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ABSTRACT Rolling element bearings are one of the important components in rotating machines. Therefore,
many studies on bearing diagnosis have been conducted with artificial intelligence (AI) to do maintenance
on the machines on time. In general, AI successfully diagnoses the defects of bearing when it is trained with
the sufficient data of a specific machine, but it hardly provides reasonable results when it is untrained or
insufficiently trained. However, it is hard to obtain sufficient data even for a specific machine in practice.
In this paper, a newmethodwas developed to increase training data by transferring the cross-domain data into
the common-domain data. Therefore, all the data from different kinds of machines with various bearings can
be combined as a big training data. Bearings under consideration in this paper have different specifications
and characteristics. In transferring into the common-domain, it is important to get rid of structural and
environmental noise by signal processing, which makes it plausible to extract common features. With
the common-domain data, one-dimensional convolutional neural network (1D-CNN) with feature domain
adaptation is applied and successfully classifies the defects of each bearing. Moreover, 1D-CNN combined
with support vector machine (SVM) can also classify defects successfully without feature domain adaptation,
which makes it possible to train the model only with normal data of the machine in concern. To verify the
proposed method, not only the bearing data from CaseWestern Reserve University and Paderborn University
but also the bearing data with flow noise of Ajou University are used.

INDEX TERMS Bearing fault diagnosis, common-domain data, convolutional neural network, cross-domain
fault diagnosis, domain adaptation, signal processing, support vector machine.

I. INTRODUCTION
Rolling element bearings play a significant role in
electro-mechanical drive systems and motors. Failures of
these machines are related to the bearings with a high prob-
ability [1], [2]. Therefore, the diagnosis of rolling element
bearings is essential for the safe operation of machines. Sev-
eral signals such as vibrations, acoustics, and currents have
been recorded for the diagnosis of bearings. Fault character-
istics can be extracted from the vibration signals of bearings.
However, because the vibration signals are nonlinear and non-
stationary, the development of a strategy for feature extraction
from the signals is important [3]. Several techniques, such as
envelope [4], wavelet packet decomposition with random for-
est (RF) [5], bispectrum analysis [6], double sparse dictionary
with orthogonal matching pursuit and Deep Belief Network
(DBN) [7], empirical mode decomposition (EMD) [8], and
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local mean decomposition(LMD) [9], have been studied and
utilized to extract features and diagnose bearings exactly.
However, considerable knowledge is required to select an
appropriate signal processing method and techniques. For
example, users must know that the discrete wavelet transform
presents some issues such as shift-variance behavior [10].
Also, EMD and LMD present a mode-mixing problem [8],
[9], [11]. It is also well known that the accuracy of diagnosis
is highly dependent on the skills or experience of experts.
Yuan et al. employed a continuous wavelet transform (CWT)
to obtain characteristic signal information for input data, and
their classification model provided remarkably high accuracy
using the transformed signals [12]. However, the mother
wavelet should be selected accurately to produce input data
to obtain satisfactory results from the model when CWT is
employed.

To address these challenges, numerous studies have been
conducted to automatically extract the features of faults and
diagnose bearings without expertise. Convolutional neural
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networks (CNNs) are good alternatives to address such chal-
lenges. Huang et al. developed a deep CNN model with
multi-scale cascade layer, which is effective in bearing diag-
nosis by using kernels of different sizes to extract more
useful information [13]. Wen et al. transformed the signals of
various systems into a two-dimensional image and extracted
features using a CNN model based on LeNet-5. Their model
demonstrated improved feature extraction capability and pro-
duced better results than other models [14]. Because CNN
can be combined with a variety of other models or algo-
rithms such as q-xy [15], studies have also involved diagnoses
using CNN combined with various classifiers. Yuan et al.
adopted ResNet-18 for feature extraction and a support vector
machine (SVM) for classification [12].Multi-CNN structures
andmulti-sensor data were used to prevent information losses
and the CNN structures were combined with SVM to diag-
nose bearings in [16]. Han et al. conducted a study combining
CNN with SVM to diagnose bearings, while adding specific
conditions for moving from extraction stage to classification
stage [17]. Multi RF models were used with CNN and con-
tinuous wavelet transform to classify bearing faults [18].

At times, it is necessary to determine the state of a system
to be diagnosed using data acquired from other systems.
This is called a cross-domain fault diagnosis. There exist two
domains of cross-domain fault diagnosis. The source domain
is adopted to train the models, and the data and labels are
defined. The other domain is the target domain, which is the
domain to be diagnosed, and the labels are either not available
or partially available. As both domains have different distri-
butions, a model trained using one system cannot be applied
to other systems without appropriate methods because the
boundaries for each domain are not the same. To address this
challenge, numerous studies have been conducted, and strate-
gies with CNN has particularly gained recognition in recent
years. First, the distance between domains is calculated using
several methods, and the difference between the two domains
is reduced by minimizing the metrics. Lu et al. proposed a
deep neural network model with a maximum mean discrep-
ancy (MMD) andweighted regularizationmethod to diagnose
another system [19]. Guo et al. constructed a CNN model
with 16 layers to classify the bearing states, and introduced
an additional module for domain adaptation. The domain
adaptation module comprises a domain classifier and distri-
bution discrepancy metrics which is MMD [20]. Yang et al.
adopted a multi-kernel MMD (MK-MMD) in multiple layers
for domain adaptation [21]. In [22], the discrete wavelet
transformwas adopted to produce input data for theDBN, and
the developed model contained a domain adaptation method.
Correlation alignment [23], [24], Wasserstein distance [25],
etc., have also been widely adopted in diagnosis of bear-
ings. Another strategy for domain adaptation is the addi-
tion of a discriminator that prevents features from knowing
the domains from which they have been extracted. Using
this concept, several studies have successfully addressed
cross-domain fault diagnosis, [26], [27]. Studies have also
been conducted to compare the diagnostic results produced

by several domain adaptation methods, and codes for the
models have been provided in [28].

However, it is extremely difficult to conduct diverse exper-
iments using a single system. Studies have been conducted
to obtain various experimental results using data generation
methods such as Monte Carlo [29]. If the data in various
systems are considered as one, the domain of the training data
can be expanded, and various characteristics and specifica-
tions can be applied to the models without a specific method.
Kim et al. transformed the signals of different systems into
the same pattern space using signal processing, and the mod-
els trained with processed data provided excellent diagnostic
performance for other systems [30]. Using expertise informa-
tion, Zheng et al. combined signals acquired from different
systems and proposed generalized bearing diagnostic mod-
els [31]. In addition, it should be possible to classify labels of
the target domain that are not obtained, or even if only normal
data are available. In [19] and [31], the normal data of the
target domain were used for training to solve this problem.
However, it would bemore efficient if the target domain could
be diagnosed using a model trained with only data acquired
from other systems.

Because data acquired from bearings with different speci-
fications and characteristics are placed in the cross-domain,
they cannot be combined as training sets. In this study,
a method is proposed to increase the training data by trans-
ferring cross-domain data into common-domain data to diag-
nose ball-bearing systems with high accuracy. In particular,
this study focuses on addressing the following challenges:
(1) insufficient training data with limited types or levels
of defects, and (2) fault classification when only normal
data from target domain are available. Therefore, a signal-
processing method [30] is applied to transfer the data into
a common domain and reduce noise. For the second issue,
an artificial intelligence (AI) models are designed to classify
bearing defects with only normal data from target domain
using common-domain data.

The remainder of this paper is organized as follows.
In Section II, relevant information for a better understand-
ing of this study is presented. In Section III, three differ-
ent systems are explained, and the data from each system
are analyzed. The domain adaptation methods and proposed
method are explained in Section IV. Results from the domain
adaptation and proposed methods with various models are
presented in Section V. Finally, the conclusions of this study
are presented in Section VI.

II. THEORETICAL BACKGROUND
A. CROSS-DOMAIN FAULT DIAGNOSIS
Cross-domain fault diagnosis refers to the issue of diagnos-
ing states using a single classifier by reducing the discrep-
ancy in the distribution resulting from different domains.
For bearings, the domains vary depending on a variety of fac-
tors, such as the rotational speed, number of balls, and load.
There exist two domains in cross-domain fault diagnosis. One
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is the source domain, which has both data and labels and is
adopted to train the model, and the other is the target domain,
which contains only data without labels or holds only certain
labeled data. As each domain has a different distribution, it is
usually difficult to use one domain for the diagnosis of other
domains. That is, both domains have different boundaries for
classifying the states, and additional methods are required to
reduce the difference between the domains. The two domain
adaptation methods used are as follows:

1) MAXIMUM MEAN DISCREPANCY (MMD)
In MMD, the source and target domain data are embedded
in the reproducing kernel Hilbert space with kernel function,
and the distance between the means of the two distribution
is calculated [32]. By reducing the distance metric, the dif-
ference between the two domains decreases. MK-MMD is
a method employed to further reduce the mismatch using
multiple kernels [33]. In this study, MK-MMDwas employed
for the diagnosis of unlabeled data.

2) DOMAIN ADVERSARIAL NEURAL NETWORK (DANN)
A DANN performs domain adaption by adding other neu-
ral network layers with a gradient reversal layer. Thus,
the domain from which the features are extracted remains
unknown [34].

B. SUPPORT VECTOR MACHINE
An SVM is a supervised learning model, which determines
the hyperplane that maximizes a margin. The margin is the
distance between the decision boundary and points that are
closest to the boundary. Linearly separable data are illustrated
in Figure 1 [35]. When data are not linearly separable, they
are mapped to a higher dimension via kernel functions, and
then a linearly separating hyperplane can be observed. Soft-
margin SVM allows certain instances that cross the margin
plane, unlike the hard-margin SVM [35].

FIGURE 1. Hard margin support vector machine. The margin represents
the vertical distance between the decision boundary (y = 0) and data
points (support vectors). The support vectors are the set of points at
y = 1 and y = −1 and are marked with orange circles.

C. CONVOLUTIONAL NEURAL NETWORK
CNN has been employed in several fields, such as the clas-
sification of music [36], text [37], and images [38]. As can
be inferred from the examples, there exist various types of
input data, such as pictures [38] and sound waves [39].
Before the CNNwas actively studied,machine learningmeth-
ods were executed by extracting hand-crafted features [40].
Because a CNN comprises feature extractors and classifiers,
feature extraction is conducted automatically with classifi-
cation. This method presents the advantage of automatically
extracting features and reducing information loss. In general,
convolution and pooling layers are sequentially stacked in the
extractor. The kernels (filters) in the convolution layer move
by set values, and the dot product of the input data and the
weights in the filters go through activation functions to create
new feature maps. Pooling layers reduce the dimensions of
the feature maps by calculating and representing the maxi-
mum or average values of a particular range. A classifier is
added following feature extraction. The output layer of the
classifier comprises as many nodes as the number of classes
and commonly adopts the Softmax activation function [41].

D. SIGNAL PROCESSING
A study in which cross-domain fault diagnosis was performed
after the signal processing of bearing data collected from dif-
ferent domains into a common space has been reported [30].
The CWRU data were moved to the same pattern space using
the Paderborn University (PU) data in [30], whereas the PU
and Pump data were moved to the same pattern space using
the CWRU data in this study. Various filters, such as low-pass
and minimum-phase filters were utilized. For the CWRU
data, a minimum-phase filter was applied to the resampled
signal, whereas other data were transformed using the CWRU
normal data, and then, a minimum-phase filter was applied.
A total of 1,024 points from the minimum-phase signals were
extracted for the input data. Figure 2 illustrates the flowchart
of making signals utilized in this study. The extracted signals
were stored as one-dimensional signals and were input to the
classification model. To obtain the similar length data as the
raw signal, the data were extracted by moving the window
from the resampled signal (3 kHz). The window size was
9,000, and the moving value was set differently for each
system.

III. DATA DESCRIPTION AND ANALYSIS
A. PUMP DATA
Vibration datasets from three ball-bearing systems were uti-
lized to train and test the AI models. The first datasets were
acquired while running a centrifugal pump at Ajou Univer-
sity, as shown in Figure 3(a) and 3(b), hereinafter referred
to as the Pump data. A defect in the pump bearing was
introduced using a drill, as illustrated in Figure 4. While the
pump with a defective bearing operated at the best efficiency
point, the vibration from the bearing housing of the pump
was measured using accelerometers with sampling rates of
12,000 Hz. The rotational frequency of the pump was 59 Hz,
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FIGURE 2. Flowchart of signal processing for the Case Western Reserve
University (CWRU) data and others.

FIGURE 3. (a) Flow loop for the experimental data and (b) A centrifugal
pump for the experimental data.

and the working fluid was water. To check whether the char-
acteristics of faults could be observed in the signals, the sig-
nals of the Pump data were analyzed in both time domain and

FIGURE 4. Faulted ball bearing of centrifugal pump in Ajou University
using a drill, and the fault is located on the inner raceway.

TABLE 1. Fault frequencies (Hz) of the pump data.

frequncy domain first. The characteristic frequencies were
calculated and are presented in Table 1 using the following
equations [42]:

BPFO =
nfr
2
(1−

d
D
cosφ), (1)

BPFI =
nfr
2
(1+

d
D
cosφ), (2)

BSF =
D
2d

[1− (
d
D
cosφ)2], (3)

FTF =
fr
2
(1−

d
D
cosφ). (4)

where BPFO is the ball pass frequency of the outer race,
BPFI is the ball pass frequency of the inner race, BSF is the
ball spin frequency, FTF is the fundamental train frequency,
fr is the shaft speed, n is the number of rolling elements, d is
the diameter of the ball, D is the diameter of the pitch, and φ
is the angle of the load from the radial plane.

The Pump data were analyzed as illustrated in Figure 5.
Vibration signals of defective bearings, such as raceway
faults, generally demonstrate impulse-like symptoms, and
their intervals represent frequencies of the fault. However,
it is difficult to identify impulse-like signals from a defective
bearing, and only the rotational frequency and its harmonics
can be observed in the Pump data. It seems that there is no
noticeable difference between the defected and normal data
not only in the time domain but also in the frequency domain.
This is because the characteristic signals are masked by noise.
Therefore, it is necessary to first reduce the noise resulting
from the Pump data to clarify fault signatures. The dashed
red line in the second column represents the fault frequency.

B. CASE WESTERN RESERVE UNIVERSITY DATA
The next dataset is from the Bearing Data Center of
CWRU, and the testbed of the CWRU data is illustrated in
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FIGURE 5. Pump data in the (a) time, (b) frequency, and (c) low frequency
domains. The red dashed lines represent characteristic frequency.

FIGURE 6. Testbed of the CWRU data (electric motor, torque transducer,
encoder and dynamometer, to control electronics) [43].

Figure 6 [43]. The CWRU data have frequently been adopted
in studies on bearing diagnosis. The datasets comprise nor-
mal, inner raceway, outer raceway, and ball fault data. Drive-
end fault data are measured at 12,000 Hz and 48,000 Hz,
whereas normal baseline data and fan-end fault data are
measured at a sampling rate of only 12,000 Hz. Herein,
bearing loads of 0, 1, 2, and 3 hp were applied, and data
were obtained by mounting defective bearings with defect
diameters of 0.007, 0.014, and 0.021-in, respectively. In addi-
tion, the drive-end inner raceway fault and drive-end ball
fault data also included 0.028-in defect version, which were
recorded at 12,000 Hz. Experiments for the outer raceway
were conducted in three different positions in some cases. The
details can be found in [43].

As with the Pump data, the fault frequencies of the CWRU
data were also calculated, and fault characteristics could be
found in time domain and frequency domain signals. The cal-
culation results are presented in Table 2. An example of ana-
lyzing the CWRU datasets is illustrated in Figure 7. As illus-
trated in the figure, the fault characteristics are indicated
in the time and frequency domains, although the data are
not processed. In this study, normal and abnormal (0.007-in
inner raceway fault) data on the drive end measured at sam-
pling rates of 12 kHz and applied loads of 0 to 3 hp were

TABLE 2. Fault frequencies (Hz) of the CWRU data.

FIGURE 7. Example of analyzing the CWRU data with load 0 hp and 1 hp
and a 0.007-in defect in the (a) time and (b) low frequency domains. The
red dashed lines represent the characteristic frequencies (inner raceway
frequency) and their harmonic.

used. Regardless of the horsepower, data in the same state
were adopted as one.

C. PADERBORN UNIVERSITY DATA
The last datasets, abbreviated as PU data, are from the
Konstruktions–Und Antriebstechnik (KAt) datacenter at
PU [44]. Figure 8 illustrates the testbed of the PU datasets.
The PUdata contain healthy bearing, artificially defected, and
real defected data with various conditions, such as rotational
speed(900 and 1500 rpm), load torque(0.1 and 0.7 Nm) and
radial force(400 and 1000 N). Data were measured at 64 kHz.
The details can be found in [44]. Similar to the other two
datasets, the frequencies of the PU data were also calculated
for the defects, and the results are presented in Table 3. For
the inner raceway fault signal, it is difficult to determine
periodic intervals in the time domain compared with that in

FIGURE 8. Testbed of the PU data: test motor, measuring shaft, bearing
module, flywheel, and load motor (from left to right) [44].
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TABLE 3. Fault frequencies (Hz) of the PU data.

FIGURE 9. Example of analyzing the PU data in the (a) time and (b) low
frequency domain. The red dashed lines represent the characteristic
frequency (inner raceway frequency) and their harmonics.

FIGURE 10. Example of processed CWRU data: (a) CWRU normal data
(raw), (b) CWRU normal data (processed), (c) CWRU abnormal data (raw),
and (d) CWRU abnormal data (processed).

the CWRU data. However, the characteristic frequency and
its harmonics can be detected in frequency domain, as illus-
trated in Figure 9 (b). In addition, the normal PU data are
more complex than CWRU normal data. That is, although
the fault characteristics are included in the signal, the char-
acteristics of faults may not be distinguished from noise if
signal processing is not performed properly. To develop the
proposed method, normal data (K001) and inner raceway
fault data (KI16), which were measured with a rotating speed
of 1,500 rpm, load torque of 0.7 Nm, and radial force of
1,000 N were adopted. Seven out of the twenty datasets were
used for each state.

As observed above, the CWRU and PU data have distinct
characteristic frequencies, but the shapes of the spectra differ
according to the system. In addition, energies that are not
related to faults also appear. Because the shape of the signal

FIGURE 11. Example of processed PU data: (a) PU normal data (raw),
(b) PU normal data (processed), (c) PU abnormal data (raw), and (d) PU
abnormal data (processed).

FIGURE 12. Example of processed Pump data: (a) Pump normal data
(raw), (b) Pump normal data (processed), (c) Pump abnormal data (raw),
and (d) Pump abnormal data (processed).

varies for several reasons other than defects, the AI model can
be trained with other characteristics. Therefore, the models
that are trained using one system may not accurately extract
the features of faults for other bearings. However, because
experiments with various conditions cannot be treated as a
single system without proper methods, the models cannot
train several characteristics with raw data from different sys-
tems. For the Pump data from Ajou University, no apparent
peaks can be observed in the time domain owing to flow
noise. These phenomena are the same as those in the fre-
quency domain. The reduction in noise will help the model
find fault characteristics better by making the characteristics
of the fault distinct. To address the above challenges, a pre-
processing method developed in [30] was applied to the three
different systems. Because a model trained with one system
cannot extract defect characteristics from other systems accu-
rately, the model should reflect the various characteristics
to improve the ability to extract features. Transforming and
combining data with different conditions will expand the
domain of the training data and allow the identification of
defect characteristics in more diverse systems.
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FIGURE 13. Processes of domain adaptation and AI models with common domain data.

IV. METHODOLOGY
A. COMMON-DOMAIN DATA

It may be possible to develop an AI model that can diagnose
any ball bearing if sufficient data are available, including
normal states and various types of abnormal states for ball
bearings. In other words, AI models for a specific ball bearing
can be developed and validated when the data are sufficient
to train a model. However, these data are generally insuffi-
cient. In addition, diagnosis cannot be performed successfully
if the noise is so dominant that the defect signatures are
hardly observable in the measured signals. Therefore, signal
processing is essential to get rid of noise and to transform
into the common pattern space to perform cross-domain fault
diagnosis and make generalize the AI models. Accordingly,
the method developed in [30] was employed, and the results
of signal processing to eliminate noise in the raw data and
transform the features into a common pattern space are pre-
sented. The results of the processed data (CWRU, PU, and
Pump) are illustrated in Figure 10, 11, and 12, respectively.
Each figure illustrates both the raw and processed signals
of the normal and abnormal data. It is shown that raw data
have different patterns according to the systemswhile the pro-
cessed data have similar patterns. In the processed data, the
changes of fault characteristics are more clearly recognizable
even in noisy situation such as flow noise condition as shown
in Figure 12.MATLABwas utilized for the signal processing.

Common-domain data are defined as cross-domain data
extracted from different systems and transferred into a com-
mon domain. To examine the effect of signal processing,
the models were trained and tested using the combined raw

data. Also, target domain data were transferred into the same
domain when common-domain data were used in training the
models.

B. MODELS
Several models were tested and analyzed to verify the useful-
ness of transforming signals from different systems into the
common-domain signals. Figure 13 illustrates a flowchart of
the proposed method and processes followed by the domain
adaptation models. The methods are explained as follows.

1) DOMAIN ADAPTATION
To validate the effectiveness of common-domain data and
address the challenge presented by a diagnosis without labels
of the target domain, the domain adaptation models designed
in [30] were adopted and are presented in Table 4. First,
the signals were processed before combining the data of the
source domains. Common-domain data and labels are used
for training CNN and target data are used for domain adap-
tation without labels. During the testing process, the models
received and classified data that were not adopted for training.
A CNNwith MK-MMD and DANNwere employed to check
the ability of the common-domain data. The CNNwas trained
for 20 epochs, and the domain adaptation methods were
trained for the remaining 100 epochs. In order to perform
domain adaptation, training is performed by adding a new
loss function obtained bymultiplying a trade-off term to a loss
function for classification. An Adam optimizer was adopted
for training, and the batch size was set to 64. Pump data
were input into the model without labels, whereas the CWRU
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FIGURE 14. Example of structure for AI models.

TABLE 4. Structure for domain adaptation models [30].

and PU data were adopted with labels. Normal and abnormal
values were labeled as 0 and 1, respectively. The codes for
domain adaptation published and demonstrated in [28] were
modified and used with PyTorch and Python.

2) GENERALIZED AI MODEL AND COMBINED AI MODEL
A1D-CNN (extractor) with SVM (classifier) was designed as
illustrated in Figure 14 and utilized to address the challenge

in which only normal data from the target domain are avail-
able. This model is similar to the one utilized in the domain
adaptation models but has a simplified structure with no spe-
cific layers. The architecture of the CNN is one-dimensional,
as illustrated in Figure 14, to make the input data trace-
able. The CNN was trained using common-domain data and
labels in generalized AI models. Features extracted from the
1D-CNNwere relocated before training the SVM, which was
utilized for the classifier in the combined and generalized
AI models. Relocation was performed using the normal data
of each system. For example, the features of CWRU were
rearranged using the average values of features extracted
from the normal state of the CWRU training data. The target
features were relocated in the same manner as the source
domain, for which normal data in the target domain were
fed into a trained extractor and transformed into features for
relocating. Only this data were known to be normal, and the
status for the rest of the data were unlabeled.

Herein, three types of models (AI Models 1–3) were
designed and evaluated. The structure of AI Model 1 adopted
two convolution and pooling layers, respectively. The kernel
size of the first convolution layer was 20, and the other was set
to 5. The pooling kernels were equally set to 2. In AIModel 2,
a convolution layer with a kernel size of 3 and a pooling
layer were added. The kernel of pooling layer 3 was 2. For
AI Model 3, the kernel sizes of the convolution layers were
adopted as 20, 10, 5, and 3, respectively. The size of the
pooling layer was 2, as in previous models. Figure 14 illus-
trates the structure of AIModel 3, which is the longest among
the AI models considered. The number of features extracted
from each AI model was 249, 123, and 59, before fully-
connected layer (size 20), respectively. The strides for the
convolution layers were 1, and the pooling was 2. Adam
optimizer and cross-entropy loss were, and the activation
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TABLE 5. Descriptions of AI models.

TABLE 6. Descriptions of the CWRU and PU models.

function for the convolution layers was a rectified linear unit
(ReLU). Early stopping using the callbacks function in Keras
was adopted in training CNN. The training data were divided
into a specific ratio and adopted as the training, validation,
and test sets, respectively. The length of the input data for
the CNN was 1,024. The generalized AI models were trained
with common-domain data, whereas the combined AImodels
were trained with combined raw data. In the combined and
generalized AI models, the datasets were labeled as presented
in Table 5.

3) CWRU MODEL AND PU MODEL
The CWRU and PU models are AI models trained with the
CWRU and PU data without signal processing, respectively.
The models were designed to examine the characteristics
of features extracted from each system before examining
the results of the proposed method. The training processes
were identical to those for the generalized and combined AI
models, except that the features were not relocated. In addi-
tion, a structure with two convolution and pooling layers
was utilized for both models. Trained models were evaluated
using data that were not utilized in the training. For example,
the CWRU model was trained with the CWRU and PU data,
and the Pump data were evaluated. Similar to the proposed
method, features were extracted from the CNN structure,
and SVM was utilized as the classifier. Table 6 presents the
manner in which each model is trained. Keras was adopted to
train the CNN-basedmodels, whereasMATLABwas adopted
to train the SVM.

TABLE 7. Results of domain adaptation models.

FIGURE 15. Comparison of features extracted from the CNN model with
MK-MMD using common-domain data.

FIGURE 16. Comparison of features extracted from the CNN model with
DANN using common-domain data.

V. RESULTS
A. RESULTS OF DOMAIN ADAPTATION MODELS
The accuracies of the domain adaptation methods presented
in Table 7 are the results produced for the last epoch
of each model. Combined raw and common-domain data
were input into each model and compared. The two models
could not accurately predict the states of the Pump data
when trained with combined raw data. However, the use of
common-domain data not only made it possible to accurately
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TABLE 8. Results of the CWRU and PU models.

extract fault characteristics, but it also classified the states
of processed Pump data with high accuracy. The accuracies
were over 90 percent regardless of the method employed
when common-domain data were adopted.

Figures 15 and 16 illustrate one of the three experiments
for each model using principal component analysis (PCA).
Via the distributions, it can be confirmed that the results of
the domain adaptationmodels are valid, and common-domain
data are effective in diagnosing noisy systems, even though
the labels of the target domain are not available.

B. RESULTS PRODUCED BY CWRU AND PU MODELS
Table 8 presents the data sizes for each process and classi-
fication results of the CWRU and PU models. The results
are presented using the average and standard deviation of the
classification results with an average running time of three
times. The CWRU model is an AI model that was trained
using raw CWRU data. A total of 1,279 datasets were utilized
for training, the model was verified with 427 datasets in
training CNN, and tests were conducted with 427 different
datasets. The model classified the CWRU test sets perfectly,
whereas it failed to classify the states of other bearings.
Figure 17 shows the results for one of the three iterations
using confusion matrix. The PU and Pump datasets were not
used in training.

To analyze the CWRU model, features of the three
datasets extracted by the CWRU model are drawn in a
two-dimensional space using PCA, as illustrated in Figure 18.
Because the criterion of the normal state for the CWRU
data is different from that for the PU data, the PU data are
misclassified with the criterion of the CWRU model. The
model also fails to classify the Pump data. However, it can be
observed that the fault characteristics are extracted for each
system because the features extracted from the normal and
abnormal data are distinguishable depending on the states.

The PU model was developed by training the AI model
using raw PU data. The PU model was trained and evaluated
with CWRU and Pump datasets, as presented in Table 8.
Similar to the CWRU model, the results are represented by
the average and standard deviation of classification with an
average running time of three times. The labels were the
same as those utilized in the CWRU model. A total of 2,100

FIGURE 17. Confusion matrices of the CWRU model: (a) confusion matrix
of the training set. (b) confusion matrix of the PU data (not adopted in
training). (c) confusion matrix of the Pump data (not adopted in training).

FIGURE 18. Comparison of features extracted from the CWRU model.

FIGURE 19. Confusion matrices of the PU model: (a) confusion matrix of
the training set, (b) confusion matrix of the CWRU data (not adopted in
training), (c) confusion matrix of the Pump data (not adopted in training).

datasets were utilized for training, and 700 different sets were
utilized for validation and testing. When the PU model was
evaluated with the PU test sets, it provided an accuracy of
approximately 100 percent. However, the PU model failed
to classify the CWRU and Pump data, similar to the CWRU
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TABLE 9. Test results of the combined AI models.

FIGURE 20. Comparison of features extracted from the PU model.

model. One of the results produced by the PU model is
illustrated in Figure 19, using confusion matrices.

In Figure 20, each feature of the three datasets extracted
from the PU model is compared in the same way as for the
CWRUmodel. The features of the training sets are distributed
more widely than those of the CWRU model. Thus, if the
two datasets are trained together, a more general boundary
may be set, and various characteristics may be applied to
the model. However, because the signals are obtained from
entirely different systems, they must be processed to be able
to treat them as the same domain and expand the domains

FIGURE 21. Confusion matrices of combined AI Model 1: (a) confusion
matrix of the training set, (b) confusion matrix of the CWRU data (not
adopted in training), (c) confusion matrix of the PU data (not adopted in
training) and (d) confusion matrix of the Pump data (not adopted in
training and calculating relocating features).

of the training data. The necessity of signal processing and
signal combination is confirmed using combined and gener-
alized AI models.

C. RESULTS PRODUCED BY COMBINED AI MODELS
Combined AI models, which are AI models trained with
combined raw data, were developed to check the validity of
the signal processing and combination. Generalizing the AI
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TABLE 10. Test results of the generalized AI models.

model without signal processing was difficult, even though
the data were combined. In Table 9, the results are sum-
marized for the combined AI models with data sizes for
both training and testing. As indicated for most models and
trials, the classification of CWRU is obtained with an accu-
racy of up to 100 percent, but classifications for the PU
and Pump data are not performed exactly. Three tests were
performed for each model, and one of the results for com-
bined AI Model 1 is illustrated in Figure 21 using confusion
matrices.

D. RESULTS PRODUCED BY GENERALIZED AI MODELS
Generalized AI models were trained using common-domain
data, and the model was utilized to verify that both training
and test data were classified even in a situation wherein only
normal data of the target domain were available. Testing
data were also processed. The feature extraction network was
trained using common-domain data to extract the common
fault characteristics. The generalized AI model demonstrated
an accuracy of up to approximately 100 percent for the
test data comprising processed CWRU and PU data when
Models 1 and 2 were adopted. In addition, Pump data that
were not adopted for training the CNN and SVM were clas-
sified with an accuracy of over 97 percent when the size of
the features was 249 and 123. Therefore, the generalized AI

FIGURE 22. Confusion matrices of generalized AI Model 1: (a) confusion
matrix of the training sets, (b) confusion matrix of the CWRU datasets
(not adopted in training), (c) confusion matrix of the PU datasets (not
adopted in training), and (d) confusion matrix of the Pump datasets (not
adopted in training and calculating relocating features).

model can be concluded to demonstrate a reliable perfor-
mance in diagnosing the three bearing systems. In addition,
the model accurately classifies the states of Pump data even
though normal Pump data are only adopted in relocating
target features and are not adopted in training both the CNN
and SVM. However, when the number of features was 59,
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FIGURE 23. Comparison of features extracted from generalized AI
Model 1, which utilizes type 1 structure and common-domain data.

the model could not be generalized. That is, generalized AI
Model 3 is not suitable for diagnosing the three bearing
systems. All the results are presented in Table 10.

Finally, the features extracted from generalized AIModel 1
are compared, as illustrated in Figure 23. The features
extracted using the processed data are all located in the same
feature space, and the inner faults of the three systems can be
classified using the same decision boundary.

VI. CONCLUSION
Developing an AI model to diagnose machines with only
available data, such as normal operating data, is the key to
its practical usage in industries because it is impractical to
have sufficient training data for all the systems concerned.
Feature domain adaptation methods have been employed
to address these challenges. However, such methods fail to
extract the features of defects without eliminating structural
and operational noise. Therefore, herein, signal processing
was performed in advance to transfer each data into the com-
mon domain, which made it possible to increase the amount
of training data. In addition, the machine was successfully
diagnosed using only normal data by transferring the data
into the common-domain. Thus, in this study, a novel method
is proposed to increase the training data for extracting gen-
eral fault characteristics by transferring data from different
systems into a common-domain and combining them. The
following is a summary of the results.

1) Two different datasets (CWRU data and PU data) were
processed and combined to build big training data, referred
to as common-domain data. When using domain adaptation
models with common-domain data, Pump data were classi-
fied with an accuracy of over 90 percent. However, combined
raw data in the cross domain failed to train the models to
extract fault features.

2) Features are extracted with 1D-CNN from the
common-domain data and, SVMs are developed with the fea-
tures which are relocated in the feature domain using the nor-
mal data of all the systems. Via this process, all the features

are placed in the common-domain, and all the systems can
be classified with common decision boundary. Models with
different number of layers were tested and validated. Pump
data were classified with over 97 percent accuracy regardless
of states when AI Model 1 and 2 were adopted. The general-
izedAImodels exhibited good accuracy similar to the domain
adaptation models. However, they required less information.

Timely-maintenance of machines is extremely important
for the safe operation of a plant. However, it is often impos-
sible to predict the lifetime because the entire history of the
machine is unknown. Therefore, a study on aging diagnosis
using the common-domain method can be useful because
information on the history of a specific machine can be
obtained.
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