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ABSTRACT Sleep monitoring using polysomnography (PSG) in hospitals can be considered expensive,
so the preferable way is to use contactless and wearable sensors to monitor sleep daily by patients at home.
In this study, the Internet-of-Things (IoT) platform was utilized for sleep monitoring with contactless or
wearable sensors as an integrated system developed based on an event-driven and microservice architecture.
Multiple services that respond to events are provided within the system. Electrocardiogram (ECG) data
were used as the input in the sleep monitoring system. The combination of the weighted extreme learning
machine (WELM) algorithm with particle swarm optimization (PSO) was used to process the ECG data,
followed by fuzzy logic to measure sleep quality, then display the data on the dashboard. Based on the
experimental results, the proposed architecture increased throughput by 34.76%, decreased response time
by 55.85%, and reduced memory consumption by 37.26% per instance replication compared to the non-
event-driven architecture. The accuracies of the sleep stage classification were 78.78% and 73.09% for the
three and four classes, respectively, and the area under a receiver operating characteristic (ROC) curve (AUC)
reached 0.89 for both the three and four class classifications.

INDEX TERMS Event-driven architecture, extreme learning machine, Internet of Things, microservices,
sleep monitoring.

I. INTRODUCTION
A behavioral state of low awareness or consciousness of the
environment can be defined as sleep, in which muscles enter
a relaxed state while the human nervous system becomes
inactive [1]. Sleep is essential for restoring the body andmind
to their original state. Physical and psychological problems
such as dizziness and work accidents may occur because
of poor sleep quality [2]. As a solution, a sleep monitoring
system can be used for the early detection of sleep disorders.

Integrating several technologies, such as sensors, cloud
computing, and mobile technology is required for the Internet
of things (IoT) in sleep monitoring systems. IoT connects
humans with devices and/or digital services, providing a plat-
form for sensor, data processing, and dashboard integration.
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Hence, sleep data can be easily accessed by the corresponding
personnel to monitor and analyze the sleep quality of patients.

Sleep monitoring systems can be designed using several
types of architecture [2]–[5]. Typically, three main parts
are deployed in the IoT architecture for sleep monitoring:
1) a sensor gateway to gather data, 2) an IoT platform to save
and handle data from sleep quality sensors, and 3) dashboards
for patients and health experts.

Two concepts can be used to improve the performance of
IoT backend services in software architecture technology:
event-driven andmicroservices. In themicroservices concept,
the system is divided into several independent microservices
defined by each function. Microservices consist of com-
ponents that can be developed and deployed individually
using low inter-service coupling to improve the software
development process and increase the resource usage effi-
ciency of the servers [6]. In an event-driven concept, events
trigger, determine, and build the flow of the system [7].
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Event consumers and producers can be decoupled using an
event-driven architecture. Communication between produc-
ers and consumers, such as routing messages, maintaining
topics, and validating messages, can be facilitated by a mes-
sage broker [8], [9]. Asynchronous processing occurs in an
event-driven architecture where a direct connection between
the producer and consumer is not possible, resulting in depen-
dency reduction between services and functional capability
maximization of each service.

The quantification system for sleep quality is a part of the
proposed sleep monitoring system. In 1989, Buyese et al [10]
determined sleep quality using the Pittsburgh Sleep Quality
Index (PSQI) via sleep quality questionnaires based on one-
month sleep experience. In 2017, Ang et al. [11] used a fuzzy
system to quantify sleep quality based on deep sleep, total
sleep, and wake duration during a one-night sleep. Total of
27 sets of rules were used to define nine levels of sleep quality.

A classification system is required to classify the sleep
stages. Several physiological signals from sensors such as
electrocardiography (ECG), electroencephalography (EEG),
electromyography (EMG), and electrooculography (EOG)
are commonly used by researchers. ECG signals are prefer-
able for sleep studies because they can provide accurate sleep
stage classification with simplicity [12]–[17]. Support vector
machines (SVMs), Bayesian networks, and deep learning
algorithms have been deployed for classification using ECG
signals. Based on Moorcroft [1], sleep stages are divided into
unequal proportions or imbalanced distributions, resulting
in inaccurate classifications. Class distributions of 30.5%,
6.89%, 1.78%, 4.76%, 38.28%, and 17.79% for awake, rapid
eye movement (REM), non-rapid eye movement (NREM)4,
NREM3, NREM2, and NREM1 stages, respectively, were
included in the MIT-BIH polysomnographic database used in
this study. A weighted extreme learning machine (WELM)
can solve imbalanced dataset problem[18]. WELM is an
extreme learning machine (ELM) algorithm with a weight
matrix for strengthening the minority class and weakening
the majority class.

The incremental contributions in this research are:
1) IoT architecture with applied microservices and event-

driven concepts.
2) The combination of WELM with particle swarm opti-

mization (PSO) algorithmwas used to classify the sleep
stage.

3) Mobile-based dashboard for personal sleep monitor-
ing to display sleep quality data for use by health
practitioners.

Good performance (as in better classification accuracy,
area under a receiver operating characteristic (ROC) curve
(AUC), throughput, memory allocation, and response time)
is expected using the novel methods described above. This
paper is an extended version of the conference proceedings
published in [19].

The remainder of this paper is structured as follows:
Section 2 includes the works related to sleep monitoring
systems. Section 3 contains information on the proposed

IoT platform and the sleep stage classification algorithm,
whereas Section 4 presents the proposed sleep-monitoring
dashboard. Section 5 provides the performance evaluation
of the proposed system, and finally, Section 6 presents the
conclusions and future work to complete the paper.

II. RELATED WORK
Software architecture, sleep stage classification, and sleep
quality quantification were included in this study. Hence,
related work is outlined.

A. THE ARCHITECTURE OF SLEEP MONITORING SYSTEM
Surantha et al. [2] surveyed the design of IoT-based sleep
monitoring consisting of several parts: 1) data acquisition
from sensors, 2) a data aggregator transmitting data to the
cloud server, 3) cloud processing for data processing, and
4) an analytics dashboard for application-based monitoring.

In 2016, Kim et al. [3] used cloud-based sensing (Sense-
Cloud) as a service (CSaaS), as shown in Fig. 1. Using
SenseCloud, users can register sensors, and the sensor data
can be stored in SenseCloud storage.

FIGURE 1. Kim et al. [3] architecture of SenseCloud.

In SenseCloud, each service is dedicated to a specific func-
tion. The sensor gateway that received data from the sensor
was operated using cloud virtual machines and stored in the
sensor database. The architecture in this study is denoted as
the microservices database (McsDB).

An IoT-based smart healthcare system collecting vari-
ous sensor data used by health practitioners was developed
in 2019 [4], [5] using the architecture shown in Fig. 2. Mul-
tiple functions are served by the cloud application, such as
1) obtaining data and information from the sensor gateway,
2) saving the data to the database, and 3) performing data
processing. This smart healthcare architecture is denoted as
the monolithic architecture (MnlDB) in this work.

B. THE QUANTIFICATION OF SLEEP QUALITY
Ang et al. [11] used a fuzzy logic algorithm to quantify sleep
quality, taking the percentage of total sleep, deep sleep, and
awake duration as input, then categorizing it into bad, good,
and sufficient. Three categories were quantified into nine
levels of sleep quality, from the worst (L1) to best (L9) using
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FIGURE 2. Swaroop et al. [4] and Mohaptra et al. [5] architecture of Smart
Healthcare.

several sets of rules, inwhich this studywas also implemented
using the jFuzzyLogic Java library [20].

C. THE CLASSIFICATION OF SLEEP STAGE
Before quantifying sleep quality, Ang et al. [11] used ECG
data as inputs to acquire sleep stages. The classification of
sleep stages has been conducted using several algorithms.

Adnane et al. [12] classified sleep stages into two classes:
awake and sleep, with an accuracy of 79.99% using the SVM
method. The MIT-BIH polysomnographic database was used
as a dataset with ten extracted features. Xiao et al. [13] used
a random forest algorithm to classify three classes of sleep
stages: REM, awake, and NREM. An accuracy of 88.67%
was achieved using 41 features.

Another approach was proposed by Fonseca [14] in 2015
using the Bayesian Network multi-class method to classify
PSG data into three classes and four classes of sleep stages:
awake, REM, deep sleep, and light sleep. For three and four
classes, the obtained accuracies were 80% and 69%, respec-
tively, using 80 features.

In 2016, Lesmana et al. [15] classified sleep stages using a
combination of ELM and PSO algorithms. A total of 18 fea-
tures from the MIT-BIH polysomnographic database were
utilized and achieved accuracy rates of 62.66%, 71.52%,
76.77%, and 82.1% for six, four, three, and two classes,
respectively. The accuracy rate of 62.66%, 71.52%, 76.77%,
82.1% was obtained for 6, 4, 3, 2 classes. PSO was used for
feature selection, and the ELM algorithm was used to calcu-
late the fitness value. Yücelbaş [16] deployed amorphological
method to classify 3 classes of sleep stages using 15 features.
TheMIT-BIH polysomnographic databases and polysomnog-
raphy (PSG) were used as datasets with 77.02% accuracy.
Wei et al. [17] used a deep neural network to classify the
three classes using the MIT-BIH polysomnographic database
data. An accuracy of 77% was obtained for the 11 features.
Table 1 summarizes the related work on sleep classification
algorithms.

In the research conducted by Lesmana et al. [15],
70% of the dataset was used for training and the rest
for testing, using 18 features extracted from ECG data
every 30 s. The features are divided into 11 time-domain
features and 7 frequency-domain features [16]. Frequency-
domain features consist of 1) Total power, 2) low-frequency
range (0.04 Hz to 0.15 Hz) (LF), 3) total power in the
very-low-frequency range (≤0.04 Hz) (VLF), 4) high-
frequency range (0.15 Hz to 0.4 Hz) (HF), 5) LF and HF

TABLE 1. The related work of sleep classification algorithm.

power in normalized units, and 6) ratio of LF and HF. Mean-
while, the 11 features of time-domain [21] consist of the
following: 1) average of RR intervals (AVNN), 2) standard
deviation of RR intervals (SDNN), 3) root mean square of
the differences of adjacent RR intervals (RMSSD), 4) stan-
dard deviation of differences between adjacent RR intervals
(SDSD), 5) count of successive differences of RR intervals
for more than 50 ms (NN50), 6) the division of NN50 and
the total of RR intervals minus 100 in percentage (pNN50),
7) HRV Triangular Index, 8) standard deviation of points
which is perpendiculars to the axis of line of identity (SD1),
9) along the axis of line of identity (SD2), 10) ratio of SD1
and SD2, and 11) area of ellipse [21].

In 2013, Zong et al. [18] deployedWELM algorithm using
weight matrix to solve the imbalanced class distribution.
The weight matrix (W), which is a diagonal matrix with its
elements, is shown in (1).

W = 1/
#(ti) (1)

The use of the weight element helps the model to deal with
the imbalanced class distribution by weakening the majority
class and strengthening the minority class, also immediately
compensating with the C-constant of the ELM optimiza-
tion problem. The WELM optimization using the additional
weight matrix is shown in (2).

minimize:
1
2
‖β‖2 +

1
2
CW

N∑
i=1

‖ξ‖2

subject to: Hβ = ti − ξi, i = 1, . . . ,N (2)

Each class was mapped into an array with m elements for
mmulticlass classification. Each element had a value of either
−1 or 1, where the targeted class had a value of 1. TheWELM
algorithm used for testing and training is illustrated in Fig. 3.

III. THE PROPOSED SYSTEM ARCHITECTURE AND SLEEP
STAGE CLASSIFICATION ALGORITHM
This study aimed to develop a sleep monitoring system using
event-driven and microservices architecture with satisfactory
performance based on memory allocation, response time,
and throughput. In addition, the combination of WELM and
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FIGURE 3. The WELM algorithm for testing and training.

PSO algorithms to achieve better sleep classification accu-
racy is also provided.

The sleep monitoring system via the IoT architecture with
microservices and event-driven is shown in Fig. 4. The sys-
tem consists of data acquisition and monitoring applications
integrated into the IoT cloud server. The microservice appli-
cations on each IoT platform block had their source code,
independent from other applications, and could be deployed
separately.

The MIT-BIH polysomnographic data were streamed and
used as sensor simulation data in the data acquisition process.
The proposed IoT platform has five functions for sleep mon-
itoring: 1) receiving incoming data and information from the
sensor, 2) saving data to the database, 3) classifying the sleep
stages, 4) measuring sleep quality, and 5) visualizing the sleep
data to the dashboard.

The sensor gateway was deployed to receive data, whereas
the sensor data were persistent for storing data. Message
brokers were used for the communication. After receiving the
sensor data, the sensor gateway publishes an event and stores
it using sensor data persister. Data ingestion and storage were
performed separately and asynchronously through service
separation.

After receiving and saving the sensor data in the database,
sleep stage classification was carried out using the WELM
and PSO algorithm combination. The process also involves

FIGURE 4. The sleep monitoring system via IoT architecture proposed in
this study.

scheduling a system to check the available data in the
database. An event was published when the classification
process finished and responded to using a fuzzy algorithm
to quantify sleep quality.

Finally, sleep quality data were be retrieved from the
database and displayed on the dashboard. The proposed ser-
vice also provides administrative features such as patient
registration.

A. FIRST PART: THE SENSOR GATEWAY
An IoT platform related to sensors for sleep monitoring is
a sensor gateway. The representational state transfer (REST)
protocol [22] was used with an additional security layer using
the JSON Web Token (JWT) [23], [24]. The patient was
identified using the request body, which consisted of the
ECG data and the patient’s unique sensor token. The message
broker was then received the data with ‘‘ecgDataInput’’ topic,
as shown in Fig. 5. The asynchronous and separated process
of the data storing and receiving process resulted from the
event-driven and microservices architecture. The implemen-
tation expected a lower response time and a higher throughput
in the sensor gateway.

FIGURE 5. The flowchart of sensor gateway.

B. SECOND PART: THE SENSOR DATA PERSISTER
The ‘‘ecgDataInput’’ event was used to trigger the sensor data
persister to validate and keep the data in the SQL database.
The consumer group in the event-driven architecture was used
as a concept for designing the sensor data persister; hence,
replication to process large amounts of data from the sensor
gateway was prepared.

Every patient had only one sleep quality data because only
one set of ECG data was processed each day. The ECG data
processing time was determined using a time range field dur-
ing the patient registration process. Fig. 6 shows the flowchart
of the sensor data persister.
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FIGURE 6. The flowchart of sensor data persister.

C. THIRD PART: SLEEP STAGE CLASSIFICATION
SERVICE (SSCS)
The combinedWELMand PSO algorithmswere deployed for
sleep stage classification as an upgrade to the combination
of ELM and PSO algorithms by Lesmana et al. [15]. The
ELM-PSO combination was deployed as a reference because
of its quick learning time while maintaining a high gen-
eralization performance. The MIT-BIH database of human
sleep ECG recordings [25] containing 10274 samples of
18 recording files was used as the dataset for classification.
After removing invalid annotations or time, 10154 valid data
were obtained. In every 30 seconds segment, six sleep stages
were denoted in the MIT-BIH data samples, further mapped
into three or four classes. The data distribution obtained for
the three classes were wake (30.5%), REM (6.89%), and
NREM (62.61%), whereas for the four classes were wake
(30.5%), REM (6.89%), deep sleep (NREM3 and NREM4)
(6.54%), and light sleep (NREM1 and NREM2) (56.07%).
The dataset was then divided into 70:30 proportions as
training and testing data, following the method described
by Lesmana et al. [15].
Feature selection was carried out using the PSO algorithm

to choose the best subset features because of the reduced
selected features that affect processing time, resulting in a
better and faster sleep stage classification [26]. The position
of the PSO particle to represent the masked feature is des-
ignated by binary coding. The 18 features consist of seven
frequency-domain features and 11 time-domain features [16].
The employed frequency-domain features are total power
(TP), total power in the very low frequency range (≤0.04 Hz)
(VLF), low frequency range (0.04 Hz to 0.15 Hz) (LF), high
frequency range (0.15 Hz to 0.4 Hz) (HF), ratio of LF and
HF, LF, and HF power in normalized units. Meanwhile, the
time-domain features are: 1) RR interval average (AVNN),
2) RR intervals’ standard deviation (SDNN), 3) square root
of the average squared differences of adjacent NN inter-
vals (RMSSD), 4) standard deviation of differences between

adjacent RR intervals (SDSD), 5) count of successive dif-
ferences of RR intervals that are more than 50ms (NN50),
6) the division of NN50 and the total of RR intervals minus
100 (pNN50), 7) HRV triangular index, 8) standard deviation
of points perpendicular to the axis of line-of-identity (SD1)
and 9) along the axis of line-of-identity (SD2), 10) ratio of
SD1 and SD2, and 11) area of ellipse [21]. Following the
work of Malik et al. [21], 18 bits were deployed to represent
18 extracted features, yielding 262144 particles. For instance,
a particle with a position of 215176 (110100100010001000
in binary) indicates that feature numbers 1, 2, 4, 7, 11, and
15 are the selected features.

Fig. 7 shows a flowchart of the combinedWELM and PSO
algorithms. In the testing dataset, model accuracy was the
calculated fitness value. WELM was deployed to calculate
the accuracy of each particle as a fitness function. A total of
80 sets of 20 particles with 20 iterations were used, whereas
the c1 and c2 for PSO was 1.2 as stated in [15].
The flowchart can be explained as follows:
1. Dividing the dataset to 70:30 for the ratio of training

and testing.
2. Initializing P particle with I iteration.
3. Initializing 262144 particle positions with the value

of 0.
4. Decoding the position of the particle, obtaining, and

masking each particle’s features.
5. Calculating fitness value using WELM, which is used

for testing accuracy.
6. Updating pBest (local) and gBest(global)
7. Updating particle velocity, including its new position.
Fig. 8 shows a flowchart of the SSCS scheduler and val-

idation algorithm, in which two validations were run every
second on the database. After the sleep time range, ECG data
were no longer recorded for the day. Then, the classification
process is carried out based on the testing phase in Fig. 3,
with the w matrix, β matrix, and selected features of the
learning process using a combination of WELM and PSO.
The ‘‘sleepStageReady’’ event would be published by sleep
stage classification service after finishing the sleep quality
classification.

D. FOURTH PART: SLEEP QUALITY QUANTIFICATION
SERVICE (SQQS)
The sleep quality level was quantified using a fuzzy algo-
rithm[11] based on the awake, deep sleep, and total sleep
duration percentage in the sleep quality quantification service
(SQQS). Fig. 9 shows a flowchart of the event-based concept
in the SQQS.

The process of sleep quality quantification was executed
by the ‘‘sleepStageReady’’ event from the SSCS. The work
of Ang et al. [11], which used the jFuzzyLogic library, was
deployed in which the awake, deep sleep, and total sleep
duration from the SSCS were used as fuzzy inputs. A set of
data for metrics or extra information on the dashboard was
calculated from the sleep stages in SQQS, such as the duration
of awake, light sleep, deep sleep, total sleep, REM, as well as
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FIGURE 7. The flowchart of combined WELM and PSO algorithm.

wake time, time to sleep, and sleep efficiency, which are the
percentages of total sleep duration. The completed result was
then stored in the database.

E. FIFTH PART: APPLICATION GATEWAY
In addition to acting as a gateway for the application, it also
facilitated the registration of patients and health practitioners.
A sensor token is generated using a universally unique iden-
tifier (UUID) in the patient registration process [27]. REST
endpoints were provided by this service to retrieve the ECG,
sleep quality, and sleep stage information for each patient.

F. SIXTH PART: APPLICATION MONITORING
A mobile-based application for clients or patients is used for
monitoring application. Tables and graphs were created to

FIGURE 8. The flowchart of SSCS scheduler and validation algorithm.

FIGURE 9. The flowchart of event-based concept in SQQS.

present informative sleep data on the dashboard regarding the
details of patient sleep.

IV. PROPOSED MONITORING DASHBOARD
The proposed dashboard was built using the Flutter frame-
work and had two dashboard types: the daily sleep stage
dashboard and the overall sleep stage dashboard, as presented
in Fig. 10 and 11. The dashboard has two types of user access:
patient and health practitioner.

Daily sleep quality and sleep stage dashboards show sleep
quality, sleep stage percentage, and sleepmetrics according to
the applied date or time filter. The sleep stages were presented
using a graph and several colors to identify each stage, and
the sleep metrics consisted of awake duration, deep sleep,
light sleep, REM, total sleep, wake time, time to sleep, sleep
quality, and sleep efficiency.

The overall quality and sleep stage dashboards contained
information about overall patient sleep quality displayed in
bar charts with sleep quality as the y-axis and day as the
x-axis. The display of all data depended on the provided start
and end date filters. Sleep metrics showing the duration of
awake, deep sleep, light sleep, REM, and total sleep, as well
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FIGURE 10. The dashboard of the daily sleep stages.

as time to sleep, wake time, sleep quality, and sleep efficiency
were also shown.

V. RESULTS AND DISCUSSION
To evaluate the performance of the proposed IoT platform
using microservices, event-driven, and the integration of
WELM with PSO, four measurements were performed on a
single machine with four CPUs equipped with 15 GB RAM
and a clock rate of 2 GHz. The evaluations were performed
as follows:

1) The first evaluation is related to the sensor gateway
throughput and response time bymeasuring the number
of transactions that the system can handle within a
certain period. The number of transactions or requests
per secondwas obtained for throughput evaluation. The
duration of transaction or request being handled by a
system was denoted as the response time, in which the
measurement was started from the request sent to the
server until the response was received [28]. A simulator
streamed from the MIT-BIH database, was deployed
to simulate the sensor data. A comparison to mono-
lith and microservices architecture was made without
event-driven or directly to the database with one and
two replica applications.

2) RAM or memory usage evaluation of the proposed
architectures was conducted and compared to monolith
and microservices architecture with no event-driven

FIGURE 11. The dashboard of overall quality and sleep stages.

architecture, or directly to the database using seven
replica applications.

3) Execution time was evaluated for both the SQQS
and SSCS. The speed of data processing from the
sensor and the calculation of sleep quality data were
determined.

4) Finally, the combined WELM and PSO algorithms for
the imbalanced dataset were evaluated and compared
to the previous method using the following metrics:
model training and testing accuracy, sensitivity, speci-
ficity, and AUC. For the classification data, the anno-
tations from the MIT-BIH database were used as a
comparison.

A. THE EVALUATION OF THROUGHPUT AND
RESPONSE TIME
Fig. 12 shows a comparison of the evaluated architec-
tures. For testing purposes, 20000 requests were made
using the Apache Jmeter [29]. The microservices and event-
driven (McsED) architecture were compared to microser-
vices without an event-driven architecture or directly to the
database (McsDB) [29], as well as monolith architecture
(MnlDB) [4], [5] with one and two service replicas. In sum-
mary, three architectures with two types of service replicas
yielded six types of architecture.

Table 2, Fig. 13, and Fig. 14 present comparisons
of throughput and response times. The proposed system
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FIGURE 12. The comparison of the evaluated architectures. (a) 1McsED
(proposed), (b) 2McsED (proposed), (c) 1McsDB [3], (d) 2McsDB [3],
(e) 1MnlDB [4], [5], (f) 2MnlDB [4], [5].

TABLE 2. The comparison of throughput and response time.

exhibited the best performance for one and two replicas.
Using one replica, the proposed architecture could process
803 sensor data with a response time of 253.34 ms. On two
replicas, 1508 transactions were achieved every second with
a response time of 68.8 ms.

Compared to the monolith architecture, which was directly
connected to the database (MnlDB), the throughput was

FIGURE 13. The evaluation of throughput using several architectures.

FIGURE 14. The evaluation of response time using several architectures.

increased by 92.59%, and the response time was decreased
by 75.48% for two replicas owing to changes inmicroservices
and event-driven architecture (McsED). The message broker
implementation also increased the throughput by 34.76% and
decreased the response time by 55.85% for two replicas com-
pared to microservices without an event-driven architecture
(McsDB). The proposed architecture improved the through-
put and response time because the gateway sensor services
were separated from other functions. Hence, transactions in
the database were not required and they becamemore focused
on performing tasks. Asynchronous data storage processing is
possible usingmessage broker, which is handled by the sensor
data persister service. A lower performance was exhibited in
themicroservices without event-driven architecture (McsDB)
because the sensor gateway required receiving and storing
data in the database. The worst performance was shown in the
monolith architecture (MnlDB) because of its requirement to
provide all sleep quality monitoring functions in one large
application.

B. THE COMPARISON OF MEMORY USAGE
Fig. 15 shows RAM or resource memory usage per archi-
tecture for up to 7 replicas of sensor-gateway replication.
Equation (3) was used to calculate v, which increases the rate
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FIGURE 15. The architecture in average memory consumption per
instance replication comparison.

in memory consumption per instance replication, where:

v =
1
N

∑N

i=i
xi+1 − xi (3)

The most efficient memory usage was observed in the
monolith architecture (MnlDB). In contrast, the highest mem-
ory consumption (2898 MB) was achieved in the proposed
architecture (McsED).

The lowest memory usage for 2 to 4 replicas was achieved
using McsDB. When the replica was further increased, the
lowest memory consumption was obtained by the proposed
architecture at 372 MB on average per added replica (v),
compared to the microservices-database (McsDB) architec-
ture and monolith architecture (MnlDB) at 592.5 MB and
1430.67 MB, respectively. Table 3 compares the rates of
increase in memory usage per instance replication for the
seven replicas.

TABLE 3. The rate of increase in memory usage per instances replication
for 7 replicas comparison (N = 7).

The microservices architecture provided low memory
usage in the proposed method, in which the replication of the
required services was enabled, namely, the sensor gateway.
Sensor gateway replication cannot be performed separately
in a single-entity application, such as a monolith architecture
(MnlDB). Further reduction was made possible using event-
driven architecture, which results in reducing the additional
RAM resource usage for connecting to the database. The
addition of a gateway sensor replica (DB) in the McsDB
architecture increases the database memory usage owing to
the direct connection of the gateway sensor to the database,
thus requiring more allocated memory.

C. THE EVALUATION OF SSCS AND SQQS EXECUTION
TIME
After a patient’s ECG data were fully collected for one day,
the execution times of the SSCS and SQQS were evaluated.

FIGURE 16. The comparison of data flow of ECG data for sleep quality
processing in a) McsED, b) McsDB, c) MnlDB.

Fig. 16 shows the data flow of the ECG data for sleep qual-
ity processing. The slp41 file, which has 23400 ECG data
(6 h 30 min long), was used as the ECG sample data, and
the evaluation was performed 50 times.

The proposed architecture (McsED) consists of six steps to
convert ECG data into sleep quality data. The first step was
database reading using SSCS scheduler. Second, the ECG
data in the sleep stage were classified using the SSCS. Third,
the ‘‘sleepStageReady’’ event was published to the message
broker by the SSCS. Fourth, the SSQS detected the ‘‘sleep-
StageReady’’ event. Fifth, the sleep stage was converted into
sleep quality using the SQQS. Finally, the sleep quality data
were stored in the database.

The processes of the microservices database architec-
ture (McsDB) and proposed architecture (McsED) were sim-
ilar except in the third and fourth steps, which were converted
into one step. This step was the SSCS call to the SQQS API,
triggering sleep quality quantification instead of sending an
event.

In contrast to McsDB and McsED, the monolith-database
architectures (MnlDB) only contained three steps. First, the
SSCS scheduler detected that the ECG data were stored in
the database. Second, SSCS and SQQS performed the sleep
classification process and sleep quality quantification. Third,
the sleep quality data were stored in the database.

Table 4 summarizes the average execution time compar-
ison between WELM-PSO and ELM-PSO for each MIT-
BIH record. The average execution time for the proposed
architecture (McsED) was 5455 ms. In other words, the
sleep quality data would be accessible to patients within
±5.5 ms after ECG data was collected. In comparison, the
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TABLE 4. The comparison of average execution time between WELM-PSO
AND ELM-PSO for each MIT-BIH record.

average execution time of microservices database (McsDB)
and monolith database architecture (MnlDB) was 5028.7 ms
and 4511.32 ms. The fastest processing time was achieved
by using MnlDB as compared to other architectures because
the processing in MnlDB was done in 1 source code. Hence,
a remote function of the call procedure for other services is
not necessary. Compared to the monolith and microservices-
database architecture, the proposed architecture was slower
by 17.3% and 7.81%, respectively, because the amount of
time to send and receive events between services was small.

D. PERFORMANCE OF PROPOSED WELM AND PSO
ALGORITHM
The combined WELM and PSO algorithm was tested for
3 classes such as awake, NREM, REM, and 4 classes like
awake, light sleep, deep sleep, and REM classification.

By extracting ECG data, there were 18 features
obtained from theMIT-BIH polysomnographic database. The
‘strongest’ features that affected the result were determined
using the PSO algorithm, while testing accuracy for fitness
values was using the WELM algorithm. More information
about feature selection and assessment can be found in
previous research published as conference proceedings [19].

The accuracy results using WELM and PSO for the three
classes was 78.78% and four classes was 73.09%, respec-
tively. Meanwhile, 10 features highly influenced the accuracy
results are 1) AVNN, 2) RMSSD, 3) SDNN, 4) pNN50,
5) SDSD, 6) HRVTriangular Index, 7) SD1, 8) area of ellipse,
9) TP, 10) LF-HF ratio. The results of the testing accuracy for
each subject file in the MIT-BIH polysomnographic database
are shown in Table 5. WELM as a substitute for ELM in the
work of Lesmana et al. [15] increased the testing accuracy by
1.76% for three classes and 1.57% for four classes.

The results proved that the theory by Zong et al. [18]
provided different C values by using matrixW , which gave a
larger and smallerC value for theminority andmajority class,
respectively. The reason for the utilization of matrix W was
to provide singleC values for the whole equation, either large
or small, while poor performance or poor generalization still
occurred in the minority classes[18]. Tables 6 and 7 provide
performance comparisons for three and four classes of related
works and the combined WELM and PSO algorithms in this
study. Compared to previous works [15]–[17], the combi-
nation of WELM and PSO in this study resulted in better
performance in terms of accuracy and number of features for
three and four classes.

TABLE 5. The performance comparison between WELM-PSO and
ELM-PSO [15] for each MIT-BIH record.

TABLE 6. The performance comparison between related works and
WELM-PSO for 3 classes.

TABLE 7. The performance comparison between related works and
WELM-PSO FOR 4 classes.

TABLE 8. Highest results of testing sensitivity, specificity, and AUC for
3 classes and 4 classes.

To enhance the evaluation of the WELM-PSO combina-
tion, the sensitivity, specificity, AUC of the model from the
ROC curves were also calculated. The highest results of the
18 samples for three classes and four classes are shown in
Table 8, while the ROC curves for three and four classes are
shown in Fig. 17 and 18.

The AUC ranges from 0.5 to 1. According to
Khouli et al. [30], a classification model can be considered
excellent if the AUC value ranges from 0.9 to 1. Our study
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FIGURE 17. ROC curves of the highest AUC result for 3 classes.

FIGURE 18. ROC curves of the highest AUC result for 4 classes.

has the highest AUC values of 0.89 for both the three and four
classes classification, which can be considered acceptable.

VI. CONCLUSION
This paper presents a study on IoT architecture for sleep
quality monitoring and a combination of WELM with PSO
for sleep stage classification. The entire system consists of
two main concepts: event-driven and micro-services in the
IoT platform, which then splits again into fivemicro-services:
1) sensor gateway, 2) sensor data persister, 3) sleep stage
classification, 4) sleep quality quantification, and 5) appli-
cation gateway. The communication between these services
was triggered by events in an asynchronous manner between
the message broker and services.

The processing time of 803 ECG requests per second was
achieved using a single replica of the proposed system with
a response time of 253.34 ms, whereas 1508 requests per
second were also obtained using two replicas with a response
time of 68.8 ms. Initially, the proposed system consumed the

highest resources. As the number of replicas increased, the
memory consumption has the lowest increasewhen compared
to other systems since microservices have independently
separated services. The system used 372 MB per replica
for the sensor gateway replication in the average memory
consumption per instance replication. Testing accuracies of
78.78% and 73.09% were obtained from the WELM-PSO
algorithm, which were higher than other studies for three and
four classes. In addition, the AUC of the proposed model was
also calculated, and the highest result reached both 0.89 for
the three and four class classification.

Despite these advantages, the data processing from raw
ECG data into sleep quality data using the microservices
and event-driven architecture was 7.81% and 17.3% slower
than the other architectures, respectively, owing to the event-
driven communication system. However, the data flow in
the proposed architecture can be improved by adding sen-
sor transmission protocol and event compression. For future
work, additional features obtained from other sensors may
improve the accuracy of sleep stage classification, such as res-
piration sensors or actimetry. Moreover, the suggestion from
the reviewer about using the sleep microstructure over the
sleep macrostructure to assess sleep quality is also considered
for further research.
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