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ABSTRACT This paper developed an improved numerical methods for calculating electromagnetic field
at low frequencies, and compared the performance with the traditional method. Traditional finite-element
time-domain (FETD) is known to suffer from low frequency breakdown (LFB) problem,where systemmatrix
becomes ill-conditioned, and leads to instability of small size electrical structures. In this paper, we proposed
a mixed FETD (mFETD) method in resolving the LFB anomaly in the traditional FEM, with a particular
reference to transmission line, inductor, and coaxial cable. We considered wave equation of E-field with
incorporation of divergence constraint equation (DCE) as a function of Lagrange multiplier using current
continuity equation (CCE) and Gauss’s law. For spatial discretization, both nodal basis functions and Curl
conforming vector basis functions were selected, and we employed implicit Newmark beta algorithm (NBA)
for integration of time. We describe how the components constructed via DCE in system matrix mitigate the
singularity impact of the stiffness matrix, which consequently led to significant improvement of the system
matrix. Numerical experiment and results demonstrate how the mFETD obtains stable numerical solution
and attains faster rate of convergence while using an iterative solver, as such, improves the computational
efficiency. Therefore, the mFETD method handles the transient problems in transmission line, which causes
LFB anomaly in the traditional FETD, but not efficient in terms of computational time and iteration at solving
the coaxial cable problem.

INDEX TERMS Low frequency breakdown, traditional FETD, improved FETD, coaxial cable, divergence
constraint equation, Newmark beta algorithm.

I. INTRODUCTION
Transmission line segments finds wide application in the
design of circuits, RF, and microwave components, such as
power combiners/dividers, phase shifters, delay lines, and
filters. Characteristic impedance and electrical length are the
major parameters that determine the behavior of transmis-
sion line (TL) segment [1]–[5]. At microwave frequencies,
the electrical length needed for the implementation of the
above listed components can be achieved by TL of few
centimeters length at most. At lower frequencies, the design
of circuits and components based on TL segments is not
achievable in practice except for a compaction procedure,
which usually arrive at a practical structure with no reduction
in electrical length. Meandering is the popular approach to
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achieve such goal in planar technologies. In such situation,
a straight, long TL is transformed into a set of short TL
connected by meanders. There is reduction in the physical
length of but with greater component width for the same
electrical length. On the other hands, all meander along the
path of signal causes a discontinuity that require considera-
tion during the modeling of TL segment behavior [6]. In the
simulation of integrated circuits, radiation antenna, signal
integrity, etc. numerical methods, such as, finite-difference
time-domain (FDTD), method of moments, spectral-element
method (SEM), and finite-element method (FEM) have been
widely used. However, all the aforementioned traditional full-
wave solvers suffer from ‘‘low frequency breakdown (LFB)
problem’’ [7].

The FETD method has been demonstrated as a powerful
and versatile tool for analysis of various electromagnetic
devices. However, while solving low frequency transmission
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line problem in which the size of the transmission line
in finite-element discretization is very small compared to
the wavelength, there is a problem of instability in FETD,
which is referred to as ‘‘(LFB)’’ in finite-element method
or ‘‘non-physical dc modes’’ phenomenon [7]–[11]. LFB in
electromagnetics is related to spurious modes for eigenvalue
problems. It leads to slow convergence in an iteration or
unstable numerical solution of a direct solver for radiation
phenomena in both time and frequency domains. The reason
for this LFB is the irrotational vector space spanned by
the edge basis functions leading to non-zero divergence of
electric flux density. That is, the divergence of E-field is not
constrained by Gauss’s law in the traditional methods.

Overcoming the LFB phenomenon, Gauss’s law has to be
considered as discussed in [8]–[13]. These works rely on
orthogonality solution of gradient matrix (null space), where
free DCE is introduced using the tree cotree partitioning or
projection operator of the mesh of FE to eliminate spurious
modes for frequency domain eigenvalue problems. An ana-
lytical method is developed in [14] via decomposition of the
solution into its complementary and null space term with
no computational complexity to solve the LFB problem in
FEM. Kikuchi [15] proposed mixed FEM (mFEM) method
enforcing the constraint of free divergence for eigenvalue
issues, where free divergence condition is considered the
equation of constraint and added into the system equation
as a function of Lagrange multiplier. Mixed SEM is another
method [15]–[17] that is appropriate for large scale prob-
lems with higher convergence order. Furthermore, in [18],
a mixed FEM/SEM is used to solve the LFB phenomenon
in sub-surface sensing problems with low-frequency electro-
magnetic fields.

mFEM has been formulated in frequency domain in order
to solve the LFB anomaly. This paper extends the mFEM
in time domain called mixed finite-element time-domain
(mFETD) to enhance matrix conditioning and numerical sta-
bility when solving very small sizes transmission line prob-
lems. Of cause, this may be extended to other microwave
components. We focus on transmission line because it is
a fundamental component in antenna or field-circuit cou-
pled analysis. Specifically, we considered wave equation of
E-field with incorporation of divergence constraint equa-
tion (DCE) as a function of Lagrange multiplier using cur-
rent continuity equation (CCE) and Gauss’s law. For spatial
discretization, both nodal basis functions and Curl conform-
ing vector basis functions were selected, and we employed
implicit Newmark beta algorithm (NBA) in order to inte-
grate time. We describe how the components constructed
via DCE in system matrix mitigate the singularity impact
of the stiffness matrix, which consequently led to significant
improvement of the system matrix. In the end, the proposed
mFETD method is able to handle the transient problems in
transmission line, which causes LFB anomaly in the tra-
ditional FETD. Finally, it is important to clearly state that
Cheng et al. [19], first looked into and developed mFETD
method. The novelty of our work as against/compared with

FIGURE 1. A coaxial cable configuration for the purpose of illustration.

[19], [20] is that this paper demonstrates why the mFETD is
not efficient at solving the problem of coaxial cable, under
the circumstance of higher computation time and iteration as
traditional FETD method. This is the major gap filled in our
work.

The rest of this paper is organized as follows. In Section II,
we formulated the problem, showing the LFB in the tra-
ditional FETD method. The proposed solution of mFETD
method is presented in Section III. Section IV presents
numerical experiment, which verifies how the proposed
mFETD method is more advantageous than the traditional
FETD. Conclusion is drawn in Section V.

II. PROBLEM FORMULATION
Consider In traditional FETD, the wave equation (second
order) for E-field in 9 domain is given as follows:

∇ ×

(
µ−1∇ × E (r, t)

)
+ ε

∂2E (r, t)
∂t2

+ σe
∂E (r, t)
∂t

= −
∂J i (r, t)
∂t

−∇ ×

(
µ−1Bi (r, t)

)
(1)

which subjects to the outer boundary conditions with any
combination of perfect magnetic conductor (PMC) boundary,∧

PMC , a perfect electric conductor (PEC) boundary
∧

PEC ,
or/and the first order absorbing boundary condition

∧
ABC ,

n̂× E (r, t) = 0, on
∧

PEC
(2)

n̂× (∇ × E (r, t)) = 0, on
∧

PMC
(3)

n̂× (∇ × E (r, t)) =
√
εµ
∂(n̂× E (r, t)× n̂)

∂t
, on

∧
ABC

(4)

where µε and σe represent the permeability, permittivity,
and electric conductivity of the material, respectively, Bi
and J i denote the magnetic and electric current densities,
respectively, while n̂ denotes the unit normal of the outward
boundary [8].

The variation formula for the initial boundary value prob-
lem can be gotten by finding E ∈ H (curl;9) in such a way

∂2

∂t2
(w (r) εE (r, t))9 +

∂

∂t
(w (r) σeE (r, t))9
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FIGURE 2. The transient voltage response of TLM, FETD, and mFETD, at the excited side of
coaxial cable loaded by an inductor.

FIGURE 3. Result of input impedance by TLM, FETD, and mFETD. (a) Real (b) Imaginary.

+
∂

∂t

(
w (r) ,

√
ε

µ
n̂× E (r, t)× n̂

)
3ABC

+

(
∇ × w (r) , µ−1∇ × E (r, t)

)
9

= −

(
w (r) ,

∂J i (r, t)
∂t

)
9

−

(
∇ × w (r) , µ−1Bi (r, t)

)
9

∀w(r) ∈ H(curl;9) (5)

where H (curl;9) =

{
w ∈

(
L2 (9)

)3
: ∇× w ∈(

L2 (9)
)3}w (r) represents the vector basis functions.

Combining the Galerkin technique with mixed order
of the curl-conforming vector basis functions 2 within
H (curl;9) for the expansion of E-field, such that

E (r, t) =
∑
j
ej (t)2j (r)Eqn. (5) can be discretized inmatrix

form as [17]

M
∂2

∂t2
e+ D

∂

∂t
e+ Se = −

∂j
∂t
+m (6)

whereM,D and S depict mass, damping matrices, and stiff-
ness, respectively. It is important to know that the ABC is
incorporated into the damping matrix D. e represents the
column vector holding the unknown parameters of the E-field
in 9 domain. m and j denote column vector associated with
enforced magnetic and electric current density, respectively,
following the basis functions test.
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FIGURE 4. Number of average iterations used by FETD and mFETD for an inductor-loaded coaxial cable.

In traditional FETD method, adoption of NBA for which
β = 1

4 towards the integration of time gives rise to a resultant
time updating system matrix G′ that combinesM , S, and D

G′ = M +
1
2
1tD+

1
4
1t2S (7)

1t is the increment in time step. In Eqn. (7), S is sin-
gular while M is well conditioned. The generated weight
by stiffness matrix in Eqn. (7) affects the G′ matrix, which
consequently decides the accuracy and convergence of the
solution.

In this paper, the spatial sampling density (SDx) and tem-
poral sampling density (SDt) are defined as a function of
PPP (points per period) and PPW (points per wavelength)
at maximum frequency selected for simulations. They were
employed in the analysis demonstrating the existence of the
LFB in the traditional FETD. Furthermore, for any given
transient relationship, SDx and SDt can be calculated using

SDx =
λmin

1x
(PPW )

SDt =
1

fmax1t
(PPP) (8)

where1x and λmin are the typical element size and minimum
wavelength, respectively. fmax represents the maximum fre-
quency of choice. According to literature [16], ‖S‖ increases
based on (1

/
1x) and ‖M‖ grows with 1x. The ratio of

‖S‖ to ‖M‖ approaches c2
/
1x2, where c is the speed of

light. Considering the relationship in Eqn. (8), it can be seen
that 1t2S and (SD2

x
/
SD2

t )M share equal order of magni-
tude. Then, as SD2

x
/
SD2

t get bigger, the system matrix gets
more ill-conditioned as a result of the increase in weight of
the fitness matrix. Applying the stable unconditional NBA
time integration technique, 1t is arbitrarily big with no
impact on the stability; as such, SDt is set to a small value
(e.g. 15-40), in order to ensure the requirement for accuracy.
Thereby, SDx majorly determines the behavior of system

matrix. The traditional FETDmethod can provide appropriate
results as long as SDx is not too big. That is, the effect of
M is not ignored by the computer. On the other hands, when
the simulated transmission lines or frequency of operation is
low enough, SDx arrives at a reasonable value. It then makes
G′ nearly singular, and breaks down the solution. Therefore,
SDx is considered as the condition for the LFB phenomenon
in transmission lines in an inherent manner.

III. MIXED VARIATIONAL FORMULATION FOR THE
PROPOSED mFETD
In order to overcome the LFB phenomenon, we combine
Gauss’s law with the CCE to formulate the constraint model
as

∂2

∂t2
∇ (εE (r, t))+

∂

∂t
∇ (σeE (r, t)) = −

∂

∂t
∇J i (r, t) (9)

Thus, Eqn. (9) is substituted into Eqn. (5) by Lagrange mul-
tiplier τ (r, t) as given in [18] within the framework of finite-
element. The variational model for mFETD is to compute
E ∈ H (curl;9) and τ ∈ H1 (9) in such a way that

∇ × w (r) µ−1∇ ×
∂2

∂t2
(w (r) , εE (r, t))9

+
∂

∂t
(w (r) , σeE (r, t))9

+
∂

∂t

(
w (r) ,

√
ε

µ
n̂× E (r, t)× n̂

)
∧
ABC

+
∂2

∂t2
(εw (r) ,∇τ (r, t))9 +

∂

∂t
(σew (r) ,∇τ (r, t))9

+
∂

∂t

(√
ε

µ
n̂× w (r)× n̂,∇τ (r, t)

)
∧
ABC

(10)

= −

(
w (r) ,

∂J i (r, t)
∂t

)
9

−

(
∇ × w (r) , µ−1Bi (r, t)

)
9

∀w ∈ H(curl;9)
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FIGURE 5. System matrix condition number for FETD and mFETD for coaxial cable loaded with an
inductor.

FIGURE 6. Lossless circular inductor geometry model in connection with two lump ports. (a) 3D model, (b) Lateral
view of the model (c) Top view of the model. (d) Center cross section with dimension (top view).

∂2

∂t2
(∇$ (r, ) , εE (r, t))9 +

∂

∂t
(∇$ (r) , σeE (r, t))9

+
∂

∂t

(
∇$ (r) ,

√
ε

µ
n̂× E (r, t)× n̂

)
∧
ABC

= −

(
∇$ (r)

∂J i (r, t)
∂t

)
9

∀$ ∈ H1 (9)

H1 (9) =

{
$ ∈ L2 (9) : ∇$ ∈

(
L2 (9)

)3}
(11)
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FIGURE 7. Comparison of the transient voltage between FETD and mFETD methods at w is 50µm. (a) Port 1 and (b) Port 2.

FIGURE 8. The transient voltage at 1 kHz maximum frequency. (a) FETD. (b) mFETD.

As against the frequency domain, here Lagrange multiplier
τ (r, t) depends on space and time. With separation of spatial
and temporal dependencies, τ (r, t) is expressed in form:
τ (r, t) = d(t)f (r) where f ∈ H1 (9)

Furthermore, the variational formulations: Eqn. (10) and
Eqn. (11) of mFETD, and Eqn. (5) of the traditional FETD
have been analyzed to be equal in [17]. Clearly, a solution
of Eqn. (5) equally satisfies Eqn. (10) and Eqn. (11) at τ =
0. However, it makes sense to make w = ∇$ in Eqn. (10)
because ∇H1 (9) ⊂ H (curl;9) Therefore, the last term on
the right hand side and the first term on the left-hand side of
Eqn. (10) equals zero, since ∇ × ∇$ = 0. For $ = f and
imposing Eqn. (11) into Eqn. (10) gives

∂2d (t)
∂t2

(ε∇f (r)∇f (r))9 +
∂d (t)
∂t

(σe∇f (r) ,∇f (r))9

+
∂d (t)
∂t

(
√
ε

µ
n̂×∇f (r)× n̂∇f (r))∧

ABC
= 0. (12)

Making sure the expression on the LHS of Eqn. (12) equals
zero, for t ∈ [0, t1] and ∇f equals zero, i.e. ∇τ = 0, this
implies that a particular solution of Eqn. (10) and Eqn. (11)
is equally the solution of Eqn. (5).

In mFETD, we employ the nodal basis functions for the
expansion of the scalar function τ while the curl conform-
ing vector basis functions are used to formulate the E-field.
By Galerkin’s technique, the mFETD variational formulas
in Eqn. (10) and Eqn. (11) can be discretized into a matrix
equation in a general form as[

M G1

GT1 0

]
∂2

∂t2

[
e
y

]
+

[
D G2

GT2 0

]
∂

∂t

[
e
y

]
+

[
S 0
0 0

] [
e
y

]
=

[
−
∂j
∂t +m
−
∂j1
∂t

]
(13)

whereM,D,S, j,m, and e are as defined in Eqn. (6). G1 and
G2 denote the integrations based on Lagrange multiplier τ ,
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FIGURE 9. Computed inductance value by FETD and mFETD methods at w equals 50µm at 100 MHz (a) and 1 kHz (b) maximum frequency.

TABLE 1. List of parameters and corresponding expressions.

while T represents the transpose operator of matrix. y is a
column vector that represents the unknowns of τ at the entire
nodes, apart from the PEC nodes of the loop. j1 is a column
vector initiated by Eqn. (11), and it is a term that denotes the
electric current source. The expression of each parameter is
as presented in Table 1.

Employing NBA of β = 1
/
4 for integration of time, the

last matrix G for mFETD of such time updating equation is

G =

[
M + 1

21tD+
1
41t

2S G1 +
1
21tG2

GT1 +
1
21tG

T
2 0

]
(14)

The system matrix G in Eqn. (14) ensures the sparsity and
symmetry of the FEM. Making e and y in Eqn. (13) of the

same order of magnitude, it becomes important to multiply
G by a scaling factor of constant η. η is selected as a ratio of
the largest element in the (M + 1

21tD +
1
41t

2S) matrix to
maximum element in (G1 +

1
21tG2) matrix. Here, G is now

G =
[
M + 1

21tD+
1
41t

2S η(G1 +
1
21tG2)

η(GT1 +
1
21tG

T
2 ) 0

]
(15)

Moreover, a simple preconditioner called diagonal
scaling concept is incorporated into the mFETD for better
performance. Simple comparison between Eqn. (15) and
Eqn. (7), we observe that the added terms in Eqn. (15) which
is imposed by the divergence constraint Eqn. (11) remove the
impact of stiffness matrix S singularity nature on our system
matrix G. Hence, mFETD basically enhances the system
matrix and eliminates the LFB phenomenon in transmission
lines, which demand large spatial SDx

IV. NUMERICAL SIMULATIONS AND RESULTS
In order to show and compare the performance of the pro-
posed mFETD method against the traditional FETD method
while overcoming LFB, a numerical simulation example is
presentedin this section in proof-of-concept. The simulation
is conducted with Matlab R2018a installed on personal HP
PAVILION laptop computer (1-TB memory, 16G RAM, and
Intel core i7-8565U CPU @1.80GHz 1.99 GHz).

A. COAXIAL CABLE
For illustration, we consider a coaxial cable filled with air
and of 1m length as shown in Figure 1. The coaxial cable
is made up of inner and outer perfect electric conductors of
radius 5 and 10 mm, respectively. We excited the cable using
a lumped port loaded with 10−3 inductor (H) at near end, and
a current source, parallel to a resistor, 7-�, at the far end.
Furthermore, the lump port has its first and the second side
positioned in the inner and outer PEC, respectively. Gaussian
pulse is used to define the time function of the source, which
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is expressed as

j(t) = e−
1
2 [(t−7γ )/γ ]

2
(16)

with γ = 0.484/fmax , where fmax denotes highest frequency
of 200 kHz. For this scenario, it becomes easy to formulate
transmission line model (TLM), which is used to validate
mFETD. In order to emulate the TLM so well, we enforce
a PMC boundary at the two ends in 3D FE model to generate
an open circuited plane [18]–[23].

Firstly, an LU decomposition from a direct solver gener-
ated fromMatlab is adapted for the evaluation of the resulting
matrix system in themFETD and traditional FETD. The input
impedance and the transient voltage at the excited end are
plotted for clear comparison between TLM, mFETD, and the
traditional FETD in Figure 2 and Figure 3, respectively. It is
clearly observed that the three methods agree quite well. The
computed relative error in the transient voltage executed by
TLM and mFETD is nearly 0.51%.

To evaluate and justify mFETD performance at low fre-
quencies, we adopt a biconjugate gradients approach and the
insufficient LU decomposition preconditioner, which is an
iterative solver generated by Matlab in the traditional FETD
and mFETD. The condition number and convergence of the
resultant system matrix with fmax changing from 3 GHz to
30kHz are examined. It is seen and observed in Table 2 how
SDx proportionally increases as fmax decreases. Also, when
SDx is increased to 1000 PPW, the model under consideration
can be considered electrically small. SDt is set at 20 all
the time due to the unconditionally stable time stepping
framework. When SDx is less than 1000 PPW, the system
matrix of mFETD and that of the traditional FETD exhibit
appreciable properties, showing small condition number and
small average number of iterations for each time-step to
achieve 10−6 convergence tolerance. In other words, the
condition number of our proposed mFETD is by far smaller
than the traditional FETD counterpart, for such problem. The
traditional FETD require big average number of iterations
for each time step before convergence or non-convergence
of the iterative solver. However, in mFETD method, few
iterations are needed for convergence to exact numerical
solution even when SDx approaches 106 at 30 kHz fmax .
Note that the constraint equation adds some level of nodal
degree of freedom (DoF), and the DoF of mFETD is big-
gerthan the traditional FETDmethod. The condition numbers
and average number iterations for each time-step against
fmax is as intuitively depicted in Figure 4 and Figure 5,
respectively.

Finally, it is important to report the computational resource
of the methods. The CPU time of the traditional FETD
method is 21minutes while that of mFETDmethod is 27min-
utes. mFETD requires 23 GHz memory space while the tra-
ditional FETD requires the 21 GHz memory space. These
facts show the bottleneck of the proposed method. mFETD
methodexhibits higher CPU time and memory space than the
traditional FETD because it has larger number of parameters.

B. AN INDUCTOR MODEL
We further show the application of the proposed mFETD
method by designing a spiral circular inductor with
2.9 × 10−7 H inductance value as depicted in Figure 6.
The inductance value shares a relationship with the overall
width of the coil [24]. Assuming the number of turns of the
spiral circular inductor equals 16 and we vary w to get the
wanted inductance value. The port 1 is the origin or source
that is made up of 100 MHz highest frequency Blackman
Harris window (BHW) function, while port 2 serves as the
destination or receiver. To achieve impedance matching, the
two ports have internal resistances Rs = 50�. At maximum
frequency, there is sampling density of 5500 points per wave-
length (PPW). In general, whenever the sampling density is
higher than 103 PPW, it is considered electrically small model
with low frequency. The FETD system matrix property get
worse and easy to breakdown as sampling density becomes
larger; on the other hand, the specific sampling density as
a function of PPW that makes the conventional FETD tech-
nique to breakdown depends on certain condition.We applied
an ABC in this model and air box with 25mm×25mm×2mm
dimension. The time-domain simulation results obtained are
presented in Figure 7. In time domain, there is a good agree-
ment between the traditional FETD in COMSOL and the
proposed mFETD methods. The relative voltages errors at
port 1 and port 2 are 3.38 % and 4.05 %, respectively. In order
to estimate the S-parameters, we can use Fourier transform
technique to transform the transient results into the frequency
domain. Hence, the value of inductance L can be computed
using

L =
1

j2π f
1+ S11
1− S11

Rs (17)

when the value of w is changed, it is noted that when w is
50µm, the value of the inductance is 2.9×10−7H . Therefore,
w is set at 50µm.
For a reduced maximum frequency of Blackman Har-

ris window pulse of about 1 kHz, the sampling density
becomes 165000 PPW. This means the representation of
electrically small model at low frequency. Rs = 0.0005�
is chosen to ensure impedance matching. Figure 8 depicts
the results of the traditional FETD and mFETD techniques.
In this category, investigating inductance value of the inductor
between 100 Hz and 100 MHz is the goal; however, there is
breakdown at low frequencies in the traditional FETDmethod
(i.e. COMSOL). Hence, at higher frequencies, the computed
inductance value via the traditional FETD is considered as
a reference and compared against mFETD technique, and as
shown in Figure 9 (a), the relative error is 2.33%. At less than
1 kHz frequency, the COMSOL breaks down, consequently
unable to generate good results. Conversely, the relative error
that exist between L value computed by mFETD at high and
low frequency results fall in the confines of 3.55 %, based
on the result presented in Figure 9 (b). Therefore, there is a
constant inductance value.
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TABLE 2. System matrix convergence and property at different maximum frequencies of mFETD and FETD.

TABLE 3. Computational resources of the inductor model for FETD-based
methods at COMSOL at 100 MHz maximum frequency of BHW.

The computational resources of mFETD and COMSOL
at 100 MHz maximum frequency of BHW is investigated.
The COMSOL requires 1177034 DoFs, CPU time of 67 min.
and 37 GB memory, while mFETD requires 1478313, CPU
time of 54 min. and 49 GB memory. We can observe that
mFETD technique requires more degree of freedoms, even
so, it requires reduced time compared to the COMSOL. This
is because, at low frequencies, the mFETD matrix properties
is good. At very low frequencies, the iteration from the COM-
SOL solution does not converge due to poor system matrix
condition.

Finally, we compared the computational parameters for the
proposed mFETD and FETD-based method in [17]. Running
the two algorithms under the same conditions of the Inductor
model Section IV B. The result is as presented in Table 3.
As can be seen, more DoF in MFETD [17] method causes a
longer computation time than the proposed mFETD method.
Also, it takes lesser time to compute the gradient matrix than
the total time in MFETD [17] method, which implies the
proposed mFETD method, obtains well-conditioned system
matrices with little additional computation in overcoming the
low-frequency breakdown.

V. CONCLUSION
In conclusion, we presented in this paper, a new mFETD
method capable of resolving the LFB anomaly that cannot
be handled by the traditional FEM method, while solving
transient problems in transmission line. We incorporated
the DCE into wave equation for E-field as a function of
Lagrange multiplier using CCE and Gauss’s law. The nodal

basis functions and Curl conforming vector basis functions
were selected in order to achieve spatial discretization, also,
we employed implicit NBA technique for integration of time.
The numerical experiment show that the proposed mFETD
is capable of overcoming the LFB anomaly in transmis-
sion lines, which is difficult for the traditional FETD. With
improvement in the system matrix properties, mFETD show
high level of stability from dc level to high frequency bands,
which evidently implies that mFETD is more adequate and
effective alternative approach in modeling transmission lines.
The proposed mFETDmethod can be extended to microwave
circuits and electromagnetic scattering problems.

Finally, it is worth mentioning that the proposed mFETD
is not effective in the coaxial cable example, according to the
computational time and iteration as traditional FETDmethod.
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