
Received March 18, 2022, accepted April 11, 2022, date of publication April 18, 2022, date of current version April 25, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3168014

INS/GNSS Integrated Rover Navigation Designed
With MDPO-Based Dual-Satellite Lunar Global
Navigation Systems
TOSHIKI TANAKA 1 AND HEIDAR MALKI2, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
2Department of Engineering Technology, University of Houston, Houston, TX 77004, USA

Corresponding author: Heidar Malki (hmalki@central.uh.edu)

ABSTRACT Aiming to provide navigational framework to upcoming early lunar exploration missions by
lunar rovers, interests in robust and low-cost global satellite navigation systems (GNSS) around the Moon
are growing more than ever before. In response, dual-satellite lunar global navigation systems (LGNS)
based on Multi-epoch Double-differenced Pseudorange Observation (MDPO) algorithm was proposed in
our earlier work. While the MDPO-based dual-satellite LGNS can provide reasonably high positioning
accuracy at an order of several tens of meters within a one-minute observation, the positioning calculation
is only available when the two navigational satellites are in user’s view. This limitation can be overcome by
integrating other navigational sensors such as inertial navigation system (INS) and compensating for user’s
positions in the absence of GNSS signals. The main objective of this research is to provide an integration
model of INS and MDPO-based dual-satellite LGNS measurements and quantitatively show the benefits
of the proposed integration by numerical simulations. More specifically, the major contributions of this
paper are three-fold: 1) proposed a mathematical model of INS/GNSS integration adopted for the MDPO
algorithm, 2) developed a numerical simulation that combines INS measurements and dual-satellite LGNS
measurements, and 3) performed a quantitative comparison between the proposed INS/GNSS integration
and raw dual-satellite LGNS measurements.

INDEX TERMS GNSS, lunar exploration, rover navigation, microsatellite, nanosatellite.

I. INTRODUCTION
Agreat deal of research conducted on the design of the Global
Navigation Satellite Systems (GNSS) that use a fewer num-
ber of satellites in the applications for Earth GNSS [1]–[6]
and applications for lunar GNSS [7]–[11]. The author’s
prior research collectively studied different algorithms for
lunar GNSS that comprises only two satellites, i.e., dual-
satellite, and made a comparative analysis by summariz-
ing their pros and cons [12]. Dual-satellite lunar global
navigation systems (LGNS) are a cost-efficient and useful
platform to provide multiple users with reasonably accu-
rate position measurements, such as a few tens of meters
within one-minute observation as reported in [11]. One of
the shortcomings of dual-satellite LGNS is lower availabil-
ity (availability: a percentage of time at which the GNSS
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system provides the number of satellites required for position
fixing). Reportedly, in the case that two navigation satellites
are injected into low lunar orbiters, availability is capped
at around 15 %. Consequently, rover’s traveling distance
over the mission period will be limited by the availability of
GNSS measurements in case the rover solely relies on GNSS
measurements.

As an approach to extend the traveling distance, integration
of inertial navigation system (INS) can be considered: when
observation data from navigation satellites are not enough
to pinpoint the user position, INS measurements are used to
obtain rough user position estimation. During the last decade,
different approaches for INS/GNSS integration have been
adopted [13] andmany of them have been investigated for dif-
ferent types of applications, for instance, urban canyon [14],
[15], indoor [16], maritime [17], airborne [18] as well as
lunar exploration [19]. In [19], an autonomous crewed lunar
landing mission was simulated where range measurements,
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an inertial measurement unit (IMU), and a star tracker were
used to compensate for navigational measurements from sin-
gle lunar navigation satellite.

Furthermore, the complementary characteristics of GNSS
and INS have made them well-suited to integration. In partic-
ular, INS obtains better short-term accuracy; however GNSS
can provide navigation solution with long-term stability.
In order to cope with demands from missions that requires
higher accuracy than several tens of meters, INS/GNSS inte-
gration can be used to improve the user position estimation
accuracy.

In this work, we provide an INS/GNSS integration
designed to work with a dual-satellite LGNS that is based
on the multi-epoch double-differenced pseudorange observa-
tion (MDPO) [11]. We present a mathematical model and
numerical simulation to quantitatively show how the pro-
posed integration will improve the aforementioned short-
comings. In the numerical simulation, rover trajectory and
dual-satellite LGNS measurements were produced using our
prior research work [11]. As for INS measurements, our
analysis assumes that the rover is equipped with sensors
that measure the rover’s orientation and traveling distance.
Those measurements are commonly used as navigational
information in many planetary rovers. For example, rover’s
orientation can be derived from a gyro [20], a sun sensor [21],
[22] or star tracker [23], [24], and traveling distance can be
derived from a wheel odometry [25], [26], lidar [27], [28] or
visual odometry [29]–[31].

To our best knowledge, this research provides an
INS/GNSS integration for dual-satellite LGNS applications
for the first time. Therefore, the obtained numerical simula-
tion results are highly useful to the discussion of the future
LGNS design. Moreover, the provided integration form is
specialized for the MDPO algorithm, which has not been
presented in any other work.

To summarize, our major contributions include:
1) A mathematical model of INS/GNSS integration adopted
for the MDPO algorithm, 2) A numerical simulation that
combines INS measurements and dual-satellite LGNS mea-
surements, 3) A quantitative comparison between the pro-
posed INS/GNSS integration and raw dual-satellite LGNS
measurements under the simulated conditions.

The rest of the paper is organized in four sections.
In Section II, we review the mathematical model of the
MDPO algorithm, and fuse it into INS/GNSS integration
form. In Section III, we summarize a simulation scenario,
simulation setting, and the simulation results. In Section IV,
we presents discussion of the results. In Section V, we pro-
vides some concluding remarks.

II. METHODS
In Section II-A and II-B, we refer relatingmathematical mod-
els from previous research with respect to the MDPO algo-
rithm and INS/GNSS integration. In Section II-C, we develop
a mathematical model of the INS/GNSS integration special-
ized for the MDPO algorithm to the purpose of this research.

In Section II-D, II-E, and II-F, we describes systematic error,
uncertainty in modeling parameters, and other considerations
related to algorithm implementation on real hardware.

A. MULTI-EPOCH DOUBLE-DIFFERENCED PSEUDORANGE
OBSERVATION
This section reviews the multi-epoch double-differenced
pseudorange observation (MDPO). In this paper, we only
explain important equations which are finally fused into the
INS/GNSS integration. The complete formulation derivation
of the MDPO can be found in [11].

The MDPO reduces the number of navigation satellites
required from four to two, while dealing with the clock
instability of the space segment and user segment as well as
satellite orbit determination error, as shown in Fig. 1.

FIGURE 1. Overview of the multi-epoch double-differenced pseudorange
observation (MDPO) method [11].

In the conventional Time Of Arrival (TOA) algorithm,
the pseudorange (ρ) measurement between one user (user1)
and one satellite (satellite1) is presented by the following
equation:

ρSR(ti) = rSR (ti)+ c(dτR(ti)− dT
S (tSi ))+ ωr

S
R(ti) (1)

rSR (ti) = |XXX
S (tSi )−XXXR(ti)+ dXXXRsa| (2)

where XXX s(tsi ) is the satellite1 position at the time of signal
transmission tsi ; XXXR(ti) is the user1 position at the time of
signal reception ti; c is the speed of light; dτR is the user clock
bias; dT S is the satellite clock bias; dXXXRsa corresponds to the
user1 position transition due to the Sagnac effect; and ωr SR is
the pseudorange receiver noise. In this study, we assume that
the receiver noise ωr SR follows a white Gaussian distribution
with the standard deviation of σωr .

MDPO uses double-differenced pseudorange observations
to eliminate the clock bias of the space segment and user
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segment as well as satellite orbit determination error, by sub-
tracting four pseudorange measurements between two users
(user1 and user2) and two satellites (satellite1 and satellite2)
as

ρ11 (ti) = r11 (ti)+ c(dτ1(ti)− dT
1(t1i ))+ ωr

1
1(ti) (3)

ρ21 (ti) = r21 (ti)+ c(dτ1(ti)− dT
2(t2i ))+ ωr

2
1(ti) (4)

ρ12 (ti) = r12 (ti)+ c(dτ2(ti)− dT
1(t1i ))+ ωr

1
2(ti) (5)

ρ22 (ti) = r22 (ti)+ c(dτ2(ti)− dT
2(t2i ))+ ωr

2
2(ti) (6)

4∇ρ(ti) = ρ11 (ti)− ρ
2
1 (ti)− (ρ12 (ti)− ρ

2
2 (ti))

= r11 (ti)− r
2
1 (ti)− (r12 (ti)− r

2
2 (ti))

+ωr
1
1(ti)− ωr

2
1(ti)− (ωr 12(ti)− ωr

2
2(ti))

= 4∇r(ti)+4∇ωr (ti) (7)

where 4∇(•) is the double difference operator.
In the double difference method, user2 is used as a ref-

erence station whose position is fixed and known, and the
position of user1 is estimated in relation to the position of
user2, i.e., user2’s position is referenced as the origin of
navigation. In a lunar navigation system, the lander can be
used as a reference station (user2), and its geodetic position
must be pre-known. Hereafter, the rover corresponds to user1,
and the lander corresponds to user2.

In the MDPO method, multiple double-differenced pseu-
dorange observations are obtained from multiple epochs, i.e.,
ti = tk , . . . , tk+N−1, where N is the number of observation
epochs, and k is the epoch number at which the estimation
starts. It is important to note that the rover position must
be fixed in place during all multi-epoch observations taken,
in order to keep the number of estimation parameters lower
than the number of observation equations. Otherwise, the
rover position cannot be identified deterministically by the
MDPO. We will estimate XXXR(tk ) = (xR(tk ), yR(tk ), zR(tk ))
which represents a fixed rover position during multi-epoch
observations tk − tk+N−1.
The rover position can be estimated by solving the

followingNewton-Raphson equations iteratively. The follow-
ing equations correspond to ‘two dimensional(2D) MDPO’
in [11], which calculates an estimated two-dimensional (X-Y)
position by the Newton-Raphson equation whereas a rover
altitude (Z) is calculated by using a lunar digital elevation
model (DEM) as we discuss later.

In the 2D MDPO, the number of multi-epoch observations
can be reduced to as low as 2 (N = 2). First, we define a new
parameter R for ti = tk , . . . , tk+N−1:

R(ti) = 4∇ρ(ti)−4∇r0(ti) i = k, . . . , k + N − 1 (8)

where4∇ρ is the measured double-differenced pseudorange
value and 4∇ r0 is an estimated double-differenced range
based on an initial rover position estimate, i.e., XXX0

R(tk ) (the
superscript represents the number of iteration.). Then, the
following equations can be derived:

RRR = GGGdXXX +www (9)

RRR = [R(tk ), . . . ,R(tk+N−1)]T (10)

dXXX = [dx, dy] (11)

www = [4∇ωr (tk ), . . . ,4∇ωr (tk+N−1)]T (12)

GGG = [
∂RRR
∂x
,
∂RRR
∂y

] (13)

whereGGG in (9) is called an observationmatrix, which is equiv-
alent to the Jacobian of RRR with regard to XXX . By solving the
least-square problem that minimizes the residual error |RRR −
GGGdXXX |, an estimated value of dXXX , defined as dX̂XX , is obtained:

ˆdXXX = (GGGTGGG)−1GGGTRRR (14)

Then, a new estimated value XXX1
R is given by (15), which

provides a better fit to the observation.

XXX1
R(tk ) = XXX

0
R(tk )+ ˆdXXX (15)

This estimation process continues until the number of iter-
ations reaches the designed value n, i.e., XXX1

R,XXX
2
R,. . . ,XXX

n
R, and

then the final estimated value XXXnR(tk ) is acquired.
An expression for the quality of the estimates can be writ-

ten as

ˆdXXX − dXXX = (GGGTGGG)−1GGGT (GGGdXXX +www)− dXXX

= (GGGTGGG)−1GGGTwww (16)

Suppose www follows a white Gaussian distribution that has a
mean value of zero and covariance matrix CCC : the covariance
of ˆdXXX − dXXX , defined as P, is given by:

P = (GGGTGGG)−1GGGTCCCGGG(GGGTGGG)−1 (17)

Assuming the components ofwww are uncorrelated and have an
identical variance, i.e.,CCC = (σ4∇ω)2III , the expression can be
simplified as

P = (σ4∇ωr )2(GGGTGGG)−1 (18)

where σ4∇ωr is the standard deviation of the double-
differenced receiver noises. In GNSS terminology, (GGGTGGG)−1

is known as the dilution of precision (DOP) matrix, which is
used to specify error propagation as a mathematical effect of
the navigation satellite geometry on positional measurement
precision. We define the DOP matrix as

DOPDOPDOP =

 (σDOP11)2 . . . (σDOP1N )2

. . .
. . . . . .

(σDOPN1)2 . . . (σDOPNN )2

 = (GGGTGGG)−1

(19)

where σDOP is the elements of DOP. Using DOP, the root
mean square (rms) of the user position accuracy at a time of
tk can be obtained by

UPE(tk ) = | ˆdXXX (tk )− dXXX (tk )| =

√√√√√ N∑
j=1

(σDOPjj)2 × σ4∇ωr

(20)

where UPE represents user position error, which is the dis-
tance between the true rover position and an estimated rover
position.
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It is important to highlight that the standard devia-
tion of MDPO’s double-differenced receiver noises, i.e.,
σ4∇ωr , is amplified from the standard deviation of the orig-
inal receiver noises, i.e., σωr , as a result of the double-
differencing process, in particular ωr

1
1(ti) − ωr

2
1(ti) −

(ωr 12(ti) − ωr
2
2(ti)) in (7), and becomes as large as σ4∇ωr =√

σωr 2 + σωr 2 + σωr 2 + σωr 2 = 2σωr assuming that the
receiver noises follow a white Gaussian distribution.

Further, by defining GDOP as

GDOP =

√√√√√ N∑
j=1

(σDOPjj)2 (21)

(20) can be written as

UPE(tk ) = GDOP(tk )× σ4∇ωr = GDOP(tk )× 2σωr (22)

This can be decomposed into two directions as

UPEx(tk ) =
√
(σDOP11)2 × σ4∇ωr = XDOP(tk )× 2σωr

(23)

UPEy(tk ) =
√
(σDOP22)2 × σ4∇ωr = YDOP(tk )× 2σωr

(24)

where UPEx and UPEy represents a user position error in X
and Y direction respectively.

In the 2DMDPO, the rover altitude zR is estimated by using
a lunar digital elevation model (DEM):

ziR(tk ) = zRDEM (x iR(tk ), y
i
R(tk )) (25)

Here, zRDEM represents a lunar DEMmodel that is a function
of X and Y positions.

The estimation proceeds in the following sequence: First,
XXX0
R(tk ) is estimated using the rover position before its

relocation, i.e., XXX0
R(tk ) = XXXR(tk−1). Then, a new esti-

mated rover position, i.e., XXX1
R(tk ), is obtained as XXX1

R(tk ) =
(x1R(tk ), y

1
R(tk ), zR(tk−1)) by (8)-(15): zR is not updated at this

moment. After that, the altitude of the rover is updated to
z1R(tk ) using (25) with x1R(tk ) and y

1
R(tk ). Finally, the updated

estimate XXX1
R(tk ) = (x1R(tk ), y

1
R(tk ), z

1
R(tk )) is acquired. The

calculation continues until the number of iterations reaches
the designed value, i.e., n.

According to (25), as zR changes along with xR and yR,
errors in the X-Y position induce errors in the Z position,
which ultimately induce errors in estimated xR and yR in turn.
As a result, UPE deteriorates stochastically. In our research,
we did not apply the case in which the rover altitude changes
too rapidly, such as the rover dropping off the cliff or roving
on steep slopes. In that case, the output of zRDEM does not
change with xR and yR too significantly, and UPE would not
deteriorate, which was confirmed by numerical simulations
in our prior research [11].

It is important to note that GNSS measurements are also
subject to systematic errors, such as the satellite orbit deter-
mination error, time tag error, and DEM information error as
modeled in [11]. Systematic errors are implemented in the
numerical simulation.

B. INS/GNSS INTEGRATION
This section provides a review of the INS/GNSS integra-
tion form that we use in our research. We fuse the selected
INS/GNSS integration form with the mathematical model of
the MDPO-based GNSS measurement in the next section.

In the INS/GNSS integrations forms, there are the
three most common integration strategies: the loosely-
coupled [32], the tightly-coupled [32]–[34] and the ultra-tight
integration [35], [36]. Since the ultra-tight integration
involves the baseband signal processing of GNSS receivers
(i.e., the digital tracking loops), that is typically not accessible
using commercial products. The basic difference between
tight-integration and loose-integration is the type of data
shared by the GNSS receiver. In the loosely-coupled tech-
nique, the positions and velocities estimated by the GNSS
receiver are blended with the INS navigation solution,
whereas in the case of tightly-coupled method, GNSS raw
measurements (i.e., pseudorange and Doppler observables)
are processed through a unique Kalman filter with the mea-
surements. Whereas tightly-coupled integration works more
robustly with however many navigation satellites available,
loosely-coupled integration is simpler in implementation
and still beneficial in case the computing power of space-
craft (i.e., rover) is limited. In our study, we formulate the
loose INS/GNSS integration in combination with the MDPO
algorithm.

In the loose INS/GNSS integration format, positions
derived by GNSS measurement are merged as updates of the
INS estimates through a Kalman filter. The Kalman filter
model assumes that the true state at time k is evolved from
the state at k − 1 according to

xxxk = FFFkxxxk−1 +BBBkuuuk +GGGkωωωk (26)

where xxxk denotes the state, uuuk denotes the control input,
ωωωk denotes the process noise, FFFk denotes the state-transition
model, BBBk denotes the state-transition model,GGGk denotes the
noise-transitionmodel.ωωωk is assumed to be drawn from a zero
meanmultivariate normal distributionN with covariance, i.e.,
QQQk : ωωωk ∼ N (0,QQQk ).

At time k , an observation zk of the true state xxxk is made
according to:

zzzk = HHH kxxxk + vvvk (27)

where vvvk denotes the observation noise,HHH k is the observation
model, which maps the true state space into the observed
space. vvvk is the process noise and assumed to be drawn
from a zero mean multivariate normal distribution N with
covariance, i.e., RRRk : vvvk ∼ N (0,RRRk ).

To solve Kalman filter, the initial state, and the noise
vectors at each step, i.e., x0, w1, . . . ,wk , v1, . . . , vk , are all
assumed to be mutually independent. The state of the filter
is represented by two variables: x̂xxk|k which is the a poste-
riori state estimate at time k given observations up to and
including at time k , andPPPk|k which is the a posteriori estimate
covariance matrix. In Kalman filter, typically, the two phases
alternate, with the prediction advancing the state until the
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FIGURE 2. Overview of the system observables.

next scheduled observation, and the update incorporating the
observation in the following sequence:

Predict

x̂xxk|k−1 = FFFkx̂xxk−1|k−1 +BBBkuuuk (28)

PPPk|k−1 = FFFkPPPk−1|k−1FFFTk +GGGkQQQkGGG
T
k (29)

Update

eeek = zzzk −HHH kx̂xxk|k−1 (30)

SSSk = RRRk +HHH kPPPk|k−1HHHT
k (31)

KKK k = PPPk|k−1HHHT
k SSS
−1
k (32)

x̂xxk|k = x̂xxk|k−1 +KKK keeek (33)

PPPk|k = (III −KKK kHHH k )PPPk|k−1 (34)

whereeeek is the innovation pre-fit residual,SSSk is the innovation
covariance, KKK k is the optimal Kalman gain.

C. INS/GNSS INTEGRATION DESIGN FOR THE MDPO
ALGORITHM
In our study, we assume that the system is equipped with
sensors that measure the rover’s orientation and traveling
distance as shown in Fig. 2: the states xxxk consists of a two-
dimensional rover’s position relative to the reference station
in a local topocentric coordinate (East-North-Up), i.e., xk and
yk , and an orientation θk . The control input uuuk consists of a
traveling distance dk and reorientation angle4θk . The control
input uuuk is known to the system through INS measurements
but in realityuuuk has errors, which refers toωωωk in the equations
and are not known to the system.

According to the 2D MDPO equations (16), GNSS pro-
vides two-dimensional user position observations, i.e., xob
and yob with estimation errors in the form of (GGGTGGG)−1GGGTwww
whose covariance are represented by XDOP(tk ) × 2σωr and
YDOP(tk )× 2σωr respectively. We assume that INS provides
measurements of the rover’s orientation, i.e., θob, with esti-
mation errors of ωθ . These measurements are summarized
in observation data matrix zzzk . To summarize, each matrix

was constructed as

xxxk =

xkyk
θk

 (35)

uuuk =
(
dk
4θk

)
(36)

ωωωk =

(
ωd
ω4θ

)
(37)

zzzk =

xobyob
θob

 (38)

vvvk =
(
(GGGTGGG)−1GGGTwww

ωθ

)
(39)

FFFk = III (40)

BBBk =

cos(θk ) 0sin(θk ) 0
0 1

 (41)

GGGk =

cos(θk ) 0sin(θk ) 0
0 1

 (42)

HHH k = III (43)

QQQk =
(
σd 0
0 σ4θ

)
(44)

RRRk =

XDOP(tk )× 2σωr 0 0
0 YDOP(tk )× 2σωr 0
0 0 σθ

 (45)

where σd represents the standard deviation of the trav-
eling distance measurement, σ4θ represents the standard
deviation of the reorientation angle measurement, and
σθ represents the standard deviation of the orientation
measurement.

D. SYSTEMATIC ERROR
Actual INS measurements contain systematic errors such
as temperature coefficient error, bias, random walk, align-
ment error depending on their characteristics. Those errors
can be effectively eliminated through offline calibration
process [32] or online estimation [37]. However, some
unremoved component of systematic errors can remain.
Therefore, in this study, the following bias component were
added to measurements data to evaluate their influences in
the analysis:

xxxk = FFFkxxxk−1 +BBBk (uuuk + δuuu)+GGGkωωωk (46)

zzzk = HHH kxxxk + δzzz+ vvvk (47)

δuuu =
(
δd
δ4θ

)
(48)

δzzz =

δxobδyob
δθob

 (49)

where δd is the systematic error of traveling distance mea-
surement, δ4θ is the systematic error of reorientation angle
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measurement, δθob is the systematic error of orientation mea-
surement, and δxob and δyob are the systematic errors of
GNSS measurements. It is important to note that the system-
atic errors of GNSS measurements are already implemented
in our LGNS simulation [11], and not implemented addition-
ally for this research.

E. UNCERTAINITY OF COVARIANCE MATRICES
When inferring parameters from a Gaussian-distributed data
set by computing a likelihood, covariancematrices are needed
that describes the data errors and their correlations. In our
case, that refers to QQQk and RRRk where QQQk is the covariance
matrix of the traveling distance and reorientation measure-
ments and RRRk is the covariance matrix of the GNSS and
orientation measurements. If the covariance matrices are not
known perfectly in advance, estimator needs to rely on infor-
mation known at that moment which may contain errors from
the true covariance matrices. There are several techniques to
infer the true covariance matrices out of measurements [38].
However, in some combinations of sensors, the true covari-
ance matrices of measurements are not easy to estimate a
priori or in real time (we don’t specify what sensors to use in
this study for generalization). Therefore, in this simulation,
we added some intrinsic uncertainty to the true covariance
matrices to create the estimator covariance matrices:

QQQk =
(
σd + δσd 0

0 σ4θ + δσ4θ

)
(50)

RRRk =
(
XDOP(tk )× 2(σωr + δσωr ) 0 0

0 YDOP(tk )× 2(σωr + δσωr ) 0
0 0 σθ + δσθ

)
(51)

F. OTHER CONSIDERATION
For real-time implementation, the system needs to cope with
the synchronization between measurements, in particular
GNSS data latency for this application. Each time the rover
uses the GNSS receiver, the rover gets observable delayed
with respect to 1 pulse-per-second (PPS) signal. Furthermore,
additional delay referring to the double-differenced calcula-
tion must be processed. In order to manage the GNSS data
latency, INS measurements are buffered and processed only
at proper timing.

III. NUMERICAL SIMULATION RESULTS
A. SIMULATED SCENARIO
A scenario was developed to evaluate how the total travel-
ing distance can be extended by the proposed INS/GNSS
integration. In the developed scenario, the rover continues to
relocate regardless of the visibility of the navigation satellites,
whereas the rover moves only when both of two satellites are
in view in the original scenario of the dual-satellite LGNS
simulation analyzed in [12] (we call the original scenario
‘GNSS-only’ in this article). Each time the rover moves, the
rover obtains INS measurements. The rover obtains GNSS
measurements additionally when the two satellites were in
view.

B. SIMULATION SETUP
The rover trajectory and GNSS measurements in this work
were created with the same simulation parameters as our
prior work [12]. Therefore, this article can help provide the
comparison between the proposed INS/GNSS integration and
the original raw dual-satellite LGNS measurements.

In the numerical simulation, the rover relocation and posi-
tion estimation were repeated in turn: (step1) in the first
epoch, for instance t = tk , the rover relocates its posi-
tion and orientation, i.e., xxxk , according (46), (step2) in the
next two epochs, for instance t = tk+1 and t = tk+2,
the rover obtains observation data zzzk according to (47) and
applies the proposed INS/GNSS integration to update the
estimated rover trajectory x̂xxk according (28)-(34). Then, step1
and step2 continue over the course of the simulated mission
period.

The rover trajectory, i.e., xxxk , was created dynamically
by changing the rover position and orientation every three
epochs according (46). The traveling distance, i.e., d , reori-
entation angle 4θ , process noise, i.e., σd and σ4θ , and sys-
tematic error, i.e., δd and δθob, are specified in Table. 1. The
total simulated mission period was set 15,000 minutes and
one epoch corresponded to 30 seconds. Accordingly, the total
simulated mission period was equivalent to 30,000 epochs.

GNSS measurements, i.e., xob and yob, were provided to
the generated rover trajectory using the LGNS simulation
that was developed in our prior work. The rover obtained an
updated GNSS measurement when the two navigation satel-
lites are in view. With respect to the observation noise and
systematic errors, the same parameters as Section 4.2 of [12]
were used. In particular, the receiver noise σωr was set 0.2 m.
Systematic error, i.e., δxob and δyob, such as satellite orbit
determination error, time tag errors, DEM error were already
included in the generated data.

INS measurements, i.e., θob, were created by adding obser-
vation noise, i.e., σθ , and systematic error, i.e., δθob, to the true
rover orientation according to (47). The values of σθ and δθob
are shown in Table. 1.

These sensor error parameters, σd , σ4θ , σθ , δd , δθob, and
δθob, assume micro-sized rovers and were created by adding
safety margins to the values reported in other micro-rover
navigation studies, namely [29] for the traveling distance
measurement error and [20] for the reorientation and ori-
entation measurement error. It is important to note that
these values are conservative and can be improved for larger
rovers.

Finally, position estimates were provided according to
(28)-(34) and compared with the true rover trajectory.
As described in Section II.E, we assumed that the covariance
matrices of measurements were not known perfectly to the
estimator. We thus added intrinsic uncertainties: δσd is 10 %
of σd , δσ4θ is 10 % of σ4θ , δσθ is 10 % of σθ , and δσωr
is 20 % of σωr assuming that the GNSS measurements had
more uncertainity than the INS measurements assuming that
the performance of INS can be validated and calibrated on the
ground in advance of the actual missions.
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FIGURE 3. Graphical overview of the three navigation scenarios, GNSS
only, INS only, and INS/GNSS integration.

TABLE 1. Simulation setup.

To the purpose of a comparative study, user trajectory
estimated only with INS sensor was also created, so-called
INS-only navigation scenario as shown in Fig. 3. For that
case, Kalman filter equation were modified to exclude GNSS
measurements:

ek = zzzk (3)−HHH k (3, 3)x̂xxk|k−1(3) (52)

Sk = RRRk (3, 3)+HHH k (3, 3)PPPk|k−1(3, 3)HHH k (3, 3)T (53)

Kk = PPPk|k−1(3, 3)HHH k (3, 3)T S
−1
k (54)

x̂xxk|k (3) = x̂xxk|k−1(3)+ Kkek (55)

PPPk|k (3, 3) = (III −KKK kHHH k (3, 3))PPPk|k−1(3, 3) (56)

C. NUMERICAL SIMULATION RESULT
Fig. 4 shows the true and estimated rover trajectories. Fig. 5
shows the user position error projected onto the local topocen-
tric coordinate. Fig. 6 shows the time sequence of the user
position error. In Fig. 4, GNSS measurements were observed
in a locally clustered form. This is due to the fact that GNSS
measurements were not available all the time and obtained
in limited locations corresponding to the visibility of the two
navigation satellites.

Also, a Monte Carlo simulation was conducted 100 times,
and averaged data were presented for each navigation algo-
rithms. Table. 2 shows the traveling distance and twice the

TABLE 2. Simulation results.

distance root mean square (2drms) of the user position error.
The traveling distance of the INS-only and INS-GNSS inte-
gration were larger than the GNSS-only scenario. This is
because in the INS-only and INS-GNSS integration scenar-
ios, the rover continued to travel regardless of the visibility of
the navigation satellites, whereas in the GNSS-only scenario
the rover only traveled when both navigation satellites were
in view.

IV. DISCUSSIONS
As seen in Fig. 6, it was confirmed that the user trajectory esti-
mated by the INS-only navigation algorithm had offsets from
the true trajectory, which increased over time due to the accu-
mulated INS measurement errors. On the other hand, GNSS
measurements had scattered errors rather than offset errors,
whichwere derived from normally-distributed receiver noises
at each observation. The characteristics of the two errors were
complementary, and both errors were corrected and largely
removed through Kalman filter in the proposed INS/GNSS
integration.

Consequently, the proposed INS/GNSS integration suc-
cessfully improved the positioning accuracy compared to
our previous scenario [12], i.e., GNSS-only in this sim-
ulation. Under the simulated condition, we confirmed
that the proposed INS/GNSS integration achieved beyond
25 m (2drms) user position accuracy, which is a signifi-
cant improvement from the user position accuracy of the
GNSS-only scenario that was about 60 m (2drms). Fur-
thermore, the proposed INS/GNSS integration extended the
rover’s traveling distance almost 10 times longer by com-
pensating for the vehicle position in the absence of GNSS
measurements.

One limitation of the proposed method is derived from
the availability of INS measurements. In shadowed regions
such as permanently shadowed regions (PSRs) at poles, visual
odometry is constrained, if not, invalidated. Under those
circumstances, the rover needs to rely on GNSS measure-
ments rather than INS measurements to maintain the position
accuracy. In such a case, the rove may needs to lengthen the
observation period of the MDPO to improve the accuracy of
the GNSS measurements.

Another limitation may be imposed by the availability of
the GNSSmeasurements. For instance, the orbital parameters
of the two navigation satellites changes over time due to
the lunar gravity perturbations. While navigation satellite
commonly owns a propulsion system to maintain its orbital
parameters, the rover may face a situation where the rover
receives only one GNSS signal at a time instead of two
satellites. In that case, tightly-coupled integration is a viable
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FIGURE 4. Simulated rover trajectory for the first 5,000 epochs. Black line corresponds to the true user trajectory. Blue dots
corresponding to the raw GNSS measurements. Red line corresponds to the INS-only navigation algorithm. Green line
corresponds to the INS/GNSS integration.

FIGURE 5. User position error projected onto the topocentric coordinate.
Blue dots correspond to the raw GNSS measurements. Red dots
correspond to the INS-only navigation algorithm. Green dots correspond
to the INS/GNSS integration.

approach that can use single-satellite pseudorange obser-
vations in position estimation process. We will study the
tightly-coupled integration in our future work.

FIGURE 6. Time sequence of user position error (norm). Blue dots
correspond to the raw GNSS measurements. Red dots correspond the
INS-only navigation algorithm. Green dots correspond to the INS/GNSS
integration.

V. CONCLUSION
In this study, we proposed an INS/GNSS integration model
adopted for Multi-Epoch Double-Differenced Pseudorange
(MDPO)-based dual-satellite lunar global navigation satellite
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systems. We also evaluated its performance in a simulated
environment.

In the scenario where a rover travels on the lunar surface
using GNSS measurements from two navigation satellites,
we used the proposed INS/GNSS integration to 1) estimate
rover positions when GNSS measurements are not available,
and as a result, extend rover’s traveling distance, 2) improve
the user position accuracy by fusing two different sensor char-
acteristics. Under the selected numerical simulation condi-
tion, it was confirmed that the proposed INS/GNSS algorithm
successfully extended the total traveling distance by com-
pensating for navigational measurements in the absence of
GNSS measurements while it also improved the user position
estimation accuracy beyond the accuracy of the raw GNSS
measurements.

Our future work includes case studies with different LGNS
parameters. In particular, the trajectory of the two navigation
satellites is a key trade-off design parameter which affects
the accuracy and availability of the GNSS measurements.
To obtain further insights for the future dual-satellite LGNS
design, other simulation cases will be studied.
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