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ABSTRACT This study proposes an implementation method of a hardware-oriented restricted Boltzmann
machine (RBM) without random number generators (RNGs) that employ cut-off bits, which are obtained
from fixed-point binary arithmetic operations on digital hardware, such as field-programmable gate arrays
(FPGAs), instead of random numbers. Most FPGA circuits employ fixed-point binary arithmetic operations
to improve hardware resource efficiency. Therefore, the proposed method applies the unique feature of the
operation, which is bit width extension and cut-off bits. Stochastic neural networks, including RBMs, employ
sampling processes based on a probability distribution associated with the network, and the processes require
many random numbers. However, implementing RNGs in hardware is costly because it requires considerable
hardware resources. The proposed method can mitigate this requirement. To validate the proposed method,
we implement an RBM with the proposed method on the software, emulate fixed-point binary arithmetic
operations, and train the RBM using the MNIST and Fashion MNIST datasets. Furthermore, we apply
the chi-square goodness-of-fit test to evaluate the uniformity of the cut-off bits. Additionally, we compare
hardware resource requirements and power consumption for the proposed method and some major RNGs,
a linear feedback shift register (LFSR), and a xorshift. Experimental results showed that it was possible to
use the cut-off bits for training the RBM using the datasets and clarified the properties of the cut-off bits
using statistical analyses. Moreover, hardware implementation of the proposed method involved the lowest
hardware resource requirements and power consumption among the RNGs compared in this study.

INDEX TERMS Field-programmable gate arrays, neural networks, random number generation, restricted
Boltzmann machines.

I. INTRODUCTION
Deep learning (DL) [1], [2] has been one of the attrac-
tive topics in the research area of artificial intelligence in
recent years, and many studies have proposed architectures
and techniques of deep neural networks (DNNs). Moreover,
DNNs are applied in many applications [3], for example,
image recognition, natural language processing (NLPs), data
analyses, autonomous vehicles, and robotics. These appli-
cations are applicable everywhere, such as a cloud applica-
tion on a data center with massive computational resources,
mobile devices, and edge devices to implement internet-of-
things (IoT) [4]. However, computing systems for DNNs
are imperfect. This section discusses some system problems:
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computational resource requirements, power consumption,
and the disadvantages of cloud computing.

DNNs require many computational resources. Commonly,
DNNs have many multiply-and-accumulates (MACs) opera-
tions even in the training and prediction phase. The operations
are typically done by graphic processing units (GPUs) to
accelerate training of a DNN or inference by a DNN, because
the GPUs have a higher parallelism than central processing
units (CPUs). Moreover, compute unified device architec-
ture (CUDA) produced by NVIDIA eases the programming
of DNNs using GPUs [5]. Therefore, GPU acceleration has
become common practice and has spread to enterprise and
personal users.

However, high-end GPUs, which accelerate DNN appli-
cations, require a higher power consumption than CPUs [6].
Studies on the power consumption of DNNs for the NLP have
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been reported [7]. The problem will be sufficiently large to
ignore in applying the DL in the future.

Moreover, cloud computing has a disadvantage in that it
is a communication delay concern in DNN applications [8].
Many DNNs require massive computational resources, the
networks are trained on cloud servers, and the results are
provided to the user as an application such as a language
translation. As for using cloud service, a user should com-
municate with the cloud servers and transmit some data to
the servers through the internet. Cloud applications have time
delays in their responses. It is a critical problem for some
applications that require real-time responses, such as robot
control.

Developing AI-specific hardware is a possible solution
for solving these problems [9]. The hardware, which has
domain-specific architectures, has high parallelism to cal-
culate MACs. Moreover, the hardware has high flexibility
in memory placement and data path planning. From the
flexibility, the hardware can reduce the processing time and
power consumption of DNNs. In addition, the hardware has
a probability of implementing the embedded use such as
smartphones and robots, which have a limited power supply.
When implementing the hardware in the embedded system
and realizing the on-site operation of the DNNs, there is no
need to transmit data to the cloud server, and it realizes a high-
speed response. In recent years, some companies and research
groups have proposed various hardware such as TrueNorth
(IBM) [10], Loihi (Intel) [11], TPU (Google) [12], andXavier
(NVIDIA) [13].

There are two types of neural networks: determinis-
tic and stochastic. For example, convolutional neural net-
works (CNNs) [14], autoencoders (AEs) [15], and chaotic
Boltzmann machines (CBMs) [16] are deterministic neural
networks. In contrast, stochastic neural networks include
a variety of architectures such as Boltzmann machines
(BMs) [17], restricted Boltzmann machines (RBMs) [18],
[19], variational autoencoders (VAEs) [20], generative adver-
sarial networks (GANs) [21], and generative moment match-
ing networks (GMMNs) [22]. These types of networks
have a sampling phase from the probability distributions
trained by the dataset. In the sampling phase, the network
requires many random numbers. Therefore, random num-
ber generators (RNGs) are an essential component when
implementing stochastic neural networks into the hardware.
Furthermore, if RNGs can be implemented into digital hard-
ware, such as field-programmable gate arrays (FPGAs) and
application-specific integrated circuits (ASICs) with high
parallelism, the sampling process of the neural networks can
be performed in parallel. However, because the hardware
resources of FPGAs and ASICs are limited, the number of
RNGs that can be implemented is limited.

Two RNG implementation strategies are possible in imple-
menting a neural network into the hardware, which requires
random numbers in every unit, such as RBMs. The first
strategy realizes parallel processing by implementing RNG
into all units that consume random numbers. This architecture

has the highest performance for generating random numbers
because all units can behave in a completely parallel; how-
ever, it requires massive hardware resources to implement
RNGs because all units have their own RNGs. In contrast,
the second strategy shares the RNGs with some units or
all units. This strategy can reduce hardware resources for
RNGs; however, the high parallelism, which is one of the
hardware advantages, is lost because of the sharing of RNGs
and sequential distribution of generated random numbers.

We have proposed a hardware-oriented RBM implemen-
tation method without RNGs [23] to resolve this problem,
which applies cut-off bits generated from fixed-point binary
number operations instead of random numbers. The proposed
method can reduce the hardware resources for the RNGs and
realize high parallelism for generating cut-off bits instead of
randomnumbers. Furthermore, because the circuit employing
the proposedmethod consumes fewer hardware resources, the
power consumption required to obtain the output of the cir-
cuit can be reduced compared to conventional methods. This
study applied the method to an RBM, emulated fixed-point
binary number operations on the software, and evaluated the
training results and quality of the cut-off bits obtained from
the proposed method.

Sections II and III describe hardware-oriented RNGs and
the basic theory of RBMs, respectively. Section IV proposes
the implementation method of an RBM for FPGAs without
RNGs as in our proposed method. Section V and VI show the
methodologies of the experiments and the results to evaluate
the proposed method, respectively. Section VII focuses on
the hardware implementation of conventional RNGs and the
proposedmethod, and compares them. Section VIII discusses
the results obtained, and Section IX concludes the paper.

II. HARDWARE RANDOM NUMBER GENERATORS
RNGs are important components of computer systems and
are employed in various applications, such as in numerical
simulations, cipher systems, and digital signatures. Some
DNNs are also part of applications that require RNGs.

There have been a variety of previous studies on hardware
implementations and algorithms for RNGs [24]. RNGs are
divided into two main classes: pseudorandom number gener-
ators (PRNGs) and true random number generators (TRNGs).

PRNGs, such as linear-feedback shift registers (LFSRs)
[25], xorshift [26], and chaotic algorithms [27] generate ran-
dom numbers in a deterministic manner. Despite the numbers
resembling true random numbers, these generated numbers
are reproducible under the same PRNG initial parameters.
However, if these numbers satisfy a certain criterion, they
can be applied to applications that require random numbers.
PRNGs are used in most cases. However, TRNGs generate
true random numbers based on the non-deterministic behav-
ior of physical phenomena such as metastabilities. These
numbers cannot be reproduced even when the same generator
is used.

In terms of the FPGA implementation of RNGs, there
are important evaluation indicators: the quality of the
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FIGURE 1. Structure of the BM. vi and hj are visible and hidden units,
respectively. Each unit is allowed to connect with each other.

random numbers, speed of an RNG operation, and hard-
ware resource requirements. When implementing PRNGs in
FPGAs in parallel, it is possible to reduce the latency to
obtain random numbers. However, as the number of imple-
mented PRNGs increases, hardware resource requirements
increase. The requirements of several PRNG implementa-
tions are overviewed in reference [24]. However, implement-
ing TRNGs on FPGAs requires specific modules that provide
physical phenomena to generate random numbers, which
is costly. Therefore, RNGs, which have low latency, fewer
hardware resource requirements, and a sufficient quality of
random numbers for an implemented application, are desir-
able components for digital hardware applications.

III. RESTRICTED BOLTZMANN MACHINES
Restricted Boltzmann machines (RBMs) are generative mod-
els categorized as stochastical neural networks. RBMs are the
basic building components of some DNNs, such as DBNs.
In addition, many variations of algorithms related to RBM
have an interest in artificial intelligence [28]. This section
describes the basic theory of RBMs and training procedures.

A. STRUCTURE AND BASIC THEORY
RBMs are one of the configurations of Boltzmann machines
(BMs). The structures of a BM and RBM are shown in Figs. 1
and 2, respectively. The BM is a basic RBM model. The
simplest BM is constructed using visible units that connect to
each other. In this architecture, each visible unit has a binary
state of zero or one, which corresponds to the observational
data of the BM. Figure 1 shows that a BM has hidden units.
The hidden units do not directly correspond to the observa-
tional data of the BM. However, a BMwith hidden units has a
high flexibility of data representation. As for RBMs, there are
two layers: visible and hidden layers, which have N and M
units, respectively (v1, v2 . . . vN , and h1 . . . hM ). The visible
layer groups the visible units, and the hidden layer groups
the hidden units. Unit belonging to the same layer do not have
connections. This is a restriction on RBMs.

An RBM obtains a probability distribution, which gener-
ates trained data, and the network is often used to extract
the features of a dataset in DNNs. The RBM is a component
of DNNs that can be stacked in a few stages to construct
a deep belief network (DBN) [29]. An RBM represents the

FIGURE 2. Structure of RBM. There are two layers: visible and hidden.
Units are not allowed to connect with other units in the same layer.

probability distribution of each unit state, calculated in (1).

p(v,h|θ ) =
1

Z (θ )
exp{−8(v,h, θ)}, (1)

Z (θ ) =
∑
v,h

exp{−8(v,h, θ )}, (2)

where v and h represent the visible and hidden unit states,
respectively; θ is a network parameter; Z (θ ) is a normaliza-
tion constant; and

∑
v,h is a partition function that calculates

the sum of all combinations of v and h. 8 is the energy
function of the RBMs, shown in (3).

8(v,h, θ) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

wijvihj (3)

where vi and hj represent the states of the visible and hidden
units, respectively; wij is the weight between the i- and j−th
units; ai and bj are the biases of the visible and hidden units,
respectively; and θ is a set of network parameters.
This network operates stochastically and each unit state is

determined using the firing probability calculated from the
states of the units in the other layer.

B. TRAINING METHODS OF RBMS
To train the parameters θ that define themodel, RBMs or BMs
with hidden units apply the maximum likelihood estimation
to the model distribution indicated by p(v|θ). Because the
model distribution of the network includes v and h, the prob-
ability distribution of v is obtained through marginalization,
as shown in the following equation:

p(v|θ) =
∑
h

p(v,h|θ ), (4)

where v is the input data x1, x2, · · · , xD, which are N -
dimensional vectors. D is the number of data points con-
tained in the dataset. The input data are denoted as vn =
{v1, v2, . . . , vN }. Then, the maximum likelihood estimation
is applied to the likelihood function L(θ ) of the input data,
as follows:

L(θ ) =
D∏
n=1

p(vn|θ ). (5)

This function is the target of the maximum likelihood
estimation. However, the estimation requires the calculation
of all combinations of the v and h states because the likelihood
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function includes Z (θ ), as shown in (2). As the number of
units increases, the combinatorial explosion occurs, and the
training method becomes an intractable problem.

To avoid the combinatorial explosion, the RBM train-
ing method employs the contrastive divergence (CD)
method [30]. The training procedures of an RBM using the
CD method are shown below:

1) Set training data to the visible units vi as v
(0)
i .

2) Calculate p(0)j = p(hj = 1|v, θ ) by (9).
3) Update the hidden unit states (if p(hj = 1|v, θ ) > r ,

then hj = 1, where r is a random number).
4) Calculate p(vi = 1|h, θ ) by (10).
5) Update the visible unit states v(1)i in the same way as in

step 3 using p(vi = 1|h, θ ) instead of the p(hj = 1|v, θ ).
6) Calculate p(1)j = p(hj = 1|v, θ ) by (9).
7) Update the parameters.
The equations for updating the parameters are shown

below:

dwij = ε(v
(0)
i p(0)j − v

(1)
i p(1)j ), (6)

dai = ε(v
(0)
i − v

(1)
i ), (7)

dbj = ε(p
(0)
j − p

(1)
j ), (8)

where dwij, dai, and dai are the gradients of theweight, visible
unit bias, and hidden unit bias, respectively, and ε is the
learning rate.

In RBMs, each unit has the firing probability:

p(hj = 1|v, θ ) = σ

(
bj +

∑
i

wijvi

)
, (9)

p(vi = 1|h, θ ) = σ

ai +∑
j

wijhj

 , (10)

where σ , a, and b are the sigmoid function, visible unit bias,
and hidden unit bias, respectively.

C. VIEW AS AN ENCODER
From another perspective, RBMs work similar to autoen-
coders (AEs) [15], which are one of the neural networks
that construct DNNs. AEs have input, hidden, and output
layers and are unsupervised learning algorithms. The input
and output layers have the same number of units, and the
hidden layer has fewer units than the other layers. This struc-
ture is called an hourglass-type neural network. The AEs
train the network parameters to make the output closer to
the input. After training, the AEs obtain a low-dimensional
data representation with essential information on the hidden
layer. Therefore, AEs are networks that can encode input data
to an internal representation. This feature is often used to
pre-train the DNNs, and stacking the AEs results in stacked
autoencoders [31].

For the RBMs, the calculations of the conditional prob-
ability distribution of the hidden layer p(h|v, θ ) from the
visible layer can be observed by encoding the input data

of the RBM. In contrast, the calculations of the conditional
distribution of the visible layer p(v|h, θ ) from the hidden layer
can be obtained by decoding the data. However, AEs behave
deterministically, whereas RBMs behave stochastically. This
is the most significant difference between the two network
types.

The state of the hidden units sampled from the conditional
probability distribution can be viewed as an internal repre-
sentation of the input data, similar to AEs. The features apply
to DNNs, e.g., deep Boltzmann machines (DBMs), which are
an architecture of DNNs for classification problems.

IV. HARDWARE-ORIENTED RBM WITHOUT THE RNGS
In this section, we propose a hardware-oriented implementa-
tion method for RBMs without RNGs. The proposed method
can reduce the hardware resource requirements, generate a
value instead of the output of RNGs at low clock cycles, and
reduce power consumption. Various studies on the hardware
implementation of RBMs [32]–[36] have been reported. The
proposed method has the advantage of implementation costs
being related to RNGs.

A. FIXED-POINT REPRESENTATIONS
This study employs fixed-point binary numerical operations
to evaluate the proposed method. Generally, software appli-
cations use floating-point representations defined by IEEE
754 [37], which have a high numerical range. Moreover, most
processors in personal computers are optimized for floating-
point operations.

In contrast, in the case of implementing an application into
digital hardware such as FPGAs, most variables and numer-
ical operations employ fixed-point binary number represen-
tations because floating-point arithmetic is complicated for
FPGAs, and realizing them requires more hardware resources
than fixed-point arithmetic.

Therefore, employing the fixed-point binary number sys-
tem effectively implements an application into FPGAs, such
as a neural network containing several units with high
parallelism.

B. FIXED-POINT RBM EMPLOYING CUT-OFF BITS
INSTEAD OF RANDOM NUMBERS
We propose a new method for implementing RBMs with-
out RNGs in digital hardware such as an FPGA. Generally,
PRNGs and TRNGs implemented in the hardware generate
random numbers, as mentioned in Section II, to sample each
unit state of an RMB from the firing probability. However,
the hardware implementation of an RNG is costly because it
requires enormous hardware resources.

Conversely, the proposed method does not require specific
modules for RNGs and uses cut-off bits obtained from the
fixed-point binary numerical operations during the training
phase of an RBM instead of random numbers.

The proposed methods [23] use fixed-point binary num-
bers, which have an M-bit integer part, including a sign
bit and an N-bit fractional part, as parameters of the RBM.
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FIGURE 3. Overview of MAC operation and the proposed cut-off bit
generation method.

Moreover, the proposed method uses the firing probabilities
p(vi = 1|h, θ ) instead of the state of visible units vi in the
training phase. Under this condition, many MAC operations
are performed when calculating the firing probabilities of
each unit by (9). Consequently, in fixed-point binary number
systems, the bit width of the variables increases owing to the
numerical operations. The bit width change is shown in Fig. 3
and is described in each step of obtaining the cut-off bits as
follows:

1) Multiply wij and the firing probability p(vi). The result
has a 2M bit integer and 2N bit fractional parts,
as shown in Fig. 3.

2) Sum up all values of wijp(vi). From the summation,
the number of carry bits is equal to a = log2 k . k
denotes the number of terms to be summed. Therefore,
the result of the summing operation has a 2M + a-bit
integer part, as shown in Fig. 3.

3) Cut off the resultant value in the integer and fractional
parts to hold the initial bit width. In this operation,
(2M+a)−M overflow bits in the integer and N under-
flow bits in the fractional part are generated, as shown
in Fig. 3. We employ these underflow bits instead of
random numbers generated from RNGs as cut-off bits.

The proposed method employs the cut-off bits obtained dur-
ing fixed-point numerical operations to eliminate RNGs from
hardware, such as an RBM. Therefore, this method can
release the hardware resources occupied by RNGs.

V. SOFTWARE IMPLEMENTATIONS AND TRAINING AN
RBM WITH THE PROPOSED METHOD
To evaluate the proposed method with an RBM, we imple-
mented the RBM as a C++ application and trained the RBM
using the MNIST [38] and Fashion MNIST [39] datasets.
This section describes the implementations and training
results.

A. IMPLEMENTATIONS OF THE RBM
We implemented two types of RBMs in the software: an
RBM with the proposed method and a conventional random
number generator. The proposed method was implemented
using the Vitis HLS environment, which is a high-level
synthesis tool provided by Xilinx Inc. [40], to emulate

TABLE 1. Comparison of the implemented software parameters.

fixed-point arithmetic. In the conventional method, RNGs are
defined using a C++ random header.

The parameters of each software are listed in Table 1.
The most different point is computational precision. The
RBM with the proposed method employs fixed-point binary
numbers to calculate the algorithm. It is necessary to emulate
the behavior of the proposed method and implement it on an
FPGA. In this study, the fixed-point variables have an 18-bit
fraction part and a 14-bit integer part. In contrast, the RBM
with the conventional method employs double-type variables
provided by the C++ programming language.

B. EVALUATION METHODS
We implemented an RBM with the proposed method and
conventional RNGs described earlier. The experimental con-
ditions were as follows: the visible and hidden layers had
784 and 150 units, respectively, and the fixed-point numbers
had an 18-bit fraction part and 14-bit integer part, as summa-
rized in Table 1. In this definition of fixed-point variables, the
fraction part was extended to 36 bits after the multiplication
of two variables. After the extension, we obtained 18 cut-off
bits when truncating the extended variables to save them to an
original precision variable, as shown in Fig. 3. The proposed
method normalizes the cut-off bits between zero and one and
uses them instead of random numbers to sample the states of
hidden units.

We trained the RBMs using the MNIST and Fashion
MNIST datasets for 240,000 iterations. One iteration implies
a training cycle that inputs an image extracted from the
dataset to update the parameters. To evaluate the training
result, the software dumped the parameters of weights and
biases as files every 1,000 iterations during the training phase.
Additionally, for the proposed method, the software dumped
the cut-off bits obtained. After the training phase, we loaded
the dumped files into the conventional RBM and started the
test phase.

In the test phase, we input the training and testing datasets
of MNIST and Fashion MNIST into the RBM and calculated
the states of the visible and hidden layer units. After the
calculation, we obtained the cross-entropy as follows:

CE = −vln(σ (hW T
+ b))− (1− v)ln(1− σ (hW T

+ b)),

(11)

where v and h represent the states of the visible and hidden
units, respectively,W is the weight, b is the hidden unit bias,
and σ is the sigmoid function. The cross-entropy errors were
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FIGURE 4. Cross-entropy errors for training and testing MNIST dataset.

FIGURE 5. Cross-entropy errors for training and testing Fashion MNIST
dataset.

TABLE 2. Minimum cross-entropy error.

calculated every 1,000 iterations. All cross-entropy errors are
the averages of all input data.

C. TRAINING RESULTS
We trained the proposed and conventional RBMs using the
training datasets of MNIST and Fashion MNIST datasets.
After training, to validate the training result, we input the
dataset into the RBMs and calculate the cross-entropy error
using (11).

This experiment set the trained parameters from the pro-
posed RBMs to the conventional RBM and calculated the
cross-entropy error. Therefore, we used the proposed method
for the training phase but not for the cross-entropy error cal-
culation phase. The cross-entropy error wasmeasured on both
the training and testingMNIST and FashionMNIST datasets.
The results for these error are shown in Figs. 4 and 5, and the
minimum values of the errors for each experiment are listed in
Table 2. The errors with the proposed method decreased and
almost reached the same levels as the conventional method;
therefore, training with the proposed method successfully
progressed.

Figures 6-11 show the input and output images of the
RBM, which is set with the parameters trained by the pro-
posed method. We extracted 100 images from the testing
dataset from the MNIST and Fashion MNIST datasets and
input them. These results show that the input images were
reconstructed as output images.

FIGURE 6. Input 100 images extracted from the testing dataset.

FIGURE 7. Output images from the RBM using the proposed method.

These results show that it is possible to train RBMs using
the proposed method.

VI. STATISTICAL ANALYSES OF THE CUT-OFF BITS
The cut-off bits should be uniform to equally sample the
state of the units from the firing probability. To evaluate
the uniformity of the cut-off bits, we performed a statistical
analysis using the chi-square goodness-of-fit test [41]. Some
randomness test suites, such as NIST SP800-22 [42], employ
a similar statistical test to evaluate uniformity.

In addition, we summarized the cut-off bits using descrip-
tive statistical values. These values indicate the basic proper-
ties of the numbers.

This section describes the evaluation method of uniformity
using the chi-square goodness-of-fit test and shows the test
results and obtain descriptive statistics.

A. METHODOLOGY OF CHI-SQUARE GOODNESS-OF-FIT
TEST
To evaluate the uniformity of the cut-off bits obtained using
the proposed method, we performed a chi-square goodness-
of-fit test. The test is an often-used statistical test for evalu-
ating whether given data originates from a specified distribu-
tion. This study evaluated whether the cut-off bits obtained
from the proposed method fit a uniform distribution.

The chi-square goodness-of-fit test procedures are as fol-
lows. First, divide the domain of the cut-off bits into l inter-
vals, and determine frequency fi(i = 1, 2, . . . , l) of the given
cut-off bits in the i− th interval (pi−1, pi). Second, calculate
the theoretical frequencies of the cut-off bits Fi using (12).

Fi = n× (F(pi)− F(pi−1)) (i = 1, 2, . . . , l), (12)

where F(z) is an ideal probability distribution function and
n is the number of the given cut-off bits. Third, calculate the
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FIGURE 8. Output images from the conventional RBM.

FIGURE 9. Input 100 images extracted from the Fashion MNIST testing
dataset.

FIGURE 10. Output images from the RBM using the proposed method.

chi-square value using

χ2
l−1 =

l∑
i=1

(fi − Fi)2

Fi
. (13)

Fourth, define the rejection region (χ2
0 ,∞) of the chi-square

distribution with l − 1 degrees of freedom under a 5% level
of significance. Finally, if the chi-square value of the given
cut-off bits χ2

l−1 is less than χ
2
0 , then the numbers passed this

test. In this study, l, the degree of freedom of the chi-square
distribution, was set to 19.

B. THE TEST RESULTS
This validation was performed for each hidden unit because
the cut-off bits were generated and consumed in every hidden
unit. Figures 12 and 13 show a distribution of chi-square
values for each unit during the training with the MNIST
and Fashion-MNIST datasets. In these figures, the x-axis
represents the hidden unit numbers, the y-axis represents the
chi-square value, and the red line represents the chi-square
value at a 5% significance level. In this test, if the chi-square
value is below the red line, the cut-off bits pass the test and
are considered to fit the uniform distribution.

FIGURE 11. Output images from the conventional RBM.

TABLE 3. Descriptive statistics values of the cut-off bits.

From this result, over 90% of the hidden units obtained
a uniform distribution of cut-off bits using the proposed
method. However, some units did not pass the test, and the
training was possible using the proposed method.

Figures 14 and 15 show the transition of the acceptance
rate during the training with the MNIST and Fashion MNIST
datasets. The x-axis shows the 1,000 iterations, and the y-axis
shows the passing rate of the test.

These results show that the acceptance rates remain high
during the training phase.

C. DESCRIPTIVE STATISTICS VALUES
We calculated the descriptive statistic values of the cut-off
bits generated using the proposed method. The values pro-
vided helpful information for obtaining an overview of the
basic properties of the generated values.

The descriptive statistic values of the cut-off bits when
training the RBM with the MNIST and the Fashion MNIST
are summarized in Table 3. In the table, SD is the standard
deviation, and 25%, 50%, and 75% are the quartile points.
The values describe the statistical properties of all cut-off bits
generated during the training phase of the RBM.

Moreover, according to the results, the cut-off bits were
uniformly distributed. This result is an essential property for
using given numbers instead of random numbers.

VII. CONSIDERATIONS OF HARDWARE
IMPLEMENTATIONS
We synthesized conventional PRNGs, xorshift and LFSR,
and the proposed method to compare the hardware resource
requirements and power consumption. Figure 16 shows the
synthesized circuits in this experiment. These circuits have
the single PRNG or the proposed method described in
Verilog HDL.

This section describes the architecture of each imple-
mented logic, shows the synthesized results, which are esti-
mations of the hardware resource requirements and clock
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FIGURE 12. Chi-square values with MNIST dataset. Test passed:
141/150 units.

FIGURE 13. Chi-square values with Fashion MNIST dataset. Test passed:
141/150 units.

cycles for obtaining the output, and shows the estimation
results of the power consumption of the logic.

First, Fig. 16 (a) shows an implementation of the LFSR,
which has a 32-bit shift register, and provides feedback on
the output of the register to generate pseudorandom numbers.
The LFSR generates the bits to be fed back into the shift
register by performing XOR operations on the extracted bits.
The bit extraction locations on the shift register, namely taps,
are defined for the LFSR to realize the longest pseudorandom
output period [43]. In this study, the tap positions were the
first, second, 22nd, and 32nd bits of the shift register. Fur-
thermore, this logic had a 5-bit counter for generating a valid
output signal. The signal indicates that the shift register is
completed using new bits.

Second, Fig. 16 (b) shows the implementation of the xor-
shift PRNG. The PRNG comprises internal states, shift opera-
tions, andXORoperations. This logic has four 32-bit registers
that maintain the internal state of X, Y, Z, andW, and a 32-bit
register that latches an output value. Moreover, ‘‘� x’’ and
‘‘� x’’ operators in the figure indicate an x-bit left-shift and
x-bit right-shift operation, respectively.

Third, Fig. 16 (c) shows the implementation of the pro-
posed method. In this case, the hardware logic requires only
the cut-off operation and latches the result into a 32-bit reg-
ister.

Table 4 lists the synthesized result of each logic and clock
cycle estimation to obtain the output. The synthesis environ-
ment is the Xilinx Vivado tool, and the target device is the
Xilinx Kintex-7 evaluation board (KC705) [44]. In this result,
the look-up-table (LUT) realizes logical operations, and the
flip-flop (FF) latches the data. Moreover, the dynamic power
in the table is the power consumption for the calculation
on the implemented logic within the FPGA, and the static

FIGURE 14. Acceptance rate of the obtained random numbers when
trained with the MNIST dataset.

FIGURE 15. Acceptance rate of the obtained random numbers when
trained with the Fashion MNIST dataset.

TABLE 4. Estimations of clock cycles, resource utilization and power
consumption from synthesis report for each circuits.

power in the table is what the implemented logic consumes
to maintain the essential FPGA operation. From these results,
the proposed method requires minimum hardware resources
on the circuits. The power consumption was estimated using
Xilinx Vivado tools under the 100 [MHz] clock settings.
The tools consider many conditions to estimate power con-
sumption, such as current leakage inside the device, clock
frequency, power supply level, implemented circuit design,
and device family [45]. From these results, the total On-Chip
Power of the LFSR was the lowest, but the PRNG required
32 clock cycles to obtain an output. It is difficult to conclude
that the LFSR requires the lowest hardware resources, and
the estimation of power consumption is discussed in the next
section.

VIII. DISCUSSIONS
This section discusses the training results of the RBMs, statis-
tical analyses of the cut-off bits obtained using the proposed
method, advantages of the proposed method from the per-
spective of the hardware implementation, and applicability
of the proposed method to other neural networks.

A. TRAINING RESULTS
The RBMs using the proposed method can be trained using
the MNIST and Fashion MNIST datasets, as evident from
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FIGURE 16. Implementations of LFSR, xorshift, and proposed method programmed by Verilog HDL. Yellow rectangles indicate FFs.

Figs. 4 and 5. The cross-entropy errors in each experimental
condition with the proposed method are closer to those of the
conventional method applying double-precision and software
RNGs. In the training result of Fashion MNIST, the error
behaved differently from that of the conventional method in
the early training phase. This occurred because of the com-
plexity of FashionMNIST, which may affect the fixed-binary
numerical operations. The training results of MNIST had
smaller errors than those of Fashion MNIST, which can be
attributed to its.

B. STATISTICAL ANALYSES
The distribution of the cut-off bits fit a uniform distribution
of more than 90% during the training phase, based on the
chi-square goodness-of-fit test. Additionally, the passing rate
of the test did not decrease during training. Moreover, the
descriptive statistical values also show the uniformity of the
distribution of the cut-off bits. In contrast, some units did
not pass the test during the training iterations. However, the
RBMs could be trained because the number of hidden units
was sufficient for training the datasets.

However, we cannot conclude that the cut-off bits are
pseudorandom numbers in this study, even if the RBM can
be trained using the proposed method. The bits should pass
stricter statistical randomness tests, such as NIST SP800-22,
to show that they are pseudorandom numbers. Note that a
developer should consider the quality and property of the
cut-off bits to be sufficient for the requirements when apply-
ing the proposed method, instead of random numbers, for any
application.

C. COMPARISONS OF THE IMPLEMENTATION RESULTS
From the results of the hardware implementations for the
proposed method, LFSR and xorshift required 6 and 33 times
more LUTs, respectively, and 3.9 and 8.9 times more FFs,

respectively. These results show that the proposed method
consumes less from the hardware resources implemented into
the FPGA than the other methods. Furthermore, xorshift and
the proposed method require one clock cycle to obtain an
output, but LFSR requires 32 clock cycles. This is because
the LFSR must fill out the 32-bit shift register using the
fed-back bit, which is provided each clock cycle. There-
fore, the proposed method requires fewer hardware resources
than conventional PRNGs without sacrificing clock cycles to
obtain an output.

Figure 17 (a) and (b) show examples of architectures of
the conventional and proposed methods, respectively. The
MAC and σ (x) shown in the figure are basic units used to
realize the neural networks. The cut-off logic reverts the
bit width of the MAC output to the original width and is
an essential unit. The first figure uses a PRNG to generate
random numbers and supply them to the comparator, which
determines the unit state from the firing probability. Some
conventional implementations [32], [34]–[36] also employ
random number generators. However, the second figure does
not have a PRNG and employs the cut-off bits used as the
comparator input. The implemented logic decreases when
employing the proposed method.

Table 5 lists the power consumption estimations to obtain
an output from the PRNGs and the proposed method circuits.
These values were calculated from the power estimation
reports provided by the Xilinx tool [45] after the synthesis
and clock cycles to obtain an output. This estimation relies on
the premise that the clock speed is 100 [MHz], and the target
device is the Xilinx Kintex-7 evaluation board (KC705). The
power consumptions listed in table 5 is calculated as follows:

E = P× cycles× 1/f , (14)

where E , P, cycles, and f denote the power consump-
tion, dynamic power, clock cycles, and clock frequency,
respectively.
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FIGURE 17. Example hardware architectures with the conventional and proposed methods. The common
components of this architecture are the MAC logic, sigmoid function, and comparator.

TABLE 5. Power estimations of each implementation of each circuit.

Therefore, the proposed method can be implemented in
an FPGA with fewer hardware resources and a lower power
consumption. Furthermore, the proposed method can obtain
an output within a clock cycle. These features are important
advantages over the conventional method.

D. APPLICABILITY OF OTHER METHODS
The proposed method may be applicable to other stochastic
neural networks and training methods such as DBM and
dropout. First, the DBMs are structured by stacking the
RBMs as layers. To train a DBM, each layer is trained as
an RBM, which is pretraining. There is a possibility that
the proposed method is applicable to pretraining. Second,
dropout is one of the training methods of the DNNs, such
as convolutional neural networks (CNNs), which are often
used for image classification. During the training phase, the
dropout controls the overfitting by randomly enabling net-
work units. Therefore, this method requires RNGs to generate
randomness, and thus proposed method has applicability to
be applied. Moreover, CBMs [16] are one of the implementa-
tions of a BMwithout RNGs. However, our proposed method
has an advantage in the applicability of other than BM.

IX. CONCLUSION
This study proposes an FPGA implementation method with-
out PRNGs for applications that require random numbers,
such as stochastic neural networks, which apply cut-off bits
generated from fixed-point binary operations, instead of ran-
dom numbers. To validate the proposed method, we applied
it to the RBM and trained it with the MNIST and Fashion
MNIST datasets emulating the fixed-point binary operations
on the software. Additionally, we performed a chi-square
goodness-of-fit test to evaluate the uniformity of the distri-
bution of the cut-off bits obtained from the proposed method.

Furthermore, we synthesized the single circuits of con-
ventional PRNGs, LFSR, and xorshift, and the proposed
method was implemented using Verilog HDL to compare the
hardware resource requirements. The results show that the
requirements of the proposed method were the least com-
pared to those of the other methods. Moreover, we estimated
the power consumption of each circuit to obtain an output,

and the proposedmethod consumed the least power compared
to the others. Therefore, this study proved that the proposed
method has the capability to implement stochastic applica-
tions in an FPGA without PRNGs.

However, this study did not mention that the cut-off bits are
random numbers because they should pass a rigorous statisti-
cal test to be considered as random numbers. Therefore, when
employing the proposed method, the user should consider the
quality requirements of the random number for its desired
application.

Future work should consider conducting further random-
ness tests and statistical analyses for the cut-off bits, apply-
ing the proposed method elsewhere, and implementing the
proposed method in FPGAs for practical uses.
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