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ABSTRACT This paper presents an in-depth analysis of state-of-the-art semantic segmentation algorithms
applied to spacecraft safe planetary landing via hazard detection and avoidance. Several architectures are
trained from binary safety maps and the rich dataset of the High-Resolution Imaging Science Experiment
(HiRISE) embedded on Mars Reconnaissance Orbiter for realistic purposes. The study incorporates several
metrics comparisons such as recognition accuracy, computational complexity, model complexity, and infer-
ence time. The proposed performance indices and combinations are analyzed and discussed. The experiments
were performed using a Raspberry Pi 4B, which is a relevant commercial-of-the-shelf microcontroller
surrogate of NASA’s High-Performance Spaceflight Computer (HPSC) that will thrive within the next
decades in space exploration. This paper allows researchers to know what has been tested on the subject
and serves as a catalog for users to pick the most relevant architecture for their own application.

INDEX TERMS Artificial neural networks, image segmentation, space exploration, aerospace safety.

I. INTRODUCTION
Safe landing is by far the most critical part of every space
mission aiming at conducting experiments on the ground.
First performed by humans during the Apollo program with
Apollo 11 [1], it switched to fully autonomous with the explo-
ration of Mars as distances increased. Engineers even call the
entry, descent, and landing phase on Mars the seven minutes
of terror, as it takes 7 minutes to the spacecraft to safely land
on the planet, and from which the outcome can only be seen
after the landing has occurred due to this important delay.

At first, these landers developed and managed by NASA’s
Jet Propulsion Laboratory (JPL) had a predefined trajectory
in their flight computer, and diversion was not possible.
This was the case for all landers before the year 2020 with
Viking 1 & 2 [2], [3], Pathfinder and its Sojourner rover [4],
Spirit [5], Opportunity [6], Phoenix [7], Curiosity [8], and
Insight [9]. On February 18, 2021, Terrain Relative Navi-
gation (TRN), a revolutionary technique able to safely and
autonomously land between hazards was first tested in real
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FIGURE 1. Powered descent for perseverance [10]): NASA’s perseverance
rover fires up its descent stage engines as it nears the martian surface in
this illustration. Credit: NASA/JPL-Caltech.

conditions during the Mars 2020 mission embedding the Per-
severance rover and the Ingenuity helicopter [11], as shown
on Fig. 1. The lander would take photos during its descent,
compare them to its orbital map, and divert if necessary.

Limited by the capabilities of space-rated flight computers,
continuous analysis of the terrain and computation of new
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trajectories combined with increasing degrees of safety are
becoming computationally too demanding and new technolo-
gies are now required to overcome this challenge. This is
why NASA’s JPL, along with industry partners, is developing
the High-Performance Spaceflight Computer (HPSC) [12].
A hundred times more efficient than its monolithic counter-
part, it will push the boundaries of space exploration, and
allow missions that were thought impossible to happen in the
next decades.

On the other hand, artificial intelligence, and especially
machine learning and computer vision have been greatly
explored and are today two of the most active fields studied
by researchers around the world [13]. Offering the capabil-
ities of learning optimal decisions to be retrieved orders of
magnitude faster than classical approaches has shed light on
attainable breakthroughs in various disciplines and domains
in modern science and engineering. Specifically, deep neural
networks have allowed semantic segmentation, a computer
vision technique, to arise and enable the classification of each
pixel in an image from a predefined set of classes, and now
starts playing a role in spacecraft safe planetary landing.

Throughout the landing of the spacecraft, many technical
challenges are to be anticipated in order to robustify mis-
sion success. The martian surface, and more specifically the
regions of scientific interest, are full of obstacles such as
craters, cliffs, cracks and jagged boulders, which in turn set
high requirements on the safety level prediction accuracy
of the landing sites [14]. Furthermore, as for Hayabusa’s
first rehearsal descent, it could be possible that the original
landing site was surrounded by small but fatal hazards, which
could not be detected until the vehicle is close enough to the
surface [15]. This then constraints the algorithms to handle
increased resolutions. Further, these vision processes have
to fit on space-rated hardware and satisfy mission require-
ments such as inference time or prediction accuracy, thus
being memory and computationally efficient. These algo-
rithms must finally be trained on realistic data and be robust
to sensor noise.

The main contributions of this paper can be summarized as
follows:
• Choice of the HPSC surrogate microcontroller for real-
istic performance predictions.

• Training on realistic and noisy data to obtain perfor-
mance metrics during inference time of state-of-the-
art semantic segmentation algorithms for binary safety
maps generation.

• Benchmark of all the algorithms and architectures in
several metric spaces such as accuracy, memory con-
sumption and inference time to find the most suitable
one for the landing problem.

The structure of this paper is as follows: Section § III
finds a relevant commercial-off-the-shelf surrogate of the
HPSC. Section § IV presents the algorithms and the metrics
being compared. Section § V introduces and discusses the
numerical results. Section §VI finally draws conclusions and
perspectives on this work.

II. LITERATURE REVIEW
In prior studies, the necessity of providing safe landing
for autonomous systems started with the emergence of
Unmanned Aerial Vehicles (UAVs). The computer vision
community played an essential role with primal develop-
ments in visual odometry ranging frommonocular vision [16]
to stereo vision [17], [18], providing depth estimation,
or feature-based methods [19]. Moreover, Simultaneous
Localization and Mapping (SLAM) [20], mostly using
LiDAR-based point clouds, allowed the generation of 3D
maps, and thus to estimate the topology of the terrain to
land on. Safe landing was also thoroughly studied from
the perspective of LiDAR-based ground filtering algo-
rithms based on the process of Digital Elevation Maps
(DEMs) [21]. Many other techniques were studied such
as Stereo-Ranging [22], using two cameras with different
angles to analyze pixel disparity and estimate depth, Struc-
ture from Motion (SFM) [23] to reconstruct 3D terrain from
2D-image sequences, Homography Estimation and Adaptive
Control (HEAC) for image rectification and registration [24],
but also Color Segmentation [25] and Optical Flow [26].

Pixel classification from semantic segmentation was used
for numerous applications ranging from autonomous driv-
ing [27], robotic navigation and localization [28], to scene
understanding [29]. Semantic segmentation based on deep
learning was also involved in UAV visual landing site
detection, such as with the PSPNet architecture [30]. Since
recently, semantic segmentation has started playing a role in
space engineering, and in particular for spacecraft safe plan-
etary landing with networks like U-Net [31], [32]. Another
main technical challenge of this task is that the state-of-the-
art algorithm, namely the Autonomous Landing and Hazard
Avoidance Technology (ALHAT) [33], [34] only considers
local features, whereas a global understanding of the entire
image could provide more insight, and this is where semantic
segmentation motivates this work. During the descent phase,
every time the LiDAR-based cameras retrieve a point cloud of
the ground, a digital elevation map is created. The semantic
segmentation algorithm is then able to classify every pixel
and predict its safety level, namely identify the nature of
each landing site. This method has already proven to pro-
vide better results than ALHAT [35]. The benchmark study
of the proposed paper is for the base architectures without
uncertainty quantification, and adding them would increase
the performance as shown in [36].

III. NASA’s HIGH-PERFORMANCE SPACEFLIGHT
COMPUTER’s SURROGATE
To make realistic experiments, a relevant substitute of
NASA’s High-Performance Spaceflight Computer Surro-
gate (HPSC) must be chosen. This section gives the latest
specifications of the HPSC and finds a surrogate of it.

To do that, the comparison is based on FLOPS, which is
a measure of how many floating-point operations a micro-
controller is able to perform per second. It is a function of
the number of cores, their clock frequency, the number of
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floating-point operations performed at each cycle, and the
computing method that enables processing of multiple data
with a single instruction, also known as SIMD capabilities.
The FLOPS are then defined by the following equation:

FLOPS = cores×
cycles
second

×
FLOPs
cycle

× SIMD (1)

In the case of NASA’s HPSC, some information could be
found from the preliminary design [12]. Here are listed the
paper’s assumptions about the expected HPSC specifications.
• Cores: A minimum of eight 64b CPU cores on the
HPSC System-on-Chip (SoC) die, each of which con-
tains integer, double-precision floating-point, and vector
processing capability. It is desired that all eight cores be
fully coherent.

• Integer Performance
– Minimum CoreMark (per core, @ 1GHz): 5,100
– MinimumCoreMark (overall, for 8 cores@ 1GHz):

36,720
• Floating-Point Performance

– Minimum FP performance (per core): Two double-
precision (64b) FP ops per cycle

– Minimum FP performance (overall): Sixteen
double-precision (64b) FP ops per cycle

• Vector/SIMD Performance
– Minimum Vector performance (per core): Two 64b

vector ops per cycle
– Minimum Vector performance (overall): Sixteen

64b vector ops per cycle
• Clock: All of the CPU cores, floating-point engines,
and vector units shall operate at a minimum frequency
of 1 GHz. Note the microcontroller core used for boot,
health, and configuration can operate less than 1GHz.

Taking into account the highly used parallelization for
neural networks (e.g. matrix multiplications and additions),
it is reached:

8 cores× 1GHz× 2 FLOPs/cycle/core× 2 SIMD

= 32 GFLOPS (2)

In comparison, Raspberry Pi 4B [37] achieves a theoretical
maximum of:

4 cores× 1.5GHz× 3 FLOPs/cycle/core× 2 SIMD

= 36 GFLOPS (3)

This means that to compare effectively with Commercial
off-the-shelf (COTS) hardware, the easiest approach is to
reduce the clock frequency of the Raspberry pi 4B to match
the 32 GFLOPS of HPSC, theoretically by

η = 32/36 = 0.89 (4)

.
So the frequency applied to Raspberry Pi 4B becomes:

fRPI4B = η × 1.5GHz = 1333 MHz. (5)

IV. ARCHITECTURES AND METRICS
In this section, it is presented the semantic segmentation
architectures and metrics that are being compared.

A. ARCHITECTURES
The following architectures are all composed of convolu-
tional layers which govern the overall time complexity of
the network. They are based on the 2D cross-correlation
operation and lead, following [38], for squared input and
kernel, to:

Ct = O
(

d∑
l=1

nl−1 · s2l · nl · m
2
l

)
, (6)

with Ct the time complexity, l the index of the layer, nl−1 the
number of input channels of layer l, nl the width, or number
of filters, sl the spatial size of the filter, andml , the size of the
output.

1) SegNet: 5, 4, AND 3 ENCODING-DECODING LAYERS
The first semantic segmentation model with which this paper
deals with is SegNet [39], depicted on Fig. 2. This is an
encoder-decoder network with a pixel-wise classification
layer. His encoder is similar as the VGG16 network. Unlike
other models, SegNet stores the pooling indices and retrieves
them during the umsampling step. In this study, it is bench-
marked three types of SegNets. The first one is the original
with 5 layers for the encoding and 5 others for the decoding
step. It is also tested with 4 and 3 on each side of the low-
dimensional (or latent) space to see the effect of the parame-
ters reduction on the accuracy.

2) FCN (FULLY CONVOLUTION NETWORK):
32s, 16s, AND 8s
Fully Convolutional Networks [40], as shown on Fig. 3, share
the same encoding process as for SegNet, but the indices
are not stored to perform the upsampling. For that specific
task of retrieving the input size, there are several types of
options. The first one is called FCN-32s. From the latent
space, it is directly upsampled or interpolated to the original
image size. A lot of information is then lost. Then, it is
compared FCN-16s.

In that case, the last step is upsampled by 2, the scores are
summed with the step before, and the result is upsampled to
the original image size.

In the final case, FCN-8s, the result of FCN-16s are upsam-
pled by 2, the score are added with the step before, and
the result is upsampled. The accuracy should increase from
FCN-32s, to FCN-16s, to FCN-8s, as the upsampling loses
less and less information. However, it is more computationaly
heavy.

3) ICNet (IMAGE CASCADE NETWORK)
The Image Cascade Network (ICNet) [41], represented on
Fig. 4, works in several steps. First, the low-resolution images
reach the end of the network and a first mapping is obtained.
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FIGURE 2. SegNet [39] is an encoder-decoder network with a pixel-wise
classification layer. His encoder is similar to the VGG16 network. Unlike
other models, SegNet stores the pooling indices to retrieve them during
the umsampling step. Licensed under CC BY 4.0.

FIGURE 3. Fully Convolutional Networks [40] share the same encoding
process as for SegNet, but the indices are not stored to perform the
upsampling. The three types of FCNs differ by their upsampling part,
which incorporate different levels of feature resolutions. 
 [2017] IEEE.
Reprinted, with permission, from [40].

FIGURE 4. The Image Cascade Network (ICNet) [41] works in several
steps. First, the low-resolution images reach the end of the network and a
first mapping is obtained. On top of that, medium and high resolution
features refine it with cascade feature fusion unit and cascade label
guidance strategy. Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature Computer Vision @ ECCV
2018 [41], 
 (2018).

On top of that, medium and high resolution features refine it
with cascade feature fusion unit and cascade label guidance
strategy.

4) U-NET (U-SHAPE NETWORK) AND TransUNet
U-Net [42], on Fig. 5, is based upon FCN but should in theory
provide a better precision with less training images.

The main idea is to replace pooling operations by upsam-
pling operators to improve the resolution of the output. Also,
the skip connections (copy and crop) technique in U-Net
copies the image matrix from the earlier layers (left-hand side
of Fig. 5) and uses it as a part of the later layers (right-hand

FIGURE 5. U-Net [42] is based upon FCN but should in theory provide a
better precision with less training images. The main idea is to replace
pooling operations by upsampling operators to improve the resolution of
the output. Also, the skip connections (copy and crop) technique in U-Net
copies the image matrix from the earlier layers (left-hand side) and uses
it as a part of the later layers (right-hand side). With this, the model
preserves rich information, thus reduces information loss. The many
channels in the decoder part helps propagating context information to
layers with higher resolution and this symmetry leads to the U-shaped
architecture. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature MICCAI 2015 [42], 
 (2015).

side layers). With this, the model preserves rich information,
thus reducing information loss. The many channels in the
decoder part helps propagating context information to lay-
ers with higher resolution and this symmetry leads to the
U-shaped architecture.

Regarding the TransUNet architecure [43], it adds Vision
Transformers (ViT, concept of self-attention) to record com-
prehensive localization information at all network stages
while conveying the context over a long-range within the
network.

5) ENet (EFFICIENT NEURAL NETWORK)
ENet [44], also uses an encoder-decoder scheme and is more
adapted to real-time applications. The idea is to early down-
sample in the decoder part to reduce the cost of processing
large input frames. ENet also takes advantage of PReLUs
as an activation function, dilated convolutions and spatial
dropout.

6) ConvDeconv
ConvDeconv [45] is a semantic segmentation network follow-
ing similar ideas as for SegNet but with a lot less layers and
with smaller kernel sizes.

7) DeepLabV3 WITH A ResNet BACKBONE
The last architecture that was benchmarked is the DeepLabv3
[46]. Atrous convolution are used in cascade or in parallel to
segment objects at multiple scales. State-of-the-art networks
attach a ResNet (Residual network) backbone to it, acting
as its main feature extractor. There exist several variants
of this tandem, such as when changing the number of lay-
ers (ResNet-N), the number of groups / width per group
(ResNeXt), or making the bottleneck number of channels
twice larger in every block (Wide).
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FIGURE 6. Examples of the training dataset. The digital elevation maps
are processed from the Mars HiRISE experiment and fed to the network
to learn what are the safe (green) and unsafe (yellow) parts of a camera
view. Bright colors indicate relatively high elevation in the image.

B. PERFORMANCE METRICS
It is now presented the performance metrics that are being
used to benchmark the different algorithms and architectures
on the same basis.

1) RECOGNITION ACCURACY
The accuracy is representing the pixel accuracy in this study,
which is the number of pixels that were correctly judged as
safe or unsafe.

2) COMPUTATIONAL COMPLEXITY
The computational complexity is represented by the number
of floating-point operations (or GFLOPs). The requirement
is that is must be below the capabilities of HPSC of 32
GFLOPS.

3) MODEL COMPLEXITY
The model complexity is obtained by counting the number of
learnable parameters. This is important regarding the mem-
omy capabilities of the hardware.

4) INFERENCE TIME
The inference time is the duration that needs the network
to perform one forward pass. For statistical purposes, it was
averaged over 100 runs.

V. NUMERICAL RESULTS
A. INPUT DATASET AND TRAINING
1) DATASET
The data that was used in this study is directly imported from
the Mars HiRISE camera on-board the Mars Reconnaissance
Orbiter (MRO). The resolution is 1m/pixel and of size

100 × 100 upsampled with bilinear interpolation to 128 ×
128 before being fed to the network.

For the ground-truth label, the ALHAT probabilistic algo-
rithm is not used. It is instead measured slope and roughness
just as ALHAT does, but safety maps are deterministically
generated from the noise-free Digital Elevation Maps.

The dataset contained a total of 1000 normalized Digi-
tal Element Maps (DEMs), with 800 for training, 100 for
validation, and the remaining 100 for testing. Examples of
which can be seen on Fig. 6. All images are independent
from one another as there was no data augmentation strategies
involved.

2) TRAINING
Integrated in the Pytorch framework, the models were trained
using the Adaptative Moment Estimation (Adam) stochastic
optimizer. A batch size of 8 was used for the 1 million epochs
of training, with a learning rate of 0.00001. The training
took several days on an NVIDIA Quadro RTX 6000 on the
Georgia Institute of Technology’s High-Performance PACE
Cluster. The benchmark was however performed online with
the chosen HPSC surrogate, namely the Raspberry Pi 4B,
as discussed in section III.

B. BENCHMARK
1) ACCURACY VS COMPUTATIONAL COMPLEXITY VS
MODEL COMPLEXITY
The ball chart in Fig. 7 gives the accuracy of each model with
respect to its computational complexity on the X-axis, and its
model complexity (number of parameters) as the size of the
ball. The highest pixel accuracy is reached by ConvDeconv
with 95% which also has the least amount of parameters.
It seems to be no direct relationship between the accuracy
and GFLOPS observing that ICNet with respect to ENet
has similar computational complexity but with 10 less per-
centage points. Further more, the same example also shows
that having a large number of parameters does not imply a
better accuracy. This is actually by reducing the number of
learnable parameters and computational operations that the
best performance occurs.

2) ACCURACY-RATE VS LEARNING POWER
The accuracy density, which is the ratio of the recognition
performance by the number of parameters to achieve that
result. It is first observed on Fig. 8 that TransUNet and
the DeepLabv3s have the lowest results. On the other hand,
architectures such as ConvDeconv, Enet, and SegNet 3 make
a better use of their model complexity. This accuracy density
is compared with the actual accuracy of eachmodel. ConvDe-
conv, which the the most accurate model, uses 5 times more
efficiently its parameters than SegNet 3 and also has a better
accuracy of 2.5 percentage points.

3) ACCURACY-RATE VS INFERENCE TIME
The inference time of each model computed from the Rasp-
berry Pi 4B is finally shown on Fig. 9. The grid plot
shows 3 classes. The first one regroups the architectures
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FIGURE 7. This ball chart gives the accuracy of each model with respect to its computational complexity on the X-axis, and
its model complexity (number of parameters) as the size of the ball. The highest pixel accuracy is reached by ConvDeconv
with 95% which also has the least amount of parameters. It seems to be no direct relationship between the accuracy and
GFLOPs observing that ICNet with respect to ENet has similar computational complexity but with 10 less percentage points.
Furthermore, the same example also shows that having a large number of parameters does not imply a better accuracy. This
is actually by reducing the number of learnable parameters and computational operations that the best performance occurs.

FIGURE 8. The accuracy density, which is the ratio of the recognition performance by the number of parameters to achieve that
result. It is first observed that TransUNet and the DeepLabv3s have the lowest results. On the other hand, architectures such as
ConvDeconv, Enet, and SegNet 3 make a better use of their model complexity. This accuracy density is compared with the actual
accuracy of each model. ConvDeconv, which the the most accurate model, uses 5 times more efficiently its parameters than
SegNet 3 and also has a better accuracy of 2.5 percentage points.

that perform 5 to 10 forward passes in lass than 2 seconds,
namely ConvDeconv and ICNet. Then, 5 models perform
their inference between 0.2 and 1 second. This group contains
all the SegNets, as well as U-Net and ENet. Finally, all
fully connected networks, TransUNet, and the DeepLabv3s
take more than 1 second to perform the prediction. Among
the architectures that produce their safety map is less than
1 second, ConvDeconv gives the best accuracy. It is the
fastest, but also the most accurate. It can also be noted that

among the SegNets, SegNet 3, the smallest one in terms of
computational andmodel complexity, achieves the fastest and
most accurate performance.

Since the accuracy and the inference time are the two
most important factors, the models that give the best perfor-
mance with respect to those metrics is ConvDeconv. Follow-
ing Table 1, this architecture is the best in terms of almost
all the computed metrics, namely inference time, specificity
(true unsafe rate), fall-out (false safe rate), computational and
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FIGURE 9. The inference time of each model computed from the Raspberry Pi 4B is finally shown. The grid plot shows 3 classes. The
first one regroups the architectures that perform 5 to 10 forward passes in lass than 2 seconds, namely ConvDeconv and ICNet. Then,
5 models perform their inference between 0.2 and 1 second. This group contains all the SegNets, as well as U-Net and ENet. Finally,
all fully connected networks, TransUNet, and the DeepLabv3s take more than 1 second to perform the prediction. Among the
architectures that produce their safety map is less than 1 second, ConvDeconv gives the best accuracy. It is the fastest, but also the
most accurate. It can also be noted that among the SegNets, SegNet 3, the smallest one in terms of computational and model
complexity, achieves the fastest and most accurate performance.

TABLE 1. Results for every model obtained with the Rasberry Pi 4B. mIoU is the mean intersection over union, T-S/S the fraction of true safe pixels
(sensitivity), F-US/S the percentage of pixels that were predicted as unsafe when they were actually safe (miss rate), T-US/US (specificity) the ratio of
pixels that were correctly labeled as unsafe, F-S/US those which were incorrectly labeled as safe when they were unsafe (fall-out), GFLOPs the number of
billions of FLoating OPerations used for one inference (computational complexity), and # of parameters is the number of parameters (model complexity).
Best values are written using boldface letters. It can be observed that the shallower the architecture such as with SegNet 3 or ConvDeconv, the better the
performance in terms of inference time, accuracy, computational complexity, and memory usage on this specific task.

model complexity. Only SegNet 3, which is also a shallow
architectures with respect to the others, shows approaching
results, even producing better sensitivity (true safe rate), and
miss rate (false unsafe rate).

4) RESULTS FOR ConvDeconv
The study finally zooms in on ConvDeconv, the chosen archi-
tecture for the landing problem. On Fig. 10, it is shown
the training results. The loss function decreases and finally

plateaus at the same step at the Mean Intersection over Union
(mIoU), and the Pixel Accuracy. As stated in section V, the
accuracy of ConvDeconv is of 95%, and its mIoU of 89%.
Overfitting did not occur as the accuracy for the testing set did
not decrease after a given iteration. On Fig. 11, it is seen the
evolution of the prediction throughout the training process.
The algorithm is able to predict the biggest unsafe areas,
but struggles with the finest details in this setup. However,
as the lander continues its descent, details will eventually
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FIGURE 10. Training results for the testing set of ConvDeconv. The loss function decreases and finally plateaus at the same step at the Mean
Intersection over Union (mIoU), and the pixel accuracy. As stated in section V, the accuracy of ConvDeconv is of 95%, and its mIoU of 89%. Overfitting
did not occur as the accuracy for the testing set did not decrease after a given iteration.

FIGURE 11. Progress of the prediction (a), (b), and (c), of the target image (d) for ConvDeconv. It is seen the evolution of the prediction throughout
the training process. The algorithm is able to predict the biggest unsafe areas, but struggles with the finest details in this setup.

FIGURE 12. The inference time which follows a quadratic law as a
function of the relative resolution, For instance, an increase from
128 × 128 pixels to 1280 × 1280 will lead to an explosion in time by a
factor 100. Thus, increasing the resolution of the overall process will be
costly and trade-offs would have to be made between accuracy and
inference time to satisfy the requirements.

become large, but this paper wants to stress out that direct
conclusions should not be made since the algorithms was
only trained at a certain altitude. Nonetheless, as depicted
in Fig. 12, the inference time follows a quadratic law with
respect to the relative resolution. For instance, an increase
from 128×128 pixels to 1280×1280will lead to an explosion
in time by a factor 100. Thus, increasing the resolution of the
overall process will be costly and trade-offs would have to

be made between accuracy and inference time to satisfy the
requirements.

VI. CONCLUSION AND PERSPECTIVES
In this study, after choosing a relevant surrogate of NASA’s
High-Performance Spaceflight Computer, it was bench-
marked several semantic segmentation models and architec-
tures to find the most suitable for the landing problem task,
taking into account hardware and mission specifications.

The key findings of this paper are the following:

• Raspberry Pi 4B is a relevant surrogate model for
NASA’s High-Performance Spaceflight Computer.
It allows to reproduce the physical limits of a 64-bit
8-core architecture with a computational limit of
32-GFLOPS.

• There is no correlations between most of the different
metrics. However, shallow architectures seem to have a
prominent impact on the performance.

• ConvDeconv is the architecture that achieves the best
accuracy (>95%). It also provides the fastest inference
time with more than 10 predictions per second. It is
finally the one requiring the least computational power
and memory usage, thus the chosen solution for the
given problem.

Further studies would have to vary the resolution of the
input Digital Elevation Maps, but also the slant distances
and angles of the lander with respect to the ground, in a
perspective of finding the most robust architecture. Another
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idea would be to make use of different models in concert
depending on the lander’s configuration.
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