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ABSTRACT Modeling and design of on-chip interconnect continue to be a fundamental roadblock for
high-speed electronics. The continuous scaling of devices and on-chip interconnects generates self and
mutual inductances, resulting in generating second-order dynamical systems. The model order reduction
is an essential part of any modern computer-aided design tool for prefabrication verification in the design of
on-chip components and interconnects. The existing second-order reduction methods use expensive matrix
inversion to generate orthogonal projection matrices and often do not preserve the stability and passivity of
the original system. In this work, a second-order Arnoldi reduction method is proposed, which selectively
picks the interpolation points weighted with a Gaussian kernel in the given range of frequencies of interest
to generate the projection matrix. The proposed method ensures stability and passivity of the reduced-order
model over the desired frequency range. The simulation results show that the combination of multi-shift
points weighted with Gaussian kernel and frequency selective projection dynamically generates optimal
results with better accuracy and numerical stability compared to existing reduction techniques.

INDEX TERMS Interpolation points, numerical methods, on-chip interconnects, second-order model order
reduction, second-order Arnoldi.

I. INTRODUCTION
In the past several decades, the complexity of Integrated
Circuits (IC) and on-chip interconnects presented great chal-
lenges for the prefabrication validation of design [1]–[3].
While the technology advances for the manufacturing of ICs,
the accurate modeling of interconnect becomes an impor-
tant factor in measuring the performance and validation of
design [1], [2], [4]. This forms the basis for the development
of accurate representation and precise design tools as an
essential part of the current VLSI (Very Large Scale Inte-
gration) design softwares [5]. The current CAD (Computer-
Aided Design) design tools, using 3-D extraction, rely on the
partial inductance along with related other components which
usually results in a very large and dense extracted inductance
matrix [5]–[7]. This often results in numerical inaccuracies
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in the simulation process and subsequent difficulties in the
approximation of large-scale dense systems. Researchers are
now using the alternative methods by extracting suscep-
tance, which is a newly introduced circuit element and also
accounts for the coupling effect essential for the accurate
representation of on-chip interconnects and structures [4],
[8], [9]. It is important to note that the susceptance-based
extraction results in a diagonally dominant state-space as
its effects decrease with an increase in the distance from
the source. This newly formulated extraction method includ-
ing the susceptance effect gets transformed into state-space
often known as RCS (Resistor Capacitor and Susceptance)
formulation and is usually solved using the Second-Order
MOR method, as it retains many of the inherent properties
in its second-order formulation [10], [11]. In the classical
design flow, the extraction is carried out using various field
solvers, which later combine together to formulate a large-
scale state-space representation [12]–[15]. The MOR (Model
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Order Reduction) is part of the design tools and provides the
much-needed solutions for the reduction of the complexity
of state formulation in the simulation of ICs along with its
associated parasitics [3], [16]–[18]. It is important to observe
here that the state formulation as part of ICs design can be
expressed either as a first or second-order system.

In second-order MOR for on-chip interconnects, the
ENOR (Efficient Nodal Order Reduction) method was first
proposed, which uses positive definiteness of the original
system to give passive reduced-order model [19]. However,
the recursive nature of the ENOR to compute moments
leads to numerical instability. In order to solve this prob-
lem, SMOR (Second Model Order Reduction) improves the
numerical stability and has been generally used for approxi-
mation of second-order dynamical systems [2], [20], [21]. It is
important to observe here that SMOR actually approximates
the moments of the original system and quite often does
not give the required accuracy of the reduced system [2],
[22]. In considering second-order systems, another notable
contribution is SAPOR (Second-order Arnoldi method for
Passive Order Reduction) [2]. The SAPOR works on RCS
(Resistance Capacitance and Susceptance) extracted state-
representation, however, requires expensive matrix inver-
sion to create an orthonormal projection matrix for MOR.
In addition, moment matching at interpolation points needs
matrix inversion for each Arnoldi iterations [23], [24].
Therefore, the use of SAPOR may be numerically very
expensive for order-reduction of large-scale second-order
systems [2], [3], [25], [26]. Although these considerations
of passivity, stability of reduced-order model, and numer-
ical efficiency are of theoretical as well as of practical
interest.

The study of various second-order MOR methods in
some details to determine their limitations, is essential to
have a clear understanding of second-order MOR of large-
scale dynamical systems. Another passivity preserving MOR
method based onArnoldi iteration is PRIMA [27]. It is impor-
tant to note that PRIMA is not a numerically efficient tech-
nique and also works on first order state representation and
like many other methods will not guarantee passivity [28].
Therefore, MOR of RCS circuit using first-order formula-
tion may not ensure stability and passivity [2], [4], [29].
On contrary, second-order formulations of systems matrices
accounting for susceptance not only preserve the theoretical
properties but also ensure stability. In this work, the main
contributions are

1) Formulation of a new Second-order MOR method
SOAR-GK (Second-Order Arnoldi Reduction method
using Gaussian Kernel), which adaptively selects
expansion points weighted with Gaussian kernel. The
proposed method is numerically efficient and also
ensures passivity and preserves the stability of the
system.

2) The simulation results of the SOAR-GK compared
to existing state of the art first and second-order
MORmethods gives better moment matching with less

absolute error for various examples over a specific
range of frequencies.

In the next section, the problem of second-order model order
reduction is formulated. The proposed Second-order Arnoldi
Reduction using Gaussian Kernel (SOAR-GK) method is
explained in Section 3. Simulations and results are discussed
in Section 4 and Section 5 conclude the paper.

II. SECOND-ORDER MOR: PROBLEM FORMULATION
Model order reduction of on-chip interconnects falls into
the main category of approximation of large-scale dynamical
systems. In large-scale systems, the order of the problem
representing on-chip interconnects and structures are quite
often as large as a few million [30]. In addition, the oper-
ating frequency of the integrated circuit design is continu-
ously increasing, which also affects the magnetic coupling
between various interconnects. In order to correctly extract
the magnetic coupling, the effect of susceptance modifies the
matrices and generates second-order dynamical systems. The
resulting modified nodal equations for an RCS circuit with
susceptance can be written as follow [2],[

G Es
−SETs 0

] [
V (t)
Is(t)

]
+

[
C 0
0 I

] [
V̇ (t)
İs(t)

]
=

[
b
0

]
u(t),

y(t) = [cT 0]
[
V (t)
Is(t)

]
, (1)

where matrices G, C ∈ Rn×n, and S ∈ Rm×m repre-
sent conductance, capacitance, and susceptance, respectively;
Is(t) ∈ Rm and V (t) ∈ Rn represent the unknown vectors
of susceptance currents and nodal voltages; I ∈ Rm×m is
the identity matrix; Es ∈ Rn×m is incidence matrix for
susceptance, and b, c ∈ Rn are configuration vectors for
current and voltage sources; u ∈ R and y ∈ R represent
the input source current and output voltage, respectively. The
modified nodal equations in the frequency domain can be
written as follows([

G Es
−SETs 0

]
+ s

[
C 0
0 I

])[
V (s)
Is(s)

]
=

[
b
0

]
U (s),

Y (s) = [cT 0]
[
V (s)
Is(s)

]
, (2)

where the Laplace transforms of V (t), Is(t), u(t), and y(t) are
V (s), Is(s), U (s) and Y (s), respectively. This is a first-order
system in the s domain. It is observed here that the sus-
ceptance currents Is(s) are usually the intermediate currents,
therefore, the state representation can be modified by elimi-
nating Is(s) from equation (2). Thus we get(

s2C + sG+ T
)
V (s) = s bU (s),

Y (s) = cT V (s), (3)
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where T = EsSETs . This expression obtained by eliminating
Is(s) is equivalent to the state-space representation given
by (1) and forms the basis of our second-order problem
formulation [2].

A. SECOND-ORDER KRYLOV SUBSPACE REDUCTION
The general second-order Krylov subspace K(A,B, q) con-
sists of a pair of square matrices (A,B) and a nonzero vector
q. This section explains the general second-order Arnoldi
reduction method, which generates the orthonormal basis
for Krylov subspace reduction K(A,B, q). In the following,
we give the definition of second-order Krylov subspace.
Definition (Second-Order Krylov Subspace):
Let A and B be square matrices of order n, and suppose

q 6= 0 be a sequential order of n vectors given by

u0, u1, u2, · · · , un−1, (4)

where

u0 = q, (5)

u1 = Au0, (6)

· · ·

We can write generalized formula of ui as

ui = Aui−1 + Bui−2, ∀ i ≥ 2, (7)

which forms the basis of constructing second-order Krylov
subspace based on A and B. The final representation of
the nth second-order Krylov subspace using q vector is
given as [21], [31]

K(A,B, q) = span{u0, u1, u2, . . . , un−1}. (8)

In order to obtain the moment vectors, a new variable ζ is
introduced by substitution s = s0+ ζ in (3). The substitution
yields the following equation

(ζ 2C + ζD+ K )V (ζ ) = b0 + b1ζ, (9)

where D = 2s0C + G, K = s20C + s0G + T , b0 = s0bu and
b1 = bu. To calculate the moments, we expand V (ζ ) using
Taylor series expansion around s0. The resultant expression
can be written as

(ζ 2C + ζD+ K )(V0 + V1 ζ + V2 ζ 2 + . . .) = b0 + b1ζ,

(10)

where V0 = V (s0),V1 =
dV

ds

∣∣∣
s0
,V2 =

d2V

ds2

∣∣∣
s0
, . . . are the

moments ofV (ζ ). Bymatching coefficients of ζ on both sides
of equation (10), we get

V0 = K−1b0, (11)

V1 = K−1(−DV0 + b1), (12)

· · · · · ·

The above discussion leads us to calculate the individual
moments and we can write the generalized recurrence for-
mula of Vj as follows

Vj = K−1(−DVj−1 − CVj−2), j = 2, 3, 4, · · · (13)

The above recurrence relationship clearly expresses the cal-
culation of moments of V . However, the moment calcu-
lation using (13) may lead to instability and a Krylov
subspace-based method is suitable to yield stable results [2].
Note the introduction of the new variable ζ in (9), which shifts
the second-order Krylov subspace from its first moment s0.
It is observed here that a shifted Krylov subspace is better
dealt by the modified second-order MOR, which can account
for the moment matching at selected shifts. Therefore, the
quadratic form of (9) is suitable for a modified second-order
MOR method, which reduces the original RCS system from
n to r . In this connection, the first step is to construct the
orthonormal basis using moment vectors of nodal voltage up
to order r . To illustrate this, let us introduce a new variable
J (σ ) satisfying

σCV (σ )+ J (σ ) = b1. (14)

Using (14) into (9), we have a form appropriate for lineariza-
tion as

−σJ + σDV + KV = b0. (15)

Combining (14) and (15), we get

(I − σA)
[
V
J

]
=

[
q0
p0

]
, (16)

where

A =
[
−K−1D K−1

−C 0

]
, q0 = K−1b0 and p0 = b1.

By moving (I − σA) to the RHS of (16) and performing a
Maclaurin series expansion, we have[

V
J

]
=
(
I + σA+ σ 2A2 + . . .

) [q0
p0

]
. (17)

Clearly, Ai−1
[
q0
p0

]
is the ith moment of

[
V
J

]
, with q0 and p0

be the first moments of V and J respectively. It is important
to note that (17) is a linearized form of (9). It is obvious that

if
[
V
J

]
is the solution of (17), then V must be the solution

of (9), which shows that the upper part of the ith moment of[
V
J

]
= [I 0]Ai−1

[
q0
p0

]
is the ithmoment ofV . The key to the

solution of this problem now is to find out the interpolation
points for the projection matrix V , which should be selected
in some sense to reduce the overall error. The selected inter-
polation points sk (n) are then used to obtain the orthogonal
projection matrix V ∈ Rn×r . To obtain the reduced-order
model, V can be applied to (3), and the desired system can be
obtained. Therefore, by performing an orthogonal projection
using V , we obtain the following reduced-order system as(

s2C̃ + sG̃+ T̃
)
Ṽ (s) = s b̃ U (s), (18)

where C̃ = V TCV , G̃ = V TGV , T̃ = V TTV and b̃ = V T b
are the reduced system matrices.
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III. SECOND ORDER ARNOLDI REDUCTION USING
WEIGHTED GAUSSIAN KERNEL (SOAR-GK)
The key objective of the second-order model order reduc-
tion is to create a ROM, which preserves the significant
moments of the original system. The classical momentmatch-
ing technique is central to many MOR methods used to
approximate large systems [31]. In this section, we pro-
posed a Second-Order Arnoldi Reduction using the weighted
Gaussian Kernel (SOAR-GK) method, which is used to
adaptively select multi-shift points weighted with normal
distribution kernel in the selected range of frequencies
to generate a projection matrix. The SOAR-GK method
is stable and ensures passivity over the selected range
of frequencies. It is important to note that the combina-
tion of multi-shift points weighted with Gaussian kernel
and frequency selective projection dynamically generates
optimal results with better accuracy and numerical sta-
bility compared to existing second model order reduction
techniques.

First of all, in the proposed SOAR-GK method, the
multi-shift points weighted with Gaussian kernel are selected
in the given range as interpolation points. We begin by con-
sidering the original system transfer function P(s) : C→ C
of second-order dynamical system. This section explains
the complete method of MOR using Second Order Arnoldi
Reduction using the weighted Gaussian Kernel (SOAR-GK)
method. The main purpose is to construct a projection matrix
V by picking expansion points for Arnoldi iteration to cor-
rectly project the original system into reduced subspace. Let
kmax be the maximum number of expansion points for a given
system, then the first step is to select shifts in some sense to
reduce the absolute error between the original and reduced
systems. Hence, given the original transfer function P(s), the
selection of expansion points in SOAR-GK are weighted with
Gaussian kernel for a given frequency range of interest to give
optimal matching of the projected reduced-order model with
the original system. The original system function P(s) can be
written as

P(s) = cT
(
s2C + sG+ T

)−1 B+ D, (19)

where P(s) can be expressed using moments of second-order
Krylov subspace. Expanding P(s) at zero-shift, i.e. the
moments at s0 = 0 are

P0(s0) = D+ cTT−1B, and

Pn(s0) = cTT−(n+1)B, for n > 0, (20)

and for any shift at sk , we can write

P0(sk ) = D+ cT (s2kC + skG+ T )
−1B, and

Pn(sk ) = c(s2kC + skG+ T )
−(n+1)B, for n > 0.

(21)

Usually sk ∈ C are the expansion points and in this
case are chosen using Gaussian kernel. Similarly, expanding
P(s) around infinity using Laurent series, then P(s) can be

expressed as [32]

P(s) = D+ cBs−1 + cTBs−2 + · · · + cT nBs−(n+1) + · · · .

(22)

It is important to remind here of the important concept of
reachability, which is central to developing the Krylov sub-
space. It determines the extent to which the internal states can
be manipulated with the excitation (input). For example, let

a linear system be represented by
∑
:=

(
A B

)
(neglecting

C and D) and can be expressed as follows

H =
[
−K−1D K−1T
−C 0

]
, q0 = K−1b0 and p0 = b1,

where A = −K−1D, B = K−1T and v = u, then

H =
[
A B
−C 0

]
,

Kr (H , v) = [v Hv H2v · · · H r−1v · · · ]. (23)

Expressing P(s) with moments around sk as

P(s) =
∞∑
n=0

Pn(s− sk )n. (24)

The expression (24) gives moments of P(s) around selected
expansion points sk [32]. The development of reduce-order
model includes expanding P(s) at the expansion point sk as

P(s) = P0(sk )+ P1(sk )(s− sk )+ P2(sk )
(s−sk )2

2!

+ · · · + Pn(sk )
(s− sk )n

n!
+ · · · , (25)

i.e. for a suitable r

Pk (sk ) ≈ P(sk ), k = 1, 2, 3, · · · , r . (26)

The problem now comes down to explaining the criteria of
selected expansion points. It is important to observe here that
the inspiration comes from the fact that many natural phe-
nomena follow a normal distribution. Normal distribution,
commonly known as Gaussian distributions can differ in their
means (µ) and standard deviations (σ ). The density of the
Gaussian distribution function is plotted along x−axis and is
governed by µ and σ for a given function. The probability
density function of Gaussian distribution is given by

f (x) =
1

√
2πσ 2

e
−

(x − µ)2

2σ 2 ,

In this work, we selectively pick the frequency points
weighted with a Gaussian kernel, which serve as interpolation
points for approximation using SOAR-GK. The mean and
standard deviation of the Gaussian distribution is driven by
the application-specific solution for a given problem, which
also affects the range of the data. In our case, it is the inter-
connect of the modern processor with the difference between
low-power and turbo-mode clock frequencies determining
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the range of the density function. The range z of the normal
distribution act as input to the function to generate frequency
points tp for a given µ and σ and is given by

tp = normpdf (z, µ, σ ),

The interpolation points sk can now be defined as

sk (n) = sort(tp[1 : kmax]) (slected shifts at tp),

for p = 1, 2, 3, · · · , r . (27)

Note that tp with p = 1, 2 · · · r are the chosen expansion
points using Gaussian kernel, where r is the order of the
reduced system. This explains the procedure of selecting
shifts, and it is now convenient to explain the complete pro-
posed SOAR-GK method with the help of pseudocode in the
next section to allow easy implementation in any program-
ming language.

A. PSEUDOCODE FOR SOAR-GK
In this work, a second-order Arnoldi reduction using inter-
polation points selection weighted with Gaussian kernel is
proposed. In terms of the basic procedure, the SOAR-GK
is similar to the second-order Arnoldi reduction method.
However, the projection using interpolation points selection
weighted with Gaussian kernel leads to the reduced model
with better numerical accuracy as well as retention of the
stability and passivity inherent to the original system. In this
section, the pseudocode of the basic algorithm used in the
SOAR-GK method with all the necessary steps needed to
implement in any programming language is explained.

The input to the main function is the original system
matrices i.e. C , G, T , and B, whereas r and kmax represent
the order of the reduced system and a maximum number
of selected expansion points, respectively. The main func-
tion in the proposed method acts on the input and initially
finds the interpolation points for the selected range, mean
and standard deviation using Gaussian distribution. Note
that the SOAR-GKmethod is a frequency selective estimation
of the large scale-system. In application specific solutions,
it is the range of frequency of interest (s1 to s2) i.e. the
difference between low-power and turbo-mode clock fre-
quencies. In our proposed model, the frequency selection is
performed by normally distributing the frequency of interest
and selecting the interpolation points, which follow a normal
distribution in the reduced norm sense. The selected fre-
quency becomes the interpolation point for constructing the
projection matrix V [33], [34]. The normal Gaussian kernel
can be defined as

tp = normpdf (z, µ, σ ), (28)

Considering the selected shift tp, we generate sk as the
interpolation points to construct the orthonormal matrix. The
matrix is constructed by following Gram-Schmidt orthogo-
nalization process as qk = (s2k (n)C+sk (n)G+T )

−1bk , using
sk . Finally, we construct the projection matrix V using qk and

Krylov matrixH . Following the procedure, let V = H
b

||qk ||
,

where H =
[
−K−1D K−1

−C 0

]
, k = 1,2,3, . . . , n. To con-

struct the orthonormal basis matrix V , each column corre-
sponds to the selected expansion point i.e. s1, s2, s3, . . . , sn.
Using projection matrix V , this generates the reduced order
model G̃, B̃, C̃ , D̃ and T̃ . At this point, let us take an example
of order n = 5 to show the implementation of SOAR-GK.
Note that the selected range of frequency for a given appli-
cation is a subset of frequencies of the original large scale
dynamical system.
Example 3.1: Consider a second-order dynamical system

of an inductor with n = 5. The state representation can be
written as [33], [34],

C =


0 0 0 0 0
0 6.0530 0 −6.0530 0
0 0 4.25040 0 0
0 −6.0530 0 6.0530 0
0 0 0 0 0

× 10−15,

G =


1.4543 −1.4543 0 0 1
−1.4543 1.4543 0 0 0

0 0 0 0 0
0 0 0 1.4543 0
−1 0 0 0 0

 ,

T =


0 0 0 0 0
0 −2.2319 2.5660 −3.3409 0
0 2.5660 −5.1320 2.5660 0
0 −3.3409 2.5660 −2.2319 0
0 0 0 0 0

× 107,

B =


0
0
0
0
−1

 , BT =
[
0 0 0 0 −1

]
, D = 0.

Using SOAR-GK method and the procedure explained in
Algorithm 1 for every iteration with r = 1, 2, 3, the selected
multi-shift interpolation points generates the following pro-
jection matrix V as

V =


0.6408 −0.2879 −0.2855
0.6418 −0.3074 0.2634
0.4212 0.9065 0.0270
−0.0031 0.0064 −0.4594
0.0014 −0.0285 0.7983

 .

The final reduced system matrices are G̃ = V TGV , B̃ =
V TB, C̃ = V TCV , T̃ = V TTV and D̃ = D,
are given by

G̃ =

 1.4894 −0.0179 0.5147
0.0177 0.0006 −0.2578
−0.5091 0.2180 0.7451

× 10−5,

C̃ =

1.00587 1.5005 3.3046
1.5005 3.5524 −3.3288
3.3046 −3.3288 3.1934

× 10−12,
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FIGURE 1. Original system response of spiral inductor of order n = 11.

FIGURE 2. Comparison of the frequency response of ROM (order r = 7) of
spiral inductor with original system order n = 11. The SOAR-GK
performing well compared to other first and second-order MOR
techniques.

T̃ =

−4.4783 −3.6057 −5.0762
−3.6057 −5.8275 −4.6264
−5.0762 −4.6264 −5.7591

× 106,

B̃ =

−0.00140.0285
−0.7983

 ,
B̃T =

[
−0.0014 0.0285 −0.7983

]
, D̃ = 0.

IV. SIMULATION AND RESULTS
This section discusses the performance as well as numer-
ical efficiency of the proposed SOAR-GK (Second Order
Arnoldi Reduction Gaussian Kernel) method. The problem
of showing simulation and analysis is solved by selecting two
examples of on-chip interconnect structures i.e. an intercon-
nect inductor and an RLC (Resistance, Inductance, Capaci-
tance) network with their second-order state representation.
The models are generated by applying the field solvers for
parasitic extraction [12], [13]. The nodal analysis equations
are used to create state-space representation as explained in
(19). The generated examples are of order 11 and 53 for
the interconnect inductor and RLC network, respectively.
All simulations are carried out using MATLAB. In addition,
the order of the reduced model is kept the same for the
two examples i.e. 7 and 24 for the spiral and RLC network

FIGURE 3. The absolute error plot for the spiral inductor example,
showing the minimum error for the SOAR-GK method.

FIGURE 4. Original system response of RLC network of order n = 53.

respectively. This enables to keep the same time for carrying
out the simulation of reduced-order models, thus, allowing
for comparison of minimum, maximum, and mean error of
the proposed SOAR-GK with all techniques.

In the first example of a lower order interconnect inductor,
the reduced-order modeling results of the proposed model are
compared with the PRIMA [27], Single Shift Arnoldi [35]
and Uniform Multi-shift [35]. The original system response
of interconnect inductor is shown in Figure 1. The compari-
son results in Figure 2 with projection showing the selected
frequency of interest from 1.8 GHz to 4 GHz, gives a close
match of SOAR-GK with an overlapping peak and response
compared to the original system. The absolute error in dB
showing comparison with state of the art MOR methods is
plotted in Figure 3. The error plot shows that our proposed
SOAR-GKmethod has considerably reduced error relative to
the PRIMA, single shift Arnoldi and uniform multi-shift for
the selected range of frequency.

The second example is a state-space model of the
order 53 RLC network. The original response of the RLC
network is plotted in Figure 4. The example is taken keep-
ing in mind state of the art Intel 7 (i7), 8th generation
modern processor [36]. The processor works on dual fre-
quencies, which is defined in Figure 5 with the selected
range of frequency. Figure 5 plots the magnitude response
of original order n = 53 interconnect RLC network, with
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Algorithm 1 Pseudocode of Second-Order Arnoldi Reduction Weighted With Gaussian Kernel
INPUT = (C , G, T , B, sk , r , smin, smax)
OUTPUT = (C̃ , G̃, T̃ , B̃, Q)
Function [ C̃ , G̃, T̃ , B̃] = soar-gk(C , G, T , B, sk , r)
kmax : maximum number of selected IPs
z : range; σ : standard deviation; µ : mean

tp = normpdf(z, µ, σ )
Select sk (n) between smin and smax

sk (n) = sort(tp[1 : kmax]) (selected expansion points)
for n = 1: k
K = s2k (n)C + sk (n)G+ T
D = 2sk (n)C + G
bk = sk (n)B, b1 = B
Solve: qk = (s2k (n)C + sk (n)G+ T )

−1bk
pk = b1, qk = K−1b0

H =
[
−K−1D K−1

−C 0

]
b = [qk , pk ]
if n == 1
q(:, n) = b

||qk ||
end
v = Hq(:, n)
for j = 1 : n
h(j, n) = q(1 : N , j)T v(1 : N )

v = v− h(j, n)q(:, j)
end
v(:, n+ 1) = v

||(v(1:N ))||
V = v(1 : N , :)

end
Generate Reduced order Model
G̃ = V TGV ; B̃ = V TB; C̃ = V TCV ; D̃ = D;

T̃ = V TTV ;

FIGURE 5. Comparison of the frequency response of ROM (order r = 24)
of a RLC network with original system order n = 53. The SOAR-GK
performing well compared to other first and second-order MOR
techniques.

reduced order r = 24 response using PRIMA [27], single-
shift Arnoldi [35], uniform multi-shift [35] and proposed
SOAR-GK. The result of the comparison in term of absolute
error plotted in Figure 6 shows that a reduced order 24 using

TABLE 1. Mean, minimum and maximum error comparison of spiral
inductor example.

the proposed SOAR-GK the method correctly captures the
behavior of the original system. However, the PRIMA imple-
mentation misses most of the resonance peaks and does
not accurately characterize the original system response.
It is observed that the Arnoldi-based PRIMA matches the
low-frequency response first and a reduced order of 24 is not
sufficient to accurately cover the selected frequency range.
The absolute error plot in Figure 6 also highlights the accu-
racy and numerical efficiency of our proposed SOAR-GK
method, showing the minimum error compared to other tech-
niques over the entire range of frequencies i.e. from 1.8 GHz
to 4 GHz.

The error comparison of the two examples for various
methods is summarized in Table 1 and Table 2. In Table 1,
we compare the minimum, maximum, and mean error for the
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TABLE 2. Mean, minimum and maximum error comparison of RLC
network example.

FIGURE 6. The absolute error plot for the RLC network example, showing
the minimum error for the SOAR-GK method.

spiral inductor example. Note that the proposed SOAR-GK
scores the lowest minimum, maximum, and mean error of
−235.38dB, −1.61dB, and −135.81dB respectively com-
pared to other techniques. Similarly, Table 2 shows RLC
network errors for various techniques, with SOAR-GK again
showing lowest mean and maximum error of −161.55dB
and −7.32dB. However, we note that the minimum error
on PRIMA is −294.16dB compared to −272.05dB for
the SOAR-GK, which is due to the Arnoldi-based PRIMA
matching the low-frequency response first. Nevertheless, the
overall response of SOAR-GK is far better as shown by the
maximum and mean error in Table 2 for the RLC example.

V. CONCULSION
Second-order MOR plays an important role in the modeling
and design of the integrated circuits to account for the par-
asitic effects created in the design of on-chip components
and interconnects. In this work, we developed an accurate
SOAR-GK method for the MOR of second-order systems,
which selectively picks the expansion points weighted with
Gaussian kernel in the given range of frequencies of inter-
est. The proposed method ensures stability and passivity of
the ROM over the desired frequency range, with simulation
results showing better accuracy and numerical stability com-
pared to the existing reduction methods.
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