve core classification
performance, i.e., the differential error is no greater than ε.
This is approximately captured in the upper and lower bound
on the differential error in Alg. 1. If the upper bound ε
is violated, Qk is adaptively increased which forces the
selection of samples that are further away from the boundary
of the test set. Conversely, if the minimum error ε − 1ε
is violated, then the samples are selected that lie closer to
the boundary by reducing Qk . A binary search is used to
adaptively adjust Qk so that samples fall within differential
error window [ε −1ε, ε]. As 1ε → 0, Alg. 1 more closely
approximates 10, but this comes at the expense of an increase
in the search time. We have found that in practice a1ε that is
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between 25% and 35% of ε works well in practice, and this is
topic is expanded on further in Section IV where results are
presented. The inialization parameters

D. CATEGORICAL DATA AND NORMALIZATION
Data normalization is commonly employed in machine
learning when the features used for training and classification
are on different scales. In the examples that follow, we use
standard normalization with

xnrmi =
xi − µi
σi

, χnrmi =
χi − µi

σi
, (11)

where µi is the mean value of feature i and σi its standard
deviation. Some data sets will also include categorical
features, i.e., features that can only take on a finite and
discrete set of values. In this case, the features generated
using (3) are snapped back to a grid after acceptance using (7)
such that

AK =
{
xi,j : ‖an − xi,j‖ < ‖an − xi,k‖,∀j 6= k

}
, (12)

where an ∈ AK ∈ A are the subset of columns corresponding
to range of possible choice for categorical, integer and
discrete valued features.

E. DISCUSSION
The question of how to generate andwhere to place anomalies
is not fully answered by (5), but this does offer quantitative
evidence for the idea that - from an information-theoretic
perspective - kNN distance is a measure of statistical
(dis)similarity. Indeed, maximizing (5) will result in samples
with maximum dissimilarity but this would leave a region
in feature space where an anomaly encountered in the
field would have a KL divergence measure ’closer’ to
the training set than that of the synthetically generated
anomalies. Instead, we consider the question of how to
minimize the numerator in (5) (given the denominator is
fixed) while maximizing the likelihood that samples from
the (closed) test set are correctly classified. In theory, it is
possible to turn this into a constrained optimization, with the
constraint that that differential error rate between a classifier
trained with and without synthetic anomalies is less than a
prescribed threshold ε, cf. (10). This quantitatively addresses
the question posed in Sec. III-B of how to find candidates with
kNN distances sufficiently different from those in the training
set, while also balancing the empirical risk. The choice to use
accuracy in (9) could be replaced by any other measure such
an Fβ -measure (e.g., F1) or AUC. Given the highly nonlinear
nature of the constrained optimization, the pseudo-code for a
computationally efficient approximation to (10) is presented
in Alg. 1, and this is the algorithm which was used to obtain
the results presented in Section IV.

IV. COMPARATIVE PERFORMANCE
A. VISUALIZING ANOMALY GENERATION
To get a visual sense of how anomalies are generated and the
impact that the choice of fixed and searchable hyperparame-
ters have on performance, we’ve used the so-called Banana

FIGURE 2. Banana dataset.

FIGURE 3. Banana dataset with synthetic anomalies generated using
ε = .01, 1ε = .0035, α1 = 1, Q1 = 1, Qk = .9995.

dataset from Google’s standard classification library [42]
which is plotted for reference in Fig. 2. There are two
categories - 0 and 1 - in the Banana dataset, with each
category containing roughly 2500 samples for a combined
dataset size of 5000 samples. A total of 5000 synthetic
anomalies were generates to match the size of the banana data
set. To derive the baseline performance PX (X ), an XGBoost
classifier [43] was trained and tested on the two class data set,
with a training set X representing 80% of samples chosen at
random, and a test set X made up of the remaining 20% of
the samples. The first set of synthetic samplesA derived from
the Banana data set is plotted in Fig. 3.

The differential error ε = .01 and offset 1ε = .0035 were
chosen resulting in a differential error range of [.0065, .01%],
and the directed optimization of Alg. 1 recovered the ECDF
quantile parameters Q1 = 1, Qk = 0.9995 for k = 4 and an
α1 = 1. The synthetic anomalies generated all landed on the
boundary of the Banana data set, but at a sufficient distance so
that classifier (in this case XGBoost) could differentiate them
from the the original 2-categories {0, 1} at a loss no greater
than ε = .01 in classification performance. The second set
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FIGURE 4. Banana dataset with synthetic anomalies generated using
ε = .05, 1ε = .0175, α1 = 1, Q1 = 1, Qk = .995.

of synthetic samples derived from the Banana data set is
plotted in Fig. 4, but this time with a differential error range of
[.0325, .05], which resulted in the ECDF quantile parameters
Q1 = 1, Qk = 0.995 and an α1 = 1. In this case, synthetic
anomalies tightly hugged the boundary of the Banana data set,
resulting in more samples from the test set X being mistaken
for anomalies, but at a rate no greater than ε = 0.05.

B. QUANTITATIVE ASSESSMENT - OPEN SET
RECOGNITION
Although the banana data set was useful to help visualize how
the DPAA algorithm works, it is not sufficient to measure
DPAA performance. Therefore, to test the efficacy of DPAA,
we compared its performance to that of EVM operating
on high dimensional mutli-category datasets using an F1-
measure as a function of precision and recall, which is defined
as

Precision =
TP

TP+ FP
,

Recall =
TP

TP+ FN
, (13)

where TP, FP, FN represent the true positive, false positive
to false negative rates, respectively, and from which the
harmonic mean - or F1 score

F1 =
2

1/Precision+ 1/Recall
, (14)

is derived. In addition to the F1-score, we also measure
the ability of DPAA to both detect anomalies (probability
of detection, or PD) and to not falsely assign samples as
anomalies (probability of false alarm, or PFA). We consider
PD and PFA separately from the overall F1-measure as a
function of precision and recall for two reasons. First, there
may be a significant difference in cost associated with how
anomalies are processed, both in terms of their detection and
misclassification. Second, PD and PFA are reflective of an
accept/reject type of detector as discussed in Section I, and
not multi-category classification which includes an outlier

FIGURE 5. Relative performance of open set recognition for both DPAA
and EVM on the OLETTER data set. F1 performance for DPAA is measured
with respect to the top axis in terms of a differential error rate. For EVM,
F1 performance is measured with respect to the bottom axis in terms of a
probability threshold δ as described in [24].

TABLE 2. DPAA initialization parameters to obtain the F1-scores and Pd
vs. PFA in Figs. 5 through 10.

category. To start, we used the OLETTER dataset developed
in [25] which was used to demonstrate EVM’s performance
in open set recognition in [24]. The test we performed started
with training both EVM and DPAA on 20- of the 26-letters
selected at random, where the 6-letters that were held-out
from the training set were included in the testing set. An 80/20
train/test split was used for the 20 letters prior to the addition
of the 6-letters in the test set, and 10-fold cross validation was
used to obtain average performance results. The EVM code
used for both hyper-parameter optimization and to obtain the
results that follow were obtained from the authors’ github
repository [44]. Like for the Banana dataset, DPAA used
XGBoost for fX (·) and fX∪A(·) in (9) to measure differential
error, PX (X ) − PX∪A(θ )(X ). The open set performance of
DPAA and EVM operating on the OLETTER test set after
training is plotted in Fig. 5.

To obtain results for DPAA, we initialized the parameters
in Alg. 1 with the those listed in Table 2 and varied the
differential error with values in Table 3 to obtain the results
in Figs. 5 - 10. For comparison, we varied the EVM threshold
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TABLE 3. DPAA differential error (ε) and EVM threshold parameters (δ)
used to obtain the F1-scores in Figs. 5 through 10.

δ in [24] using

ĉi =

{
argmax

m
p(cm|χi), if p(cm|χi) ≥ δ

Anomaly, Otherwise,
(15)

which has the effect of trading off PD for PFA in an analogous
manner to ε for DPAA. In general, both DPAA and EVM
followed similar trajectories in terms of an F1-score in the
open set recognition task, but with DPAA outperforming it in
all cases.

Although the F1-score is a comprehensive snapshot of
open set recognition, it was also of interest to measure
the performance of both algorithms in an accept/reject
framework. Because of the wide availability of curated outlier
detection algorithms that come bundled in the PyPI 3.7 library
PyOD [45], we chose to include a representative set of
4 of these PyOD routines for comparison: Isolation Forest
(IF), AutoEncoder (AE), One Class Support Vector Machine
(OC-SVM) and Copula Outlier Detection (COPOD). Each
of these PyOD routines had a detection threshold that was
controlled by a single parameter, contamination, which for
our tests varies from 0 to 0.175 in steps of .025. The
AE feedforward deep learning architecture was modified
from the default to fit the dimensionality of the OLETTER
dataset, such that the number of hidden neurons per layer
were [15, 8, 4, 8, 15]. In all other cases, default parameter
settings were used for IF, AE, OC-SVM and COPOD. The
probability of detection versus false alarm for all routines is
plotted in Fig. 6. It was interesting to note that the PyOD
routines, whose only objective was accept/reject, performed
quite poorly relative to both EVM and DPAA on this dataset.
Similar to the open set recognition performance using an
F1 score, DPAA detection performance was greater than or
equal to that of EVM for any chosen PFA in our tests.

It is interesting to take a deeper look at open set
recognition performance of DPAA. In Fig. 5, DPAA has its
peak F1 performance at nearly 90%, with a corresponding
differential error rate of roughly 8%. One may ask, how is
it that a relatively high differential error rate leads to the
highest F1-score? The reason is that the differential error rate
measure is w.r.t. to only the closed set samples in the test
set, while the F1 measure is w.r.t. both the closed set samples

FIGURE 6. Receiver operating characteristic of an accept/reject
configuration for anomalie on the OLETTER data set. Here both DPAA and
EVM performance is compared to that of select outlier detection routines
in the Python Outlier Detection (PyOD) library.

and anomalies. This observation will hold in the results that
follow.

In addition to the OLETTER dataset, we tested DPAA
on the so called multi-feature Fourier (mfeat-fourier) multi-
category data set, which is publicly available on the
UCI curated multi-category classification website [46].
The mfeat-fourier dataset has 76 features describing the
handwritten digits 0-9, and serves as an analogue to the
alphabetic OLETTER dataset. Similarly to OLETTER open
set testing, we randomly removed a single digit from the
training set and used it in testing. Like OLETTER, an 80/20
train/test split was used for the 9 handwritten digits prior to
the addition of the 10th digit in the test set, and 10-fold cross
validation was used to obtain average performance results.
The open set performance of DPAA and EVM operating on
the mfeat-fourier test set after training is plotted in Fig. 7.
As was true for the OLETTER data set, DPAA outperformed
EVM at nearly all cases. For an accept/reject mode of
operation DPAA achieved a higher detection rate Pd for
a given false alarm rate PFA than both EVM and all of
the routines from the PyOD library. In this case, however,
OC-SVM performance was comparable to that of EVM
and significantly outperformed the other outlier detection
algorithms.

C. CATEGORICAL DATA
Finally, we consider the problem of intrusion detection from
both an accept/reject and open set recognition perspective
using the NSL-KDD dataset [47]. This data represents
a distinctly different one from either the OLETTER or
multi-feature Fourier character based datasets given all of the
features are either categorical, discrete or integer in nature,
and we leverage (12) in the process of anomaly generation.
For this data set, in addition to ’Normal’ network traffic,
we chose to include Probe, Denial of Service (DoS) and
Remote-to-Local types of attacks with attack types tabulated
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FIGURE 7. Relative performance of open set recognition for both DPAA
and EVM on the multi-feature Fourier data set. F1 performance for DPAA
is measured with respect to the top axis in terms of a differential error
rate. For EVM, F1 performance is measured with respect to the bottom
axis in terms of a probability threshold δ as described in [24].

FIGURE 8. Receiver operating characteristic of an accept/reject
configuration for anomalies on the multi-feature Fourier data set. Here
both DPAA and EVM performance is compared to that of select outlier
detection routines in the Python Outlier Detection (PyOD) library.

in Table 4 in the training set. The DoS attack pod was held
out from the training set and included in the test set as it is
one of the most challenging attacks to identify. We used an
identical train/test split and cross validation procedure to the
one used for both the OLETTER and multi-feature Fourier
data sets, with the exception that pod was always held out
during training but included during test. The F1 performance
of both DPAA and EVM are plotted in Fig. 9, with DPAA
significantly outperforming EVM in recognizing both normal
traffic as well as the 14 categories of attack including pod,
which as previously mentioned was held from the training
set but included in the test set.

We also ran both DPAA and EVM in an accept/reject mode
of operation and compared their performance with respect
to the four other PyOD routines with the results plotted in
Fig. 10. Both DPAA and EVM had a significantly lower

FIGURE 9. Relative performance of open set recognition for both DPAA
and EVM on the NSL-KDD intrusion detection data set. F1 performance for
DPAA is measured with respect to the top axis in terms of a differential
error rate. For EVM, F1 performance is measured with respect to the
bottom axis in terms of a probability threshold δ as described in [24].

FIGURE 10. Receiver operating characteristic of an accept/reject
configuration for anomalies on the NSL-KDD intrusion detection dataset.
Here both DPAA and EVM performance is compared to that of select
outlier detection routines in the Python Outlier Detection (PyOD) library.

TABLE 4. Types of attacks used during training. Note that the DoS attack,
pod, was held out and used during test.

false alarm rate than OC-SVM, IF, AE, and COPOD making
them both far more useful in scenarios where a relatively low
false alarm is critical for successful system operations where
a significant number of normal packets aren’t inadvertently
blocked.
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V. SUMMARY
This paper presented a distance-based probabilistic anomaly
augmentation (DPAA) approach to address the open set
recognition problem.DPAAgenerates samples to encapsulate
the (possibly non-convex) training a set in feature space.
This generative approach is directly formulated to optimize
open space risk subject to an empirical risk constraint, whose
optimization mechanics are grounded in an information
theoretic and statistical measure of closeness. Using a
representative ensemble of data sets, DPAA demonstrated
superior performance both in novelty detection and open set
recognition against some of the highest performing state-of-
the-art algorithms with the flexibility to work in concert with
any classifier.

APPENDIX
LIST OF ACRONYMS
AE AutoEncoder
C2AE Class Conditional AutoEncoder
COPOD Copula Outlier Detector
CROSR Classification and Reconstruction Open Set

Recognition
DNN Deep Neural Network
DPAA Distance-based Probabilistic Anomaly Aug-

mentation
ECDF Empirical Cumulative Distribution Function
EVM Extreme Value Machine
EVT Extreme Value Theory
IF Isolation Forest
KL Kullback-Leibler
LGBM Light Gradient Boosting Machine
NCM Nearest Class Mean
NNO Nearest Non Outlier
OC-SVM One Class Support Vector Machine
PyOD Python Outlier Detector
XGBoost Extreme Gradient Boosting

ACKNOWLEDGMENT
Opinions, interpretations, recommendations, and conclusions
are those of the authors are not necessarily endorsed by the
U.S. Government.

REFERENCES
[1] L. Tarassenko, ‘‘Novelty detection for the identification of masses in

mammograms,’’ in Proc. 4th Int. Conf. Artif. Neural Netw., 1995,
pp. 442–447.

[2] J. Henrydoss, S. Cruz, E. M. Rudd, M. Gunther, and T. E. Boult, ‘‘Incre-
mental open set intrusion recognition using extreme value machine,’’ in
Proc. 16th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2017,
pp. 1089–1093.

[3] P. K. Chan, W. Fan, A. L. Prodromidis, and S. J. Stolfo, ‘‘Distributed data
mining in credit card fraud detection,’’ IEEE Intell. Syst. Appl., vol. 14,
no. 6, pp. 67–74, Nov./Dec. 1999.

[4] S. Nandi, H. A. Toliyat, and X. Li, ‘‘Condition monitoring and fault
diagnosis of electrical motors—A review,’’ IEEE Trans. Energy Convers.,
vol. 20, no. 4, pp. 719–729, Dec. 2005.

[5] C. Geng, S.-J. Huang, and S. Chen, ‘‘Recent advances in open set
recognition: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 10, pp. 3614–3631, Oct. 2021.

[6] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, ‘‘A review
of novelty detection,’’ Signal Process., vol. 99, pp. 215–249, Jun. 2014.

[7] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, ‘‘Estimating the support of a high-dimensional
distribution,’’ Neural Comput., vol. 13, no. 7, pp. 1443–1471, Jul. 2014.

[8] F. T. Liu, K.M. Ting, and Z.-H. Zhou, ‘‘Isolation forest,’’ in Proc. 8th IEEE
Int. Conf. Data Mining, Dec. 2008, pp. 413–422.

[9] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:
A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[10] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Jul. 1995.

[11] B. B. Thompson, R. J. Marks, J. J. Choi, M. A. El-Sharkawi, M.-Y. Huang,
and C. Bunje, ‘‘Implicit learning in autoencoder novelty assessment,’’ in
Proc. Int. Joint Conf. Neural Netw., vol. 3, May 2002, pp. 2878–2883.

[12] H. Xiang, J. Wang, K. Ramamohanarao, Z. Salcic, W. Dou, and X. Zhang,
‘‘Isolation forest based anomaly detection framework on non-IID data,’’
IEEE Intell. Syst., vol. 36, no. 3, pp. 31–40, May 2021.

[13] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A survey,’’
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009.

[14] C. Chow, ‘‘On optimum recognition error and reject tradeoff,’’ IEEE Trans.
Inf. Theory, vol. IT-16, no. 1, pp. 41–46, Jan. 1970.

[15] G. Fumera, F. Roli, and G. Giacinto, ‘‘Reject option with multiple
thresholds,’’ Pattern Recognit., vol. 33, no. 12, pp. 2099–2101, Dec. 2000.

[16] D. M. J. Tax and R. P. W. Duin, ‘‘Growing a multi-class classifier with
a reject option,’’ Pattern Recognit. Lett., vol. 29, no. 10, pp. 1565–1570,
Jul. 2008.

[17] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, ‘‘COPOD: Copula-
based outlier detection,’’ in Proc. IEEE Int. Conf. Data Mining (ICDM),
Nov. 2020, pp. 1118–1123.

[18] Y. Fu, T. Xiang, Y.-G. Jiang, X. Xue, L. Sigal, and S. Gong, ‘‘Recent
advances in zero-shot recognition: Toward data-efficient understanding of
visual content,’’ IEEE Signal Process. Mag., vol. 35, no. 1, pp. 112–125,
Jan. 2018.

[19] A. Khamis, Z. Ismail, K. Haron, and A. Mohammed, ‘‘The effects of
outliers data on neural network performance,’’ J. Appl. Sci., vol. 5, no. 8,
pp. 1394–1398, Jul. 2005.

[20] P. Stock and M. Cisse, ‘‘ConvNets and ImageNet beyond accuracy:
Understanding mistakes and uncovering biases,’’ in Computer Vision,
vol. 11210. Cham, Switzerland: Springer, 2018, 2008.

[21] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke, ‘‘The limits
and potentials of deep learning for robotics,’’ Int. J. Robot. Res., vol. 37,
nos. 4–5, pp. 405–420, 2018.

[22] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, ‘‘Toward
open set recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 7, pp. 1757–1772, Jul. 2013.

[23] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and
Applications. Singapore: World Scientific, 2000.

[24] E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult, ‘‘The extreme
value machine,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3,
pp. 762–768, Mar. 2018.

[25] W. J. Scheirer, L. P. Jain, and T. E. Boult, ‘‘Probability models for open
set recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11,
pp. 2317–2324, Nov. 2014.

[26] L. de Haan and A. Ferreira, Extreme value theory: An introduction. Cham,
Switzerland: Springer, 2007.

[27] W. J. Scheirer, A. Rocha, R. J. Micheals, and T. E. Boult, ‘‘Meta-
recognition: The theory and practice of recognition score analysis,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1689–1695,
Aug. 2011.

[28] E. Vignotto and S. Engelke, ‘‘Extreme value theory for anomaly
detection—The GPD classifier,’’ Extremes, vol. 23, no. 4, pp. 501–520,
Dec. 2020.

[29] M.Aitkin andD. Clayton, ‘‘The fitting of exponential,Weibull and extreme
value distributions to complex censored survival data using GLIM,’’ Appl.
Statist., vol. 29, no. 2, p. 156, 1980.

[30] A. Bendale and T. E. Boult, ‘‘Towards open set deep networks,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1563–1572.

[31] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and
T. Naemura, ‘‘Classification-reconstruction learning for open-set
recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 4011–4020, doi: 10.1109/cvpr.2019.00414.

VOLUME 10, 2022 42241

http://dx.doi.org/10.1109/cvpr.2019.00414


J. Goodman et al.: Generative Approach to Open Set Recognition Using DPAA

[32] A. R. Dhamija, M. Günther, and T. E. Boult, ‘‘Reducing network
agnostophobia,’’ in Proc. 32nd Int. Conf. Neural Inf. Process. Syst. Red
Hook, NY, USA: Curran Associates, 2018, pp. 9175–9186.

[33] Z. Ge, S. Demyanov, Z. Chen, and R. Garnavi, ‘‘Generative OpenMax for
multi-class open set classification,’’ 2017, arXiv:1707.07418.

[34] S. Kong and D. Ramanan, ‘‘OpenGAN: Open-set recognition via open data
generation,’’ inProc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 793–802.

[35] P. Oza and V. M. Patel, ‘‘C2AE: Class conditioned auto-encoder for open-
set recognition,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2302–2311.

[36] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
‘‘Lightgbm: A highly efficient gradient boosting decision tree,’’ in Proc.
31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 3149–3157.

[37] A. Bendale and T. Boult, ‘‘Towards openworld recognition,’’ inProc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1893–1902.

[38] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, ‘‘Distance-based
image classification: Generalizing to new classes at near-zero cost,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2624–2637,
Nov. 2013.

[39] R. J. Muirhead, Aspects of Multivariate Statistical Theory. New York, NY,
USA: Wiley, 2005.

[40] J. Goodman, S. Sarkani, and T. Mazzuchi, ‘‘Distance-based probabilistic
data augmentation for synthetic minority oversampling,’’ ACM/IMS Trans.
Data Sci., Feb. 2022, doi: 10.1145/3510834.

[41] Q. Wang, S. R. Kulkarni, and S. Verdu, ‘‘Divergence estimation for
multidimensional densities via k-nearest-neighbor distances,’’ IEEE Trans.
Inf. Theory, vol. 55, no. 5, pp. 2392–2405, Apr. 2009.

[42] S. Jaichandaran. (2020). Standard Classification Library Banana Data
Set. [Online]. Available: https://www.kaggle.com/saranchandar/standard-
classification-with-banana%-dataset

[43] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[44] EMRResearch. Extreme Value Machine. Accessed: Nov. 24, 2021.
[Online]. Available: https://github.com/EMRResearch/ExtremeValue
Machine

[45] Y. Zhao, Z. Nasrullah, and Z. Li, ‘‘PyOD: A Python toolbox for scalable
outlier detection,’’ J. Mach. Learn. Res., vol. 20, no. 96, pp. 1–7, Jan. 2019.
[Online]. Available: http://jmlr.org/papers/v20/19-011.html

[46] D. Dua and C. Graff. (2017).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

[47] G. Mohi-Ud din. (2018). NSL-KDD. [Online]. Available:
https://dx.doi.org/10.21227/425a-3e55

JOEL GOODMAN (Senior Member, IEEE)
received the B.S. and M.S. degrees in electrical
engineering from Boston University. He is
currently pursuing the Ph.D. degree in systems
engineering with The George Washington Univer-
sity, Washington, DC, USA.

He was previously employed with Eastman
Kodak, worked for venture capital-funded Ham-
merhead Networks (later acquired with Cisco
Systems), and was a Technical Staff Member at

the MIT Lincoln Laboratory (MIT LL), most recently serving on the
Chief Technology Officer’s Technical Advisory Group. He is also a Senior
Research Engineer with the Tactical ElectronicWarfare Division, U.S. Naval
Research Laboratory.

Mr. Goodman was a member of the Organizing Committee of the IEEE
GlobalSIP 2016. He was a recipient of the Eastman Technical Achievement
Award for his work onmagnetic imaging, the 2008MIT LL TeamExcellence
Award for his work on nonlinear equalization, the 2012 NRL Alan Berman
Research Publication Award, and the NRL Review Award. He is also serving
as the Chair for the IEEE Computational Intelligence Society Chapter,
Washington. He worked as a Lecturer at the 2014 Virginia Tech Symposium
and Summer School on Wireless Communications. He was an Invited
Lecturer with the IEEEAdvanced Signal Processing Symposium on the topic
of nonlinear signal processing, in 2008.

SHAHRAM SARKANI received the B.S. andM.S.
degrees in civil engineering from Louisiana State
University, Baton Rouge, LA, USA, and the Ph.D.
degree in civil engineering from Rice University,
Houston, TX, USA. He is currently a Professor
of engineering management and systems engi-
neering with The George Washington University,
Washington, DC, USA. His current administrative
appointments are inaugural Director of the School
of Engineering and Applied Science Off-Campus

and Professional Programs (since 2016), the school unit to establish
cross-disciplinary and departmental programs for offer off-campus and/or
by synchronous distance learning; and a Faculty Adviser and an Academic
Director of the EMSE Off-Campus Programs (since 2001), the department
unit that designs and administers five separate graduate degree programs in
six areas of study that enroll more than 800 students across the USA and
abroad. He joined GW, in 1986, where previous administrative appointments
include the Chair of the Civil, Mechanical, and Environmental Engineering
Department (1994–1997); and an Interim Associate Dean for Research
of the School of Engineering and Applied Science (1997–2001). In more
than 500 technical publications and presentations, his research in systems
engineering, systems analysis, and applied enterprise systems engineering
has application to risk analysis, structural safety, and reliability. He has
conducted sponsored research for such organizations as NASA, NIST, NSF,
U.S. AID, and the U.S. Departments of Interior, Navy, and Transportation.
He was inducted into the Civil and Environmental Engineering Hall of
Distinction, Louisiana State University, in 2010; and was awarded theWalter
L. Huber Civil Engineering Research Prize by the American Society of Civil
Engineers in 1999. He is a Registered Professional Engineer in Virginia.

THOMAS MAZZUCHI received the B.A. degree
in mathematics from the Gettysburg College,
Gettysburg, PA, USA, in 1978, and the M.S. and
D.Sc. degrees in operations research from The
George Washington (GW) University, Washing-
ton, DC, USA, in 1979 and 1982, respectively.
He is currently a Professor of engineering manage-
ment and systems engineering, and the Chair of
the Department of Engineering Management and
Systems Engineering, School of Engineering and

Applied Science, GW. Formerly, he was the Chair of the Department of
Operations Research, and as Interim Dean of the School of Engineering and
Applied Science. He has been engaged in consulting and research in the
areas of reliability and risk analysis, and systems engineering techniques,
for more than 30 years. He served for two and a half years as a Research
Mathematician with the International Operations and Process Research
Laboratory, Royal Dutch Shell Company. While at Shell, he was engaged
in reliability and risk analysis of large processing systems, maintenance
optimization of off-shore platforms, and quality control procedures at
large-scale chemical plants. In his academic career, he has held research
contracts in development of testing procedures for both the U.S. Air Force
and the U.S. Army; in spares provisioning modeling with the U.S. Postal
Service; in mission assurance with NASA; and in maritime safety and risk
assessment with the Port Authority of New Orleans, the Washington Office
of Marine Safety, the Washington State Department of Transportation, and
the San Francisco Bay Area Transit Authority. He is an Elected Member of
the International Statistics Institute.

42242 VOLUME 10, 2022

http://dx.doi.org/10.1145/3510834

