IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 9, 2022, accepted March 30, 2022, date of publication April 18, 2022, date of current version April 27, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3168235

PDGAN: Phishing Detection With Generative

Adversarial Networks

SAAD AL-AHMADI, (Senior Member, IEEE), AFRAH ALOTAIBI~, AND OMAR ALSALEH

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Saad Al-Ahmadi (salahmadi @ksu.edu.sa)

This work was supported by a grant from the ‘“‘Research Center of College of Computer and Information Sciences”, Deanship of Scientific

Research, King Saud University.

ABSTRACT Phishing is a harmful online attack that could lead to identity theft and financial damages.
The demand for high-accuracy phishing detection tools has risen due to the increase of online electronic
services and payment systems. Most phishing detection techniques depend on features related to webpage
content, which necessitates crawling the webpage and relying on third-party services. Relying on features
related to webpage content could not provide high detection accuracy and leads to high false detection
rates. Recently, deep learning has become a popular approach for detecting phishing websites. However,
limited attention has been given to the generative adversarial network (GAN). This paper proposes a phishing
detection model called PDGAN that depends only on a website’s uniform resource locator (URL) to achieve
reliable performance. We use a long short-term memory network (LSTM) network as a generator of synthetic
phishing URLs and a convolutional neural network (CNN) as a discriminator to decide whether the URLs
are phishing or legitimate. We use a dataset containing nearly two million phishing and legitimate URLSs
obtained through PhishTank and DomCop. The experimental results show that the PDGAN achieves a
detection accuracy of 97.58% and a precision of 98.02% without depending on third-party services and
with greater accuracy than the state-of-the-art models.

INDEX TERMS Convolutional Neural Network (CNN), deep learning, generative adversarial network

(GAN), long short-term memory network (LSTM), phishing website detection.

I. INTRODUCTION

Phishing is a common type of social engineering attacks
that tricks users into revealing their confidential information
and credentials, such as passwords and credit card infor-
mation. With the variety of cybersecurity attacks, phishing
has received particular attention due to its powerful effects
on industries as well as individuals in terms of financial
and personal data [1]. A report recently published by the
Anti-Phishing Working Group (APWG) [2] detected 611,877
phishing sites in the first quarter of 2021—a notable increase
compared to the 164,772 sites in the first quarter of 2020.
Since the number of phishing attacks has increased, there is
a strong need for an efficient approach to phishing detection.
Accordingly, the victims can be warned when they are a target
of a phishing campaign to avoid any potential loss of sensitive
data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeeb Dey

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Phishing detection models can be categorized into human-
based and software-based approaches. Human-based models
aim to enhance the knowledge of end-users and help them
make good decisions when faced with a phishing website.
In contrast, software-based models adopt different techniques
to determine whether a website is phishing or legitimate
without end-user interference. The latter model is generally
divided into five approaches: blacklist/whitelist, visual simi-
larity, heuristic, machine learning, and deep learning [3].

1.1 The blacklist/whitelist-based approach relies on a list of
known phishing websites which contains much informa-
tion such as known phishing URLs, IP addresses, and
others. This list must be updated constantly [4].

2.2 The visual similarity-based approach compares the
visual similarity of the phishing webpage and its cor-
responding legitimate webpage using different features.
If the similarity is higher than the preset threshold, a web-
page is considered phishing [5].

3.3 The heuristic-based approach depends on a phishing web
page’s characteristics, the similarity between phishing

42459

https://orcid.org/0000-0001-9406-6809
https://orcid.org/0000-0003-2733-795X
https://orcid.org/0000-0002-6573-0114

IEEE Access

S. Al-Ahmadi et al.: PDGAN

webpages, or experts’ prior knowledge. This approach
extracts many features from phishing webpages and gen-
eralizes them into a collection of heuristics [6].

4.4 The machine learning approach considers phishing

detection as a binary classification problem. It typically
includes two steps: first, obtaining an appropriate feature
representation from the URL, and second, using this
representation to train machine learning models. The
first step involves acquiring useful information about
the URL, which can be represented as a vector for fur-
ther use by machine learning models. These features
are extracted manually from different sources, such as
URLs, website traffic, search engines, DNS, etc. [1].
Therefore, the training data must contain many features
related to legitimate and phishing website classes. The
second step involves training classification algorithms,
such as k-nearest neighbor (k-NN), decision tree (DT),
random forest (RF), naive Bayes (NB), and support vec-
tor machines (SVMs) [7].
A website is classified as phishing in a machine learning
approach if the tested website results match the pre-
defined feature set. The performance of this approach
depends on the feature set, training data, and classifica-
tion algorithm. Using machine learning algorithms can
enable unseen URLs to be easily detected. However,
some machine learning approaches require high compu-
tational power to compute and obtain features from dif-
ferent sources [7]. Several machine learning approaches
were proposed in [1], [8], and [9].

5.5 With regards to deep learning, the detection approaches

typically include three steps: first, designing a deep
learning model; second, selecting the model inputs; and
third, analyzing a set of features that are used to clas-
sify websites. In this approach, the selection of model
inputs and the construction of the model will influence
its effectiveness. For example, common models used for
phishing website detection include CNNs and recurrent
neural networks (RNNs).
The difference between traditional machine learning
and deep learning approaches can be highlighted by
feature engineering. The machine learning approach
needs robust knowledge to characterize the original
data into specific feature collections. In contrast, deep
learning models do not require feature engineering
since the model obtains features set directly from the
data [3].

In this paper, we propose a phishing website detection
approach PDGAN, which does not depend on webpage con-
tent but rather only on a webpage’s URL. PDGAN uses a deep
learning model, namely a GAN, whose adversarial process
allows the model to learn different variations in phishing fea-
tures and produce a final model that provides better detection
results. The proposed approach is domain-independent and
shows an efficient computational time with a detection rate
of less than 0.5 ms per URL.

42460

The key contributions are summarized as follows:

- Proposing a deep learning model, i.e., GAN, to detect
phishing websites, relying on the website URL only.

- Combining the advantages of the LSTM and CNN in
processing texts. At first, we use the LSTM to gener-
ate synthetic phishing URLSs, and then we use CNN to
determine whether the URL is phishing or legitimate.

- Using a large-scale dataset through DomCop and Phish-
Tank websites, which contains nearly 2 million phishing
and legitimate URLSs. From the experimental results, the
detection accuracy reached 97.58%, and the precision
reached 98.02%.

- Comparing two models with the proposed PDGAN, and
according to the experimental results, the PDGAN out-
performs the state-of-the-art models.

The rest of this paper is structured as follows: Section II
highlights different deep learning models for phishing detec-
tion presented in the literature. Section III introduces the
basic idea of PDGAN. Section IV provides the design of
the PDGAN approach in detail. Section V presents and dis-
cusses the experimental results. A conclusion is provided in
section VI.

Il. RELATED WORKS

Recently, various deep learning models have been used for
detecting phishing websites. This section outlines some of
these models.

Mohammad et al. [10] attempted to find an optimal solu-
tion by having the simplest model structure and avoiding
network expansion. Their work attempted to increase the
model’s accuracy by updating the learning rate. First, the
proposed model constructed a three-layer neural network,
with just one neuron in the hidden layer. The hidden layer
neurons were gradually increased in the training phase, but
the features were manually extracted. Legitimate websites
were obtained from the Yahoo! directory and starting point
directory, while phishing websites were obtained from Phish-
Tank and MillerSmiles. The results indicated that the model
had good generalization for noise data and a high detection
rate.

Bahnsen et al. [11] evaluated two approaches for URL
phishing detection. The first approach combined a URL’s
lexical and statistical analysis with a RF classifier. The second
approach was an LSTM network which directly learned a
representation from the URL’s character sequence instead of
manually extracting the features. The phishing URLs were
collected from PhishTank and the legitimate URLs from
Common Crawl. The LSTM approach provided a higher
accuracy rate and F1 score than the RF classifier.

Anand et al. [12] proposed a phishing URL detection
method using GANs with an oversampling task in the data
space. GANs were trained to learn the string pattern statis-
tics of URLs in the minority class and generate synthetic
URLs. Both the generator and discriminator were LSTM net-
works. They selected representative synthetic samples using

VOLUME 10, 2022

S. Al-Ahmadi et al.: PDGAN

IEEE Access

k-means clustering and Euclidean distance-based selection.
The dataset was collected from the PhishTank and Common
Crawl repositories.

Yi et al. [13] applied deep belief networks (DBNs) for
phishing detection. The proposed system used two features
for detection: original features and interaction features. The
original features referred to the direct features of the URL,
such as the domain age, while interacting features described
interactions between websites. The model had two layers
of restricted Boltzmann machines (RBMs) stacked layer by
layer. The proposed model used an SVM as a binary classi-
fier to classify the DBN features. The dataset was obtained
through real IP flows from the ISP. As a result, the detection
model achieved a high TP rate and a low FP rate.

Vinayakumar et al. [14] evaluated different deep learn-
ing models to detect phishing URLs, namely RNN, I-RNN,
LSTM, CNN, and a hybrid network (CNN-LSTM). The
phishing and legitimate URLs were trained at the character
level by extracting features automatically. The legitimate
URLSs were collected from Alexa and the DMOZ directory,
while the phishing URLs were collected from PhishTank
and OpenPhish. The LSTM and CNN-LSTM networks per-
formed well in distinguishing a URL as either legitimate or
phishing compared with other adopted models.

Selvaganapathy e al. [15] proposed a model for malicious
URL detection using stacked RBMs for feature selection with
deep neural networks for classification. Malware URLs and
advanced persistent threat URLs were collected from the
malicious domain list, while spamming and phishing URLSs
were collected from the UCI Machine Learning Repository.
Legitimate URLs were collected from the DMOZ directory.
The model reduced the FP rate and improved detection accu-
racy compared with other adopted methods.

Shivangi et al. [16] proposed a tool that is deployed as an
extension of the Google Chrome browser to provide the user
with a safer browsing experience. The proposed tool analyzed
URLSs and classified them using two different deep learning
models, namely artificial neural networks (ANNs) and LSTM
networks. These models extracted the features from the URLs
automatically, while other existing techniques required man-
ual feature engineering, which is a computationally expensive
and time-consuming task. The dataset was obtained through
search engines, PhishTank, and the Twitter Streaming APIL.
The LSTM network achieved higher accuracy than the ANN.

Peng et al. [17] proposed a malicious URL detection model
that utilized a CNN-LSTM network to extract and filter
textual features, statistical features, and WHOIS information.
They aimed to identify the important role of key features
in detecting malicious URLs. The phishing URLs were col-
lected from PhishTank, while legitimate URLs were collected
from popular websites. According to the results, the statistical
features of the URL contributed most to detecting malicious
URLSs. However, deep neural network models had a better
influence on detecting all features than individual ones. The
proposed model achieved the highest accuracy compared
with other adopted mechanisms.

VOLUME 10, 2022

Robic-Butez and Win [18] proposed a deep learning
approach for phishing detection using a GAN, which con-
sisted of two networks: a generator and a discriminator. The
generator generates both legitimate features and synthetic
phishing to train a discriminator, which determines whether a
website is phishing or legitimate. The detection error obtained
is used to improve the accuracy of the discriminator and
generator networks. Both the generator and the discriminator
were multilayer perceptron (MLP). The phishing and legit-
imate URLs were obtained from PhishTank and Amazon,
respectively.

Zhang et al. [19] proposed a hybrid model to detect phish-
ing websites with URL-based, abnormal-based,
HTML-based, JavaScript-based, and domain-based features.
The proposed model incorporated two models: an autoen-
coder (AE) and a CNN. The CNN was used to obtain the local
feature combinations, while the AE was used to reconstruct
features that explicitly enhanced the correlations among the
features. Phishing URLs were collected from PhishTank, and
legitimate URLs were collected from DMOZ. According to
the results, the proposed model achieved the highest accuracy
compared with other traditional classification algorithms.

Huang et al. [20] proposed a deep learning approach
for phishing detection called PhishingNet that depends
only on URLs. They used CNN modules to extract
character-level spatial feature representations of URLs and
employed attention-based hierarchical RNN modules to
extract word-level temporal feature representations. They
then merged these feature representations via a three-layer
CNN to build accurate URL feature representations and
used an MLP for classification. A large-scale dataset was
built through PhishTank, OpenPhish, and Alexa. The pro-
posed approach significantly outperformed state-of-the-art
solutions, indicating the model’s effectiveness.

Feng et al. [21] proposed a phishing website detection
model based on URL features, HTML features, and third-
party services. They used a stacked AE (SAE) with a Softmax
classifier to detect phishing websites. The proposed model
determined the optimal width of hidden layers by calculat-
ing the correlation coefficients between the weight matrices
of the SAE. The legitimate webpages were obtained from
Alexa, and the phishing webpages were obtained from Phish-
Tank. The model achieved better performance than the other
adopted algorithms. However, the features were manually
extracted.

Wang et al. [3] proposed a deep learning approach for
phishing detection called PDRCNN. The approach depended
only on the website URL and combined two neural networks
(a CNN and a bidirectional LSTM network). In this approach,
the CNN extracted the local features while the bidirectional
LSTM network extracted the global features. The model
first encoded a URL into a two-dimensional tensor, then fed
it into a designed model to classify the URL. The dataset
was collected from Alexa and PhishTank containing legiti-
mate and phishing URLs. The approach significantly outper-
formed state-of-the-art solutions, meaning that it could better

42461

IEEE Access

S. Al-Ahmadi et al.: PDGAN

detect phishing URLs without relying on any third-party
services.

Yang et al. [22] proposed a detection approach for URL
phishing. The structure of their proposed approach was
divided into three modules. The first module was a CNN
combined with an LSTM network. The second module deter-
mined the multidimensional features based on three features
and the URL features obtained from the first module. The
third module was a dynamic category decision algorithm used
for real-time detection. A large-scale dataset was built using
PhishTank and DMOZ directories, which contained phishing
and legitimate URLs. The CNN-LSTM with a multidimen-
sional features approach had achieved high accuracy and a
low FP rate.

Alalyan and Al-ahmadi [23] proposed a deep learn-
ing approach for phishing detection called PUCNN, which
depended only on the website URL. They used a CNN
to extract character-level feature representations of URLs.
They proposed a large-scale dataset called MUPD that con-
tained over two million URLs collected from PhishTank and
DomCop. The proposed CNN achieved better accuracy than
existing state-of-the-art models and outperformed various
machine learning models based on commonly used URL
features from the MUPD dataset.

As seen, most of these works increasingly used deep
learning models such as CNNs and RNNs compared to the
traditional classification algorithms. Moreover, they relied
on third-party services in combination with their system.
Also, few studies have used GAN model. So, to predefined
challenges, PDGAN is proposed to detect phishing websites
more efficiently. This work performs the detection task using
a GAN deep learning model at a character-level feature rep-
resentation. The model consists of LSTM and CNN networks
and depends only on website URLs.

lll. OVERVIEW OF PDGAN

A. PROBLEM DEFINITION

Networking and communication technologies have devel-
oped rapidly, subjected them to several cyberattacks. Phishing
is a serious and spreading cyberattack that tricks users into
disclosing sensitive personal information. It is considered a
significant category of cyberattack since it is used to launch
many attacks. This criticality reflects the need for efficient
phishing detection techniques.

Most phishing detection techniques proposed in the past
few years rely on features related to webpages, which requires
crawling the content of webpages and relying on third-party
services. In this paper, we propose a phishing detection
approach that relies only on a website’s URL rather than
content-based features or third-party services.

The authors of [12] and [24] demonstrated that a
URL-based approach achieved high accuracy in classifying
unseen phishing URLs. In other words, a model using only
features extracted from the inspection of URL strings per-
formed similarly to content-based detection systems, thus

42462

enabling the costs and security risks associated with content-
based detection systems to be discarded.

B. THE STRUCTURE OF PDGAN

The proposed PDGAN consists of an LSTM as a generator
and a CNN as a discriminator. The generator’s function is
to produce synthetic phishing URLs similar to real ones and
cannot be distinguished by the discriminator. The discrimina-
tor’s function is to extract the intrinsic features in the URL to
distinguish between legitimate and phishing URLs.

The PDGAN combines the advantages of LSTM networks
and CNNs in processing text. First, the LSTM structure in the
PDGAN generates synthetic phishing URLs whose charac-
teristics resemble those of real phishing URLs. Next, the fea-
tures are extracted from the URL string by the convolutional
layer and the pooling layer with different sizes of convolution
kernels. Fig. 1 shows the workflow of the proposed PDGAN
model.

PDGAN
?
URL DB o Feedback?
E Batch training ¥
Discr » Legitimate
Live URL feed | Network (CNN) on"ne/’@j Phishing
Crawling ‘ update
v .
Generator Network phishing URL
www (LST™)
URL :
Fine tuning

FIGURE 1. Workflow of the proposed PDGAN model.

C. SELECTION OF DEEP LEARNING MODEL

Typical deep learning models include LSTM, CNN, autoen-
coders, and DBN (deep belief networks). LSTM has a good
performance at processing sequence and time series prob-
lems. Typically, an LSTM network remembers information
for long periods— which is the key difference between LSTM
networks and other neural networks. LSTM networks con-
sist of different memory blocks called cells. These memory
blocks are responsible for remembering things. The manip-
ulations of this memory are performed through three main
gates, called the forget, input, and output gates. These gates
enable the LSTM network to keep and reuse relevant infor-
mation within very long sequences of time series data [11].
Fig. 2 shows a single LSTM cell, where the calculation of
each gate is as follows:

— Forget gate, fi:

Ji=0Wrt - [h—1, x] + by), ey

— Input gate, i:
iv = o(Wi - [he—1, x] + bi), (2)

— Cell state, C;:
G =/®C-1 & it @ tanh(W - [h—1, x] + be), (3)

VOLUME 10, 2022

S. Al-Ahmadi et al.: PDGAN

IEEE Access

— Output gate, oy:
or = o (W - [he—1, x] + bo), . “4)

where x; is the input of the current layer, o is the sigmoid
function, hi_represents the hidden state of the t — 1 moment,
b represents the bias of each gate. Wy, W; and W, are the
weight matrices for the connection.

The final step of the LSTM cell consists of calculating
the output h; at time t using the multiplicative operation ®
between the output gate layer and the tanh layer of the current
cell state C;.

l’lt =0t Q tanh(Ct) (5)

As a result, the output, h¢, has passed through the network
as a previous state for the next LSTM cell [25].

CNN is a particular type of deep learning network that
has been widely adopted in several fields related to computer
vision and natural language processing (NLP). A CNN'’s
learning ability is largely a consequence of the use of many
features in the extraction phase that can automatically learn
data representations. A typical CNN architecture generally
includes alternate layers of convolution and pooling followed
by one or many fully connected layers [26].

of Y

[/

FIGURE 2. LSTM cell [25].

A convolutional layer is utilized for extracting features
and consists of multiple convolutional kernels or filters that
divide the input vectors into small blocks. Next, convolu-
tional operations are applied to the input vectors with the
chosen kernels to generate a series of feature maps. The pool-
ing layer is used for reducing the dimensionality of the
feature maps. The pooling layer has a two-fold purpose:
accelerating the network operation and improving the per-
formance of the entire convolutional network. A fully con-
nected layer is a traditional neural network that performs
the final classification task using the features extracted from
the previous layers. Batch normalization and dropout tech-
niques are used between CNN layers to avoid overfitting
problems [27].

IV. PDGAN DESIGN

A. DATA PREPROCESSING

This step is based on the encoding process proposed in
[25]. First, we suppose that the URL length is fixed to

VOLUME 10, 2022

Maximum length = 255

[hltft]o[s[:]e[b[afy] Padding
"lololo]o][o|o]o]o[1]0 oo
o |0]o]ofo]o]ofo[1][0]0 oo
° 1/o0(o|o|ofof1]|ofo0]|o0 olo
Sl lololol1]o]o]o]o]o]0 ofo
g o|loflolo|1]o]|o|ofo]0 olo
£ [o[1][1]o[o]ofofofo]0 oo
< [olo|olo]o|o|olo|o]1 oo
L lo]ofofo|o[1]o|o|o]0 oo

FIGURE 3. Data preprocessing.

255 characters, as HTTP standard protocol RFC2616 states
there is a limit on URL length: ““Servers ought to be cautious
about depending on URL lengths above 255 bytes because
some older client or proxy implementations might not prop-
erly support these lengths.”’[3]. Accordingly, if the URL
length exceeds 255 characters, the first 255 characters are
considered, and if the length is shorter than 255 characters,
extra zeroes are inserted at the end.

Next, each URL character is encoded in a one-hot vector
consisting of 0 and 1 since neural networks use a vector of
numbers to perform any mathematical operation. The charac-
ters used include the 26 characters of the alphabet, 10 numeri-
cal digits, and the 33 special characters allowed in URLSs (e.g.,
/, &, -, 7, and =). Finally, the encoded characters compose the
tensor provided as input to the model. Fig. 3 shows the data
preprocessing step.

B. CONVOLUTIONAL NEURAL NETWORK STRUCTURE:
THE DISCRIMINATOR

After preprocessing, we obtain a dense representation of the
URL characters. The PDGAN extracts the features of the
phishing URL using a CNN to identify whether the URL is
legitimate or phishing. Generally, a URL is one-dimensional;
thus, we apply one-dimensional convolution, in which a filter
slides in one direction.

The discriminator is nine layers deep, including six convo-
lutional layers and three fully connected layers. The convolu-
tional layers extract the local features of the phishing URLs.
Each convolutional layer has a filter of length /; meaning fil-
ters are applied on / characters at a time where each character
contains a vector of m elements. The one-dimensional con-
volutional layer then passes its output to a one-dimensional
pooling layer. It uses the max operation to obtain the most
significant features generated by the convolutional layers.
Finally, the convolutional and pooling layers results are con-
nected as a one-dimensional vector and fed to the three fully
connected layers, with two dropouts between those three
layers to avoid overfitting. Fig. 4 shows the architecture of the
discriminator.

42463

IEEE Access

S. Al-Ahmadi et al.: PDGAN

Convl Input: (None, 1014,256)
Output: | (None, 1008.256)
MaxPoolingl Input: (None, 1008,256)
Output: (None,336, 256)
Conv2 Input: (None, 336,256)
Output: | (None, 330,256)
MaxPooling Input: (None, 330,256)
Output: | (None,110,256)
Conv3 Input: (None, 110,256)
Output: | (None, 108,256)
Conv4 Input: (None,108,256)
Qutput: | (None,106,256)
Conv5 Input: (None, 106,256)
Output: | (None,104,256)
Conv6 Input: (None,104,256)
Output: | (None,102,256)
MaxPooling Input: (None, 102,256)
Output: (None,34.256)
Flatten Input: (None, 256)
Qutput: (None, 8704)
Densel Input: (None, 8704)
Qutput: (None,1024)
Dense2 Input: (None,1024)
Qutput: (None,1024)
Dense3 Input: (None,1024)
Output: (None,2)

FIGURE 4. Architecture of discriminator.

C. RECURRENT STRUCTURE: THE GENERATOR

The LSTM network generates a sequence of characters. First,
the embedding layer generates a representation in the form of
a vector for each character that makes up the sequence. Next,
each element of the sequence of the embedded characters
is fed to the LSTM layer. Finally, the output of the LSTM
network is passed through a dense layer to generate a URL.
Fig. 5 shows the architecture of the generator.

D. MODEL TRAINING

The generator and discriminator are trained to create syn-
thetic phishing URLs, and decide whether the URLs were
phishing or legitimate, respectively. At each step, the gener-
ator and discriminator are trained separately. Thus these sys-
tem components are working together to improve the overall
performance.

42464

logits logits . logits [BATCH_SIZE, VOCAB_SIZE]
]]]
[Dense Lﬂyer} [Donu Lnycr} . [Donu Lnyor]

LSTM Output LSTM Output = LSTM Output [BATCH_SIZE, RNN_UNITS]
X

Y 'y

state botore > LSTM |-——>{LSTM | — * * [LSTM |- state ator BATCH_SIZE,

I I I RNN_UNITS]
char ‘ char [~ char
embeddin |_embeddin, embeddin
ufer Lafer -

5

Input char | e+ | Inputchar @ [BATCH_SIZE]

[BATCH_SIZE,
EMBEDDING_SIZE]

Input char

SEQ_LENGTH ——>

FIGURE 5. Architecture of generator.

We use binary cross-entropy as the generator and dis-
criminator’s loss function. The networks’ parameters were
tuned to reduce the loss. The loss function was optimized
by continuously updating the weights in the network through
an iterative process. We use the Adam optimizer, a common
optimization strategy that reduces loss and leads the model to
converge quickly.

In the Adam optimizer, the learning rate for each parameter
is adjusted dynamically depending on the gradient’s first-
order and second-order moment estimates. We selected the
Adam optimizer because the size of the learning step of each
iteration has a specific range and does not lead to a large
learning step when the gradient is large, and the value of the
parameter is relatively stable. After testing different learning
rates, we set the learning rate to 0.001. The model converges,
and the training ends when the loss value is sufficiently
reduced.

V. RESULTS AND DISCUSSION
In this section, we introduce our dataset optimization param-
eters and discuss the experimental results to show the effec-
tiveness of the proposed model.

A. DATASET
In our experiments, we used the MUPD dataset [23], which
contains 2,220,853 legitimate URLs and 2,353,933 phishing
URLs. The source for phishing URLs was PhishTank, which
was similarly used by most of the works we reviewed in the
related works section. MUPD dataset only considered phish-
ing websites which were verified as phishing on PhishTank.
The source for the legitimate websites was the top 4 million
domains list from DomCop. MUPD dataset has the index
page (if it existed) for each of the top 4 million domains
and a random internal URL. Furthermore, the MUPD dataset
has been published, which eases the process of training and
evaluating our proposed model.

After preprocessing, the final dataset contained 1,167,201
phishing URLs and 1,140,599 legitimate URLs. The fol-
lowing pre-processing steps were performed to generate the

VOLUME 10, 2022

S. Al-Ahmadi et al.: PDGAN

IEEE Access

published datasets: sampling to guarantee that the dataset was
balanced, removing duplicate data, and splitting the dataset
into three subsets (training, validation, and testing).

The collected datasets contained different URLs from the
same host or many repeated URLs. For example, many pages
from the same phishing website were frequently reported
as phishing pages. Similarly, their collection process, which
used top-level domains, may have resulted in repeated hosts
for various reasons, such as HTTP redirects. Therefore, URLs
with repeated hosts and duplicate URLs were removed from
the proposed MUPD dataset. This step aimed to enhance the
evaluation decision and prevent models from memorizing the
host.

A balanced dataset is preferable in binary classifi-
cation, particularly when an accuracy metric is used.
Although the dataset was balanced before removing dupli-
cate URLs, phishing URLs represented only one-third of
the dataset when duplicate URLs were removed. A ran-
dom sampling of 1,200,000 legitimate URLs was used
to fix this issue. Through this step, a balanced dataset
of 1,140,599 Ilegitimate URLs and 1,167,201 phishing
URLs was obtained. The dataset was split randomly into
three subsets: 0.6 training, 0.2 validation, and 0.2 test-
ing. Table 1 summarizes dataset size before and after
preprocessing.

TABLE 1. Sizes of datasets used in our experiments.

Dataset Phishing Legitimate
MUPD dat.aset (before 2353933 2220853
preprocessing)

MUPD datgset (after 1,167.201 1,140,599
preprocessing)

B. EVALUATION INDICATORS

We use the following performance measurements to evaluate
the proposed model and other models: accuracy, precision,
recall, and F-measure.

The accuracy is the number of legitimate URLs cor-
rectly labeled as legitimate plus the number of phishing
URLSs correctly labeled as phishing over the total number
of test set samples. The equation for calculating accuracy is
given in Eq. (6).

TP + TN
accuracy = (6)
TP + FN+FP + TN

The precision is the number of phishing URLs correctly
labeled as phishing over the total number of URLs labeled
as phishing. The equation for calculating precision is given
in Eq. (7).

L. TP 7

reci n—= ——

precisio TP+ FP
The recall (also known as TPR and sensitivity) is the
number of phishing URLs correctly labeled as phishing over

the total number of actual phishing URLSs. The equation for

VOLUME 10, 2022

TABLE 2. Effect of hidden layers on the generator.

Hidden layers Loss
32 1.41
64 1.34
128 1.31
256 1.28

calculating recall is given in Eq. (8).

TP
recall = —— ®)
TP + FN
The F-measure is the weighted harmonic mean of the
precision and recall rate. Methods with a higher F-measure
are more effective. The equation for calculating F-measure is
given in Eq. (9).
_ 2 x precisionxrecall

F = 9
precision + recall ©)

Among them, true positives (TPs) indicate that the phishing
URLs are correctly labeled as phishing URLs, false posi-
tives (FPs) indicate that the legitimate URLs are incorrectly
labeled as phishing URLS, true negatives (TNs) indicate that
the legitimate URLSs are correctly labeled as legitimate URLs,
and false negatives (FNs) indicate that the phishing URLs are
incorrectly labeled as legitimate URLSs.

C. PDGAN PARAMETERS SETUP

The tuning of hyperparameters in a neural network plays
an essential role in the classification process. The CNN’s
convolution kernel size and the number of hidden units in
the LSTM network are essential in estimating the loss and
classification accuracy. We set the convolution kernel size in
the range of 3 to 7 and selected the appropriate convolution
kernel based on accuracy and loss functions. The number of
hidden layers for the generator was selected from the set {32,
64, 128, 256}.

The setting of the epoch size and batch size is crucial: If the
number of epochs is very small, PDGAN cannot achieve the
highest accuracy, while if the number of epochs is very high,
overfitting may occur. For the generator, we set the epoch to
80 and selected batch size from the set {32, 64, 128, 256}. For
the discriminator, we set the epoch to 20 and selected batch
size from the set {64, 128, 256}.

Several experiments were conducted; in each experiment,
we evaluated the effects of various numbers of hidden layers
within the generator using the validation set. Table 2 shows
the loss with different numbers of hidden layers.

As shown in Table 2, as the number of layers in the genera-
tor increases from 32, the loss continuously decreases. Also,
Table 3 shows the effect of batch size on the generator.

As we can see from Table 3 when the batch size increases
from 32 to 64, the loss is decreased, but when the size
increases from 64, the loss continuously increases. After
setting the number of hidden layers to 256 and the batch size

42465

IEEE Access

S. Al-Ahmadi et al.: PDGAN

TABLE 3. Effect of batch size on the generator.

TABLE 6. Results of proposed PDGAN.

] Dataset ACCURACY PRECISION RECALL F-
Batch size Loss MEASURE
32 132))))
64 1.28 MUPD dataset 96.48% 96.09% 96.82% 96.43%
128 1.35 MUPD dataset ~ 96.50% 95.83% 96.75% 96.25%
256 1.47 +5,000
synthetic
phishing URLs
TABLE 4. Effect of convolution kernel size on discriminator. y%P(%gataset 96.51% 96.89% 96.22% 96.55%
synt},letic
Convolution kernel Accuracy Loss phishing URLs
MUPD dataset 97.58% 98.02% 97.27% 97.64%
7,6,5,4,3 96.34% 0.16 + 50,000
7,7,4,4,3 96.42% 0.12 synthetic
phishing
7,7,3,3,3,3 97.56% 0.09 URLs

TABLE 5. Effect of batch size on discriminator.

Batch size Accuracy Loss
64 96.28% 0.18
128 97.56% 0.09
256 96.22% 0.20

to 64, we evaluated the effect of the convolution kernel size,
as shown in Table 4.

Table 4 shows that the convolution kernel size {7, 7, 3, 3,
3, 3} generated the best results. We then evaluated the effect
of batch size on the discriminator, as shown in Table 5.

Table 5 shows that when the batch size is adjusted to 128,
the discriminator has the least loss and the highest accuracy.
After adjusting hyperparameters, the optimal values of the
hyperparameters for the PDGAN model were as follows: the
number of hidden units in the LSTM was 256; the size of
the convolution kernel in the CNN was {7, 7, 3, 3, 3, 3}; the
epoch size of the LSTM was 80; the epoch size of the CNN
was 20; the batch size in the LSTM was 64, and the batch size
in the CNN was 128. We use dropout to avoid overfitting. The
dropout is assigned 0.2 value in the LSTM and 0.5 value in
the CNN.

D. BASELINE MODELS
To verify the ability of the PDGAN model to determine phish-
ing URLSs, we compared the performance of the proposed
PDGAN with the PUCNN [23] and PDRCNN models [3].
PUCNN is a phishing detection approach that depends only
on the website URL. It used a CNN to extract character-
level feature representations of URLs. PUCNN used a dataset
named MUPD which contains 2,220,853 legitimate URLs
and 2,353,933 phishing URLs. The source for phishing web-
site URLs was PhishTank, while the source for the legitimate
websites was the top 4 million domains list from DomCop.
We used PUCNN as our main baseline model due to its
various similarities to our PDGAN model. First, it relies on
URLSs only, making it similar to our scenario. It also used the
same dataset for training, validation, and testing, which raises
the confidence in the comparison results.

42466

PDRCNN is a phishing website detection approach that
relies only on the URL of the website. It encodes the informa-
tion of an URL into a two-dimensional tensor and feeds the
tensor into a deep learning neural network to classify the orig-
inal URL. A bidirectional LSTM network is used to extract
the global features of the constructed tensor, while a CNN is
used to extract the local features. PDRCNN used a dataset
containing nearly 500,000 URLs obtained through Alexa and
PhishTank. We used a PDRCNN as a second baseline model
because its workflow is also based on URLs and is similar to
our discriminator model, as it used a character-level CNN.

Generated Phishing URLs
http://login.paypal.com-casepp-96616.11gnt.info/login.htm
http://clientform.ref13560903351.bbt.com.dlisoro.cn/clients/data/proc.jsp
http://businessbanking.53.com.session0690244.tenpost.cn/clientbase/form.asp
http://business-eb.client86825907-

form.bbt.com.tenipp.cn/clients/form/b_form.jsp

Real Phishing URLs
http://login.paypal.com-casepp-845788.11qgnt.info/login.htm
http://clientform.ref498124.bbt.com.posterst.cn/clients/data/proc.jsp
http://businessbanking.53.com.session149648933.orety.hk/clientbase/form.asp
http://business-eb.client912217-
form.bbt.com.postidi.cn/clients/form/b_form.jsp

FIGURE 6. Synthetic and real phishing URLs.

E. REPRESENTATIVE URLS
We show some examples of real and synthetic phishing URLs
in Fig. 6. The generated phishing URLSs in the top list have
similar characteristics to the real phishing URLSs in the bottom
list. We can see that our PDGAN model correctly captured the
common structure of URLSs, such as hostname, domains, etc.
However, some details of the URLSs still contain semantically
incorrect information and are not entirely understood. This
might result from using the dropout technique that prevents
overfitting. However, the proposed PDGAN still successfully
identified phishing URLs.

After completing the generator’s training phase, it was also
used to obtain different amounts of representative phishing
URLs. We generated 10,000, 50,000, and 100,000 synthetic

VOLUME 10, 2022

S. Al-Ahmadi et al.: PDGAN

IEEE Access

TABLE 7. Confusion matrix.

Predicted as Predicted as Total
phishing legitimate
Phishing 236,732 (97.3%) 6,634 (2.7%) 243,366
Legitimate 4,771 (2.1%) 223,423 (97.9%) 228,194
Total 241,503 230,057 471,560
100.00%
98.00%
96.00%
94.00%
92.00%
90.00%
Accuracy Precision Recall F-measure
H PUCNN PDRCNN PDGAN

FIGURE 7. Results of proposed PDGAN and the baseline model.

phishing URLs. Each set was split into the proportions
0.8 training and 0.2 testing and added to the original training
and testing sets. Table 6 shows all the performance measures
of the proposed PDGAN for the original dataset and the three
generated sets.

The PDGAN model showed significant results in all
experiments, although it achieved the lowest accuracy with
the original MUPD dataset. The proposed PDGAN model
detected phishing websites with the highest accuracy, preci-
sion, recall, and F-measure scores on the MUPD dataset plus
50,000 synthetic URLs compared with the other experiments.
This demonstrates how the generator model can enhance the
classification results of the discriminator because the gener-
ator has explored other phishing URLs not learned by the
discriminator.

F. COMPARISON OF DIFFERENT MODELS

To evaluate the performance of the PDGAN, we used the test
dataset to compare the PDGAN approach and the two selected
baseline models. Table 7 presents the results of the PDGAN
on the original test dataset and 10,000 test synthetic phishing
URLs.

As can be seen from the confusion matrix, 236,732 phish-
ing URLs were correctly classified as phishing URLs, and
4,771 legitimate URLs were incorrectly classified as phishing
URLs, for a FPR of only 2.1%. We mainly focused on the
accuracy metric for comparisons, as accuracy was a popular
metric through the literature review. However, we also pro-
vide the other performance metrics for the proposed PDGAN
and the baseline models in Fig. 7.

In Fig. 7, we can see that the proposed PDGAN could
detect phishing URLs with higher accuracy, precision,
recall, and F-measure scores than the two baseline models.

VOLUME 10, 2022

The precision value of the PDGAN model is around 98%,
which indicates the superior performance of the proposed
PDGAN, where the generator learns different variations in
the phishing features to generate other URLs not learned by
the discriminator. PDGAN achieved 97.56% accuracy, thus
outperforming the other two baseline models.

According to the results, the proposed PDGAN is effective
and has the highest accuracy among other compared systems.
This can be interpreted from the ability of the generator to
explore URLs other than those in the original dataset and
the discriminator decidability to discover phishing URLs.
The proposed PDGAN model can effectively integrate the
advantages of both the LSTM and CNN models. In addition,
the proposed PDGAN model can produce good results when
considering only the URL in detecting phishing websites.

VI. CONCLUSION

In this work, we presented a new phishing detection model
using GAN called PDGAN. Our model analyzes a URL and
classifies the relevant webpage as phishing or legitimate.
The proposed PDGAN model consists of a generator and a
discriminator trained in adversarial processes. The generator
is an LSTM model which generates synthetic phishing URLs,
and the discriminator is a CNN model which decides whether
a URL is phishing or legitimate.

PDGAN model does not depend on webpage content or
third-party services; rather, it depends only on a website’s
URL to achieve a better phishing detection rate. Moreover,
the adversarial process in the PDGAN model enhances the
ability of the discriminator to distinguish phishing URLs
by exploring other different phishing URLs that are not
involved in the training dataset. Although some URL details
still contain incorrect semantic information and are not
fully understood, the PDGAN still successfully identified
phishing URLs.

Several experiments were conducted on a large dataset con-
taining two million legitimate and phishing URLSs, split into
training, validation, and testing datasets. PDGAN achieved
97.58% accuracy and 98.02% precision without depending on
third-party services and greater accuracy than other compared
models. These results demonstrate that the PDGAN model
can detect phishing URLs with an enhanced classification
result.

For future work, we intend to calculate the model’s
complexity to enrich the comparison between different mod-
els. We also decided to expand the scope of the pro-
posed PDGAN to cover visual similarity—based approaches.
In addition, we will analyze the effect of character-level
similarity between various URL components to generate well
representative synthetic phishing URLs.

ACKNOWLEDGMENT

The authors would like to thank the Research Center of
College of Computer and Information Sciences, Deanship of
Scientific Research, King Saud University for their grant and
support.

42467

IEEE Access

S. Al-Ahmadi et al.: PDGAN

REFERENCES

[1]

[2]
[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. K. Jain and B. B. Gupta, “Towards detection of phishing websites on
client-side using machine learning based approach,” Telecommun. Syst.,
vol. 68, no. 4, pp. 687-700, Aug. 2018, doi: 10.1007/s11235-017-0414-0.
(2021). APWG. Anti Phishing Work Group. Accessed: Aug. 30, 2021.
[Online]. Available: https://apwg.org/trendsreports/

W. Wang, F. Zhang, X. Luo, and S. Zhang, “PDRCNN: Precise phishing
detection with recurrent convolutional neural networks,” Secur. Commun.
Netw., vol. 2019, pp. 1-15, Oct. 2019, doi: 10.1155/2019/2595794.

Y. Cao, W. Han, and Y. Le, “Anti-phishing based on automated individual
white-list,” in Proc. 4th ACM Workshop Digit. Identity Manage. (DIM),
2008, pp. 51-59, doi: 10.1145/1456424.1456434.

L. Wenyin, G. Huang, L. Xiaoyue, Z. Min, and X. Deng, “Detec-
tion of phishing webpages based on visual similarity,” in Proc. Special
Interest Tracks Posters 14th Int. Conf. World Wide Web (WWW), 2005,
pp. 1060-1061, doi: 10.1145/1062745.1062868.

Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: A content-based approach
to detecting phishing web sites,” in Proc. 16th Int. Conf. World Wide Web
(WWW), 2007, pp. 639-648, doi: 10.1145/1242572.1242659.

0. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based
phishing detection from URLS,” Expert Syst. Appl., vol. 117, pp. 345-357,
Mar. 2019, doi: 10.1016/j.eswa.2018.09.029.

H. Abutair, A. Belghith, and S. Alahmadi, “CBR-PDS: A
case-based reasoning phishing detection system,” J. Ambient
Intell. Hum. Comput., vol. 10, no. 7, pp.2593-2606, Jul. 2019,
doi: 10.1007/s12652-018-0736-0.

M. Zouina and B. Outtaj, “A novel lightweight URL phishing detection
system using SVM and similarity index,” Hum.-Centric Comput. Inf. Sci.,
vol. 7, no. 1, p. 17, Jun. 2017.

R. M. Mohammad, F. Thabtah, and L. Mccluskey, “Predicting phishing
websites based on self-structuring neural network,” Neural Comput. Appl.,
vol. 25, no. 2, pp. 443-458, Aug. 2014, doi: 10.1007/s00521-013-1490-z.
A. C.Bahnsen, E. C. Bohorquez, S. Villegas, J. Vargas, and F. A. Gonzalez,
“Classifying phishing URLSs using recurrent neural networks,” in Proc.
APWG Symp. Electron. Crime Res. (eCrime), Apr. 2017, pp. 1-8, doi:
10.1109/ECRIME.2017.7945048.

A. Anand, K. Gorde, J. R. A. Moniz, N. Park, T. Chakraborty, and
B.-T. Chu, “Phishing URL detection with oversampling based on text
generative adversarial networks,” in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2018, pp. 1168-1177.

P. Yi, Y. Guan, F. Zou, Y. Yao, W. Wang, and T. Zhu, “Web phishing
detection using a deep learning framework,” Wireless Commun. Mobile
Comput., vol. 2018, pp. 1-9, Sep. 2018, doi: 10.1155/2018/4678746.

R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Evaluating
deep learning approaches to characterize and classify malicious URL’s,”
J. Intell. Fuzzy Syst., vol. 34, no. 3, pp. 1333-1343, Mar. 2018, doi:
10.3233/JIFS-169429.

S. G. Selvaganapathy, M. Nivaashini, and H. P. Natarajan, “Deep belief
network based detection and categorization of malicious URLSs,” Inf.
Secur. J., Global Perspective, vol. 27, no. 3, pp. 145-161, Apr. 2018, doi:
10.1080/19393555.2018.1456577.

S. Shivangi, P. Debnath, K. Sajeevan, and D. Annapurna, “Chrome exten-
sion for malicious URLs detection in social media applications using
artificial neural networks and long short term memory networks,” in
Proc. Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2018,
pp. 1993-1997, doi: 10.1109/ICACCI.2018.8554647.

Y. Peng, S. Tian, L. Yu, Y. Lv, and R. Wang, “Malicious URL recognition
and detection using attention-based CNN-LSTM,” KSII Trans. Internet Inf.
Syst., vol. 13, no. 11, pp. 5580-5593, 2019, doi: 10.3837/tiis.2019.11.017.
P. Robic-Butez and T. Y. Win, “Detection of phishing websites using
generative adversarial network,” in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2019, pp. 3216-3221.

42468

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

X. Zhang, D. Shi, H. Zhang, W. Liu, and R. Li, “Efficient detec-
tion of phishing attacks with hybrid neural networks,” in Proc. IEEE
18th Int. Conf. Commun. Technol. (ICCT), Oct. 2018, pp. 844-848, doi:
10.1109/ICCT.2018.8600018.

Y. Huang, Q. Yang, J. Qin, and W. Wen, “Phishing URL detection
via CNN and attention-based hierarchical RNN,” in Proc. 18th IEEE
Int. Conf. Trust, Secur. Privacy Comput. Commun./13th IEEE Int. Conf.
Big Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2019, pp. 112-119,
doi: 10.1109/TrustCom/BigDataSE.2019.00024.

J. Feng, L. Y. Zou, and T. Z. Nan, “A phishing webpage detection
method based on stacked autoencoder and correlation coefficients,”
J. Comput. Inf. Technol., vol. 27, no. 2, pp.41-54, Nov. 2019, doi:
10.20532/¢it.2019.1004702.

P. Yang, G. Zhao, and P. Zeng, “Phishing website detection based on
multidimensional features driven by deep learning,” IEEE Access, vol. 7,
pp. 15196-15209, 2019, doi: 10.1109/ACCESS.2019.2892066.

A. Al-alyan and S. Al-ahmadi, “Robust URL phishing detection based
on deep learning,” KSII Trans. Internet Inf. Syst., vol. 14, no. 7,
pp. 2752-2768, 2020, doi: 10.3837/tiis.2020.07.001.

M. Darling, G. Heileman, G. Gressel, A. Ashok, and P. Poornachan-
dran, ““A lexical approach for classifying malicious URLSs,” in Proc. Int.
Conf. High Perform. Comput. Simul. (HPCS), Jul. 2015, pp. 195-202, doi:
10.1109/HPCSim.2015.7237040.

W. Chen, W. Zhang, and Y. Su, “Phishing detection research based
on LSTM recurrent neural network,” Data Sci., vol. 6, pp. 638-645,
Sep. 2018, doi: 10.1007/978-981-13-2203-7_52.

X.Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 649-657.

N. Q. Do, A. Selamat, O. Krejcar, T. Yokoi, and H. Fujita, “Phish-
ing webpage classification via deep learning-based algorithms: An
empirical study,” Appl. Sci., vol. 11, no. 19, p. 9210, Oct. 2021, doi:
10.3390/app11199210.

SAAD AL-AHMADI (Senior Member, IEEE) is currently an Associate
Professor with the Department of Computer Science, King Saud University,
Saudi Arabia. He has published many articles in highly cited journals and
worked as a part-time Consultant at several government organizations and the
private sector. His current research interests include the IoT security, machine
learning for cybersecurity, and future generation networks.

AFRAH ALOTAIBI received the B.S. and M.S. degrees in computer science,
King Saud University, Saudi Arabia, in 2018 and 2021, respectively. Her cur-
rent research interests include web security, machine learning, and computer
networks.

OMAR ALSALEH, photograph and biography not available at the time of
publication.

VOLUME 10, 2022

http://dx.doi.org/10.1007/s11235-017-0414-0
http://dx.doi.org/10.1155/2019/2595794
http://dx.doi.org/10.1145/1456424.1456434
http://dx.doi.org/10.1145/1062745.1062868
http://dx.doi.org/10.1145/1242572.1242659
http://dx.doi.org/10.1016/j.eswa.2018.09.029
http://dx.doi.org/10.1007/s12652-018-0736-0
http://dx.doi.org/10.1007/s00521-013-1490-z
http://dx.doi.org/10.1109/ECRIME.2017.7945048
http://dx.doi.org/10.1155/2018/4678746
http://dx.doi.org/10.3233/JIFS-169429
http://dx.doi.org/10.1080/19393555.2018.1456577
http://dx.doi.org/10.1109/ICACCI.2018.8554647
http://dx.doi.org/10.3837/tiis.2019.11.017
http://dx.doi.org/10.1109/ICCT.2018.8600018
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00024
http://dx.doi.org/10.20532/cit.2019.1004702
http://dx.doi.org/10.1109/ACCESS.2019.2892066
http://dx.doi.org/10.3837/tiis.2020.07.001
http://dx.doi.org/10.1109/HPCSim.2015.7237040
http://dx.doi.org/10.1007/978-981-13-2203-7_52
http://dx.doi.org/10.3390/app11199210

