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ABSTRACT This paper proposes an anomaly detection and classification method for industrial control
systems (ICSs). The proposed method is based on network traffic data of industrial field protocols like
Modbus TCP and S7 Communication. First, the denoising autoencoder (DAE) is utilized to reduce data noise
and extract core features from data. Second, the synthetic minority oversampling technique (SMOTE) and the
Tomek link (T-Link) mechanism are employed to oversample and undersample data for addressing the data
imbalance problem. Finally, extreme gradient boosting (XGBoost) is used to leverage the ensemble learning
concept to avoid overfitting for achieving good performance. A real-life railway industry ICS dataset called
Electra is used to evaluate the performance of the proposed method, and the evaluation results are compared
with those of other related methods. The proposed method is shown to have the highest (100%) precision,
recall and F1-score for anomaly detection, and have fairly high performance of anomaly classification. The
contribution of this paper is to show that integrating the DAE, SMOTE, T-Link, and XGBoost schemes can
achieve the highest or extremely high performance in the aspect of ICS anomaly detection and classification
based on network traffic. The computational complexity and convergence analyses of the proposed method
are also provided in this paper. Furthermore, the code implementing the proposed method is released for
public access through IEEE Code Ocean so that the effectiveness and the applicability of the method can be
validated.

INDEX TERMS Anomaly classification, anomaly detection, autoencoder, data imbalance, industrial control
system, modbus, S7 communication, SMOTE, Tomek link, XGBoost.

I. INTRODUCTION
Due to the prevalence of the Industry 4.0 paradigm [1], more
and more industrial machines and devices are interconnected
through industrial field networks and even Internet. The
industrial control system (ICS) [2], which integrates informa-
tion technology (IT) and operational technology (OT), is used
to monitor, control, and manage interconnected equipment in
various industrial fields, such as power plants, water plants,
oil refineries, public transportation systems, manufacturing
factories, and so on [3]. The ICS brings many benefits such
as high efficiency and good quality, but it also causes some
potential shortcomings. For example, the ICS may suffer
from cyberattacks [4], causing huge economic losses and
even affecting the safety of personnel.

Many ICS cyberattacks occurred during last several
years [5]. For example, Iran’s nuclear power plant was

The associate editor coordinating the review of this manuscript and
approving it for publication was Nadeem Iqbal.

attacked by Stuxnet, a malicious computer worm, in 2010.
The worm propagated across the network and ruined almost
1000 nuclear centrifuges [6]. For another example, in 2018,
a Taiwan chipmaker was halted by WannaCrypt malware,
leading to the shutdown of many chip-fabrication factories
connected through networks, resulting in a loss of approxi-
mately $256 million [7]. For yet another example, in 2021,
an American oil pipeline system suffered a ransomware
cyberattack affecting networked equipment managing the
pipeline. All pipeline operations were stopped, causing oil
supply chaos. Consequently, a ransom of $4.4 million was
paid to restore the operations [8].

The rising number of ICS attacks has brought about the
use of the intrusion detection system (IDS) in ICS net-
works [9]. An intrusion detection system is a hardware or
software component continuously monitoring system behav-
ior to report any anomalies, such as suspicious system events
or network traffic abnormalities [10]. Anomalies are usually
precursors to attacks or consequences of attacks. They should
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be detected and alarmed to administrators so that proper
actions can be taken to secure the system. It is desirable to
detect and even classify anomalies accurately and precisely
for the administrators to make good decisions to enforce
effective countermeasures against the anomalies.

This paper proposes an anomaly detection and classifica-
tionmethod to detect and classify anomalies in an ICS by ana-
lyzing network traffic data of industrial field protocols like
Modbus TCP (orModbus, for short) [11] and S7Communica-
tion (or S7 Comm, for short) [12]. The proposed method first
uses the denoising autoencoder (DAE) [13] to reduce data
noise and extract core features from data. It then employs the
synthetic minority oversampling technique (SMOTE) [14]
and the Tomek link (T-Link) [15] scheme to oversample and
undersample data for addressing the data imbalance problem
that the numbers of data in different classes differ signifi-
cantly. Finally, extreme gradient boosting (XGBoost) [16] is
used to build anomaly detection and classification models
that can leverage the ensemble learning concept to avoid
overfitting for achieving good performance.

A real-life railway industry dataset, called Electra [9],
is used to evaluate the performance of the proposed method.
The evaluation results are compared with those of other
related methods [9], [17], whose performance is also eval-
uated by the Electra dataset. The existing methods proposed
in [9] and [17] also apply resampling mechanisms to data to
deal with the data imbalance problem. However, they have
some limitations. Specifically, the methods proposed in [9]
randomly select partial normal data so that the number of
selected normal data equals the number of anomalous data.
It is likely that some important features are missed due to the
random selection of data, so the performance of the methods
thus degrades. On the other hand, themethod proposed in [17]
uses the generative adversarial network model to generate
synthetic anomalous data to mitigate the data imbalance
problem. However, it requires sophisticated skills and much
time to train the model for generating good synthetic data to
achieve satisfactory anomaly detection performance.

The proposed method is shown to have the highest (100%)
precision, recall and F1-score for the anomaly detection case.
Moreover, it is also shown to have fairly high performance
for the anomaly classification case. The contribution of this
paper is to show that integrating the DAE, SMOTE, T-Link,
and XGBoost schemes can achieve the highest or extremely
high performance in the aspect of ICS anomaly detection and
classification based on network traffic. Furthermore, the code
implementing the proposed method is released for public
access through IEEE Code Ocean so that the effectiveness
and the applicability of the method can be validated.

In summary, the contribution of this paper is fourfold. First,
it proposes a method integrating DAE, SMOTE, T-Link, and
XGBoost mechanisms to detect or classify ICS anomalies
by analyzing network traffic data. Specifically, DAE is for
reducing data noise and extracting data features, SMOTE is
for oversampling data, T-Link is for undersampling data, and
XGBoost is for detecting/classifying anomalies. Second, the

computational complexity analysis and convergence analy-
sis of the proposed method are provided. Third, extensive
experiments are conducted to evaluate the performance of the
proposed method and the performance evaluation results are
compared with those of other related methods. The compar-
ison results show that the proposed method has the highest
(100%) precision, recall and F1-score for anomaly detec-
tion, and has fairly high performance for anomaly classifi-
cation. Fourth, the code implementing the proposed method
is released through IEEE Code Ocean for validating the
method’s effectiveness and applicability.

The rest of this paper is organized as follows. Related
research is introduced in Section II. The proposed method
is elaborated in Section III, and its computational complex-
ity and convergence analyses are provided in Section IV.
The performance evaluation of the proposed method and its
comparisons with related methods are shown in Section V.
Finally, Section VI concludes this paper.

II. RELATED WORK
Gomez et al. investigated the ICS cybersecurity problem by
proposing a methodology to generate a dataset called Elec-
tra [9]. The dataset is gathered from the network traffic of an
electric traction substation used in the railway industry and
can be publicly accessed [18]. An ICS testbed consisting of
a supervisory control and data acquisition (SCADA) system,
a firewall, a switch, a programmable logic controller (PLC)
master, four PLC slaves, and several ICS devices is used for
the data gathering. Devices of the ICS testbed communicate
with each other with common industrial control protocols
like Modbus [11] and S7Comm [12]. Since the protocols
lack authentication, data encryption and data integrity check-
ing, they are vulnerable to various attacks [19]. An extra
computing device is deployed in the testbed with the man
in the middle (MitM) setting to launch attacks for generat-
ing anomalous network packets. The extra device launches
attacks and meanwhile records all packets, either normal or
anomalous, for 12 hours to generate the dataset.

The Electra dataset contains 16M and 387M packet entries
of Modbus and S7Comm traffic data, respectively. It is a
very imbalanced dataset, as the percentages of the anomalous
data are 5.2% for the Modbus traffic, and 1.42% for the
S7Comm traffic. The anomalous data (or packets) are caused
by three categories of attacks, namely reconnaissance attacks,
false data injection attacks, and replay attacks. The attackers
launch reconnaissance attacks to gain access to the industrial
network for obtaining information of devices in the network
and their associated services. The attackers usually plan next
moves of attacks based on the information obtained. With
false data injection attacks, attackers try to manipulate ICS
devices. Attackers craft and transmit false data via control
protocols to launch different types of attacks like command
injection, response injection, parameter injection, and so on.
Attackers launch replay attacks by retransmitting valid pack-
ets which they have ever intercepted in the network. Such
attacks can mislead devices that receive the replayed packets.
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The three categories of attacks concerning the Electra
dataset are further classified into seven types, as shown in
Table 1. Attackers launch the ‘‘function code recognition
attack’’ by generating malicious packets to scan all possible
function codes in the attacked PLC. Fake packets are created
to perform the ‘‘read attack’’ or ‘‘write attack’’ on the effec-
tive memory address of the PLC. Packets are modified in the
response of a slave device to launch the ‘‘response modifi-
cation attack’’ or ‘‘force error in response attack’’. Packets
are modified in command of a master device to launch the
‘‘command modification attack’’. As for the ‘‘replay attack’’,
it is launched by retransmitting packets ever sent by the
master or slave devices.

TABLE 1. The three categories and seven classes of attacks in the Electra
dataset.

Gomez et al. also proposed supervised and unsupervised
machine learning methods [9] to detect ICS anomalies by
inspecting network packets of the Electra dataset. The super-
vised machine learning methods include the random for-
est (RF) model, the support vector machine (SVM) model,
and the neural network (NN) model. The unsupervised
machine learning methods include the one-class support vec-
tor machine (OCSVM) model and the isolation forest (IF)
model. The hyperparameters and their possible values of
different models are shown in Table 2. The grid-search mech-
anism is applied to select proper hyperparameter values to
obtain the models having the best performance.

TABLE 2. The hyperparameters and their values of models investigated
in [9].

Among the above-mentioned models for Modbus traffic,
the SVM model achieves the highest recall of 1 and the
highest F1-score of 0.9876, whereas the RF model achieves
the highest precision of 0.9877. For S7Comm traffic, the
RF model achieves the highest recall of 1 and the highest
F1-score of 0.9978, whereas the NN model achieves the
highest precision of 0.9999.

Ning et al. [17] proposed a method based on the generative
adversarial network (GAN) model [20] and the deep neural
network (DNN) model for ICS anomaly detection. A GAN is
a neural network with two adversarial parts that are trained
together. One part is the generator trained to generate new
(or fake) samples following the distribution of given real
data samples. The other part is the discriminator trained to
determinewhether samples are real or not. Themodel training
reaches equilibrium when the discriminator can no longer tell
real samples from fake samples generated by the generator.

The GAN is used by Ning et al. [17] to generate additional
anomalous data samples that are very similar to original
anomalous samples from the perspective of statistical distri-
bution to deal with the data imbalance problem. The newly
generated samples are mixed with the original samples to be
fed into a DNNmodel for detecting ICS anomalies. The Elec-
tra dataset for the Modbus protocol is employed to evaluate
the performance of the proposed method. The authors used
the GAN model to generate different numbers of additional
anomalous samples to evaluate the recall metric of the DNN
model. The GAN generator has 9 input units and 9 output
units, whereas the GAN discriminator has 9 input units and
1 output unit. The generator (resp., discriminator) takes the
linear (resp., sigmoid) function as the activation function, and
takes the root-mean-square error (resp., logloss) function as
the loss function. The DNN has 5 layers with different num-
bers of neurons with the rectified linear unit (ReLU) func-
tion [21] as the activation function. It is concluded that the
GAN model can improve the recall of the DNN model from
0.89% to 0.94% by adding a small number (viz., 752213) of
additional samples, and to 0.98% by adding a large number
(viz., 1504463) of additional samples.

III. PROPOSED METHOD
This section describes the proposed method based on the
DAE, SMOTE, T-Link, and XGBoost mechanisms. The
input of the proposed method is the dataset of Modbus and
S7Comm packet features and labels. The dataset is divided
into the training and test datasets. The training dataset is used
to train the DAE and the XGBoost models, whereas the test
dataset, to verify the effectiveness of the trained models. The
training data go through four major steps: data preprocessing,
DAE training, SMOTE and T-Link resampling, and XGBoost
training, as shown in Figure 1 (a). The trained DAE and the
trained XGBoost are then applied to the test data without
SMOTE and T-Link resampling to detect and classify anoma-
lies, as shown in Figure 1 (b). Please refer to Appendix A
for a running example of a test data item going through data
preprocessing, DAE processing, and XGBoost processing.
The major processing steps applied to the data are described
in detail one by one in the following subsections.

A. DATA PREPROCESSING
Data preprocessing consists of the following routines. The
first routine is redundancy removal to remove redundant data
in the dataset. This is because in the industrial control system,
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FIGURE 1. Major steps of the proposed method for (a) the training data
and (b) the test data.

many control processes are re-executed over time. Conse-
quently, there exist a large number of identical or redundant
packets (or data) in the dataset. Redundant data should be
removed for the sake of efficiency. This can be done by
ignoring the ‘‘time’’ field of data to check if data are identical.
For all identical data, only the first datum is retained, whereas
others are regarded as redundancies to be removed. Note that
the test data do not undergo the redundancy removal process,
as every test datum should be classified separately.

The second routine is to apply one-hot encoding (OHE) to
categorial data to increase one data dimension for each new
category and to use 0 or 1 to indicate if a data item belongs
to a certain category. OHE is useful for encoding categorial
data without order relationship, such as MAC addresses and
IP addresses. Moreover, the second routine is also to employ
label encoding to encode categorial data having no or little
order relationship, such as function codes, memory addresses,
and data to be written or read. Unlike OHE, label encoding
transforms categorial data into integers ranging from 0 to
the number of categories minus one without increasing data
dimensionality [22].

The third routine is to standardize scalar data so that
they follow the standard normal distribution with the mean
of 0 and the standard deviation of 1. This is achieved by
calculating themean and the standard deviation of the original
data and afterward subtracting each original data value by the
mean and then dividing the subtracted value by the standard
deviation.

B. DAE TRAINING
After data are preprocessed, they are used to train the DAE
model [13] to reduce noise in data and to extract core features
of the data. A DAE is a special type of the autoencoder (AE)
model [23] consisting of layers of connected neurons.

A neuron takes a vector x as input and produces output y
according to the following Equation (1).

y = σ (w · xT + b), (1)

where w is the vector of neuron connection weights, xT is
the transpose of input vector x, b is a bias value, and σ is
the activation function (e.g., the sigmoid function). Figure 2
shows the structure of the DAE model, as elaborated below.

As shown in Figure 2, the right portion of an DAE is
actual an AE consisting of the encoder, the code, and the
decoder. The DAE first adds artificial noises into the original
input x to have the noisy input x̃. The noisy input is then
fed into the encoder to generate the code, which in turn is
transformed by the decoder to be the reconstructed input x ′.
The reconstructed input x ′ is intended to be as close to the
original input x as possible. This can be achieved by tuning
the neuron connection weights to minimize the mean square
error (MSE) of a batch of inputs and reconstructed inputs with
the error backpropagation mechanism, the gradient descent
algorithm, and an optimizer like the adaptive moment esti-
mation (Adam) [24]. Consequently, the DAE can be used to
reduce noise of input data and extract the data feature as a
code. The code usually has much smaller dimensionality than
the original data. The trained DAE can then be applied to each
datum to represent it as a code to reduce noise and dimen-
sionality for the purpose of feature extraction. However, the
method proposed in this paper uses the output of the trained
DAE as the extracted features of the original datum. That is
to say, DAE is used for reducing noise and extracting features
but not for reducing dimensionality in the proposed method.

C. SMOTE AND TOMEK-LINK RESAMPLING
Resampling is necessary for training models with an imbal-
anced dataset, where the majority class samples (or data)
significantly outnumber the minority class samples for the
binary-class classification case. Therefore, after all input data
are represented as codes, the codes are oversampled by the
synthetic minority oversampling technique (SMOTE) [14]
and undersampled by the Tomek-link (T-Link)
mechanism [15].

SMOTE is an approach to improve the traditional random
oversampling mechanism that repeatedly copies arbitrary
samples (or data) from the minority class. SMOTE generates
new synthesized samples based on the interpolation of two
minority class samples. Note that below a ‘‘minority sample’’
stands for a ‘‘minority class sample’’, whereas a ‘‘majority
sample’’ stands for a ‘‘majority class sample’’.

Let the number of minority samples bem and the oversam-
pling rate be n, n = 1, 2, . . ., which is the number of times of
oversampling each minority sample. For a minority sample
xi, 1 ≤ i ≤ m, the steps for SMOTE to synthesize n new
samples based on xi are as follow. The reader can refer to
Figure 3 for the illustration of SMOTE oversampling.
Step 1: For a minority sample xi, 1 ≤ i ≤ m, find the

set Si of k minority samples that are closest to xi by applying
the k-nearest neighbor (k-NN) algorithm to xi.
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FIGURE 2. The structure of a denoising autoencoder (DAE).

FIGURE 3. Illustration of SMOTE oversampling minority class samples.

Step 2: Randomly select a minority sample xj from Si and
generate a new synthesized sample xnew according to the
following equation:

xnew = xi + δ × (xj − xi),

where δ is an arbitrarily selected value between 0 and 1.
Step 3: If the number of new samples synthesized on the

basis of xi is less than n, then go to Step 2.
T-Link is a mechanism to improve traditional undersam-

pling technique which randomly removes a certain portion
of majority samples. T-Link focuses on the T-link pair of a
minority sample and a majority sample. The majority sample
of every T-link pair is then removed.

For a minority sample xi, 1 ≤ i ≤ m, the steps to remove
majority class samples based on x are as follow:
Step 1: Find the majority sample xj that is closest to the

minority sample xi.
Step 2: Calculate d(xi, xj), which is the Euclidean distance

between xi and xj.
Step 3: If there exists no sample xk such that d(xi, xk ) <

d(xi, xj) or d(xk , xj) < d(xi, xj), then (xi, xj) is called a T-link
pair.

Step 4: If (xi, xj) is a T-link pair, then remove xj from the
majority class.

The above-mentioned steps can be repeated to remove
majority samples. The readers are referred to Figure 4 for the
illustration of T-Link that undersamples data in the major-
ity class. Unlike traditional undersampling techniques which
randomly remove majority samples, T-Link removes only
majority samples of T-link pairs. Consequently, T-Link can
effectively make the boundary between the majority class
and the minority class more distinguishable and avoid the
problem that important information is lost due to the random
removal of majority samples.

FIGURE 4. Illustration of T-Link undersampling majority class samples.

Using SMOTE to generate minority samples may lead to
the problem that the generated minority samples may be
surrounded by somemajority samples. It is thus hard to distin-
guish the minority samples from the majority samples. Using
T-Link right after using SMOTE can mitigate the problem.
Therefore, the method proposed in this paper uses the combi-
nation of SMOTE and T-Link to sequentially oversample and
undersample data.
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D. XGBoost TRAINING
After all input data are represented as DAE codes to be
resampled by SMOTE and T-Link, the resampled codes are
used to train the XGBoost model for classifying the input
data. Below, we introduce the XGBoost model and describe
how to train the model with resampled DAE codes.

XGBoost [16] is an ensemble learningmodel that improves
the gradient boosting decision tree (GBDT) mechanism [25].
Its basic concept is to combine many weak estimators to
derive a strong estimator. Specifically, it uses an additive
strategy to use multiple decision trees (DTs) or classification
and regression trees (CARTs) [26] to obtain a model that
can predict (or classify) the target labels by selecting proper
attributes (or features) to split at appropriate values for the
purpose of classification or regression. Specifically, a DT
is a tree structure in which each internal node represents a
‘‘check’’ of particular conditions on an attribute, each branch
represents the check outcome, and each leaf node represents
a class label. Moreover, XGBoost also employs the L2-norm
regularization [27] to mitigate the overfitting problem.

XGBoost first builds a DT for predicting the target label
by optimizing the objective function. Then, the second DT is
built to predict the residual error (i.e., the second target label)
between the first DT’s prediction and the target label. Gener-
ally, a t th DT is built to predict the residual error between the
(t − 1)th DT’s prediction and the (t − 1)th target label.

For a given dataset D = {(xi, yi)} with n samples and
m attributes, where |D| = n, xi ∈ Rm is a data sample, yi ∈ R
is a label, and 1 ≤ i ≤ n. Let ft (xi) be the function associated
with the t th DT, and ŷ(t)i be the prediction of the ith sample of
the t th DT. We have the two following Equations (2) and (3).

ŷ(t)i = ŷ(t−1)i + ft (xi) =
t∑

k=1

fk (xi), fk ∈ F (2)

Obj(t) =
n∑
i=1

loss(yi, ŷ
(t)
i )+

t∑
k=1

�(fk ) (3)

In Equation (2), F = {f (x) = wq(x)} in the space of DTs,
where q : Rm

→ T , and w ∈ RL . Specifically, q represents
the function associated with the DT mapping a sample of m
attributes to a leaf index of 1, . . . , or T , and w represents the
vector of leaf weights. In Equation (3), Obj(t) is the objective
function to be optimized (or minimized), loss(yi, ŷ

(t)
i ) is the

loss function that measures the difference between the target
label yi and the prediction ŷ

(t)
i , and �(f ) = γT + 1

2λ ‖w‖
2
2 is

the function to penalize the complexity of function f asso-
ciated with the DT, where γ and λ are two constants, and
‖w‖22 is the square of L2-norm ofw, the vector of leaf weights.

IV. COMPUTATIONAL COMPLEXITY AND CONVERGENCE
ANALYSES
In this section, the computational complexity analysis and
convergence analysis of the proposed method are demon-
strated. The proposed method employs the DAE model to
reduce data noise and extract data core features. The DAE

model is a special type of neural networks. As stated in [28],
the computational complexity to train a neural networkmodel
with w weights is linear in w. In summary, the DAE model
has the computational complexity of O(w), where w is the
number of DAE weights, including biases. Specifically, for
a DAE with a fully connected neural network structure of
l layers with vi neurons in layer i, 1 ≤ i ≤ l, the number
w of weights is proportional to

∑l−1
1 (vivi+1 + vi+1).

The proposed method utilizes the SMOTE and the T-Link
mechanisms to oversample and undersample data. As shown
in [29], the computational complexity of the SMOTE mech-
anism is O(n log n). Moreover, the proposed method uses
T-Link right after using SMOTE to find and remove a major-
ity sample for each minority sample with the concept of the
T-link pair. The total computational complexity of using
T-Link after using SMOTE is also O(n log n), as shown
in [30].

The proposed method uses XGBoost to classify data sam-
ples. As shown in [16], training an XGBoost model and
using a trained XGBoost model for data classification respec-
tively takes O(tdx log n) andO(td) computational complexity,
where t is the number of the decision trees, d is the maximum
depth (or height) of the trees, x is the number of non-missing
entries in the training data, and n is the number of training
data samples.

The convergence analysis of the DAE model is shown
below. Since the convergence of training neural networkmod-
els is closely related to the adopted optimizer, we analyze the
convergence of the Adam optimizer that is adopted in this
paper to train the DAE of our proposed method.

As mentioned earlier, Adam stands for adaptive moment
estimation [24]. It is widely adopted as the optimizer for train-
ing neural networks due to its good performance. Adam esti-
mates the first-order and the second-order gradient moments
to adaptively update individual learning rates for different
neural network weights [31]. Below are the calculations used
by Adam to update every weight wt of a neural network at
iteration t for 0 ≤ t ≤ T .

gt = ∇wft (wt−1) (4)

mt = β1mt−1 + (1 − β1)gt (5)

vt = β2vt−1 + (1 − β2)g2t (6)

m̂t =
mt

1− β t1
(7)

v̂t =
vt

1− β t2
(8)

wt = wt−1 − α
m̂t√
v̂t + ε

(9)

In the above equations, gt is the gradient of the objective
function (or loss function) ft , mt is the biased first moment
(or mean) estimate, vt is the biased second raw moment
(or uncentered variance) estimate, β1 and β2 are exponential
decay rates with values in [0,1), m̂t is the bias-corrected first
moment estimate, v̂t is the bias-corrected second rawmoment
estimate, α is the learning rate (or step size), and ε is a
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sufficiently small number. As suggested in [24], good default
parameter settings are as follows: α = 0.001, β1 = 0.9,
β2 = 0.999, ε = 10−8,m0 = 0, and v0 = 0.
As shown in [24], equations (7), (8), and (9) show above

can be replaced with the following two equations:

αt = α

√
1− β t2 /(1− β

t
1) (10)

wt = wt−1 − αt mt / (
√
vt + ε) (11)

Although the paper [32] shows a counterexample of a
simple convex optimization setting for which Adam does not
converge, some papers [33]–[35] still provide the sufficient
conditions of convergence and the convergence rate for Adam
with special settings. The paper [33] shows the sufficient
conditions of convergence for generic Adam that iteratively
updates β1 (shown as βt below) and β2 (shown as θt below).
To be more specific, generic Adam is convergent if param-
eter sequences {αt }, {βt }, and {θt } satisfy all the following
conditions [33]:

1. βt ≤ β0 < 1;
2. 0 < θt < 1, and θt is non-decreasing;
3. αt /

√
1− θt is ‘‘almost’’ non-increasing;

4. (
∑T

t=1 αt
√
1 − θt ) / (TαT ) = o (1) .

We adapt the above conditions for original Adam to keep
βt as a constant of β1, and to keep θt as a constant of β2.
Therefore, the sufficient conditions for original Adam, based
on equations (4), (5), (6), (10), and (11), to converge are
shown as follows:

1. β1 < 1;
2. 0 < β2 < 1;
3. αt /

√
1− β2 is ‘‘almost’’ non-increasing;

4. (
∑T

t=1 αt
√
1 − β2) / (TαT ) = o (1) .

The paper [34] shows Adam has the convergence rate
O(1/
√
T ) in the non-convex stochastic optimization setting

with the batch size of the same order of T . That is to say,
Adam will converge to a stationary point with an error in the
order of O(1/

√
T ) after T iterations. Moreover, the paper [35]

shows that Adam with a learning rate α = 1/
√
T and a

momentum parameter of squared gradients β2 = 1 − (1/T )
has the convergence rate O(lnT/

√
T ).

V. PERFORMANCE EVALUATION AND COMPARISON
A. THE DATASET
The Electra dataset [18] reported in [9] for ICS cybersecurity
research is used to evaluate the performance of the proposed
method. The Electra dataset has two sub-datasets: the Electra
Modbus dataset for the Modbus protocol and the Electra
S7Commdataset for the S7Commprotocol. Each Electra data
entry contains packet-level features like the function code
and the MAC/IP addresses of the two communicating parties
of the Modbus or the S7Comm packets. Table 3 shows the
features, descriptions, and the data types of the Electra dataset
entry.

Each data entry in the Electra dataset contains only a single
operation. Entries are labeled as normal or anomalous with

TABLE 3. Data features, descriptions, and types of the Electra dataset.

TABLE 4. Class percentages and sizes in the Electra Modbus dataset and
the Electra S7Comm dataset.

different classes of attacks. The percentage and size of every
possible class is demonstrated in Table 4. For theModbus pro-
tocol, the possible classes of labels are normal, the response
modification attack, the force error in response attack, read
attack, write attack, replay attack, and the function code
recognition attack. For the S7Comm protocol, the possible
classes of labels are normal, the response modification attack,
the force error in response attack, read attack, write attack,
replay attack, and the command modification attack. Note
that the data entries for the Modbus and the S7Comm proto-
cols have six common classes and one different class. It can
be observed from Table 4 that the Electra dataset is a very
imbalanced dataset. The percentage of the normal class is
94.8% for the ElectraModbus dataset; 98.58%, for the Electra
S7Comm dataset.

B. EVALUATION METRICS
When dealing with highly imbalanced data for performing
classification, it is trivial to get a high accuracy by always
classifying data into the majority class [36]. Since the Electra
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dataset used for performance evaluation is extremely imbal-
anced, the accuracy metric, as defined in Equation (12), is not
adopted for the evaluation. Instead, the precision, the recall,
and the F1-score, which are defined in Equations (13), (14),
and (15), are used as metrics for performance evaluation.

accuracy =
TP+ TN

TP+ FP+ TN+ FN
(12)

precision =
TP

TP+ FP
(13)

recall =
TP

TP+ FN
(14)

F1-score =
2× precision× recall
precision+ recall

(15)

In Equations (12), (13), and (14), TP, FP, TN, and FN
stand for the numbers of true positive, false positive, true
negative, and false negative detections. In the context of
this paper, a positive detection is to classify a packet to be
abnormal or anomalous, whereas a negative detection is to
classify a packet to be normal. TP (resp., FP) is the number
of positive detections for actually anomalous (resp., normal)
packets. TN (resp., FN) is the number of negative detections
for actually normal (resp., anomalous) packets.

It is desirable to have as high as possible precision, recall
and F1-score, whose values are all between 0 and 1. When
there is no false positive detection (i.e., FP is 0), the highest
precision of 1 is achieved. When there is no false negative
detection (i.e., FN is 0), the highest recall of 1 is achieved.
However, it is hard to achieve high precision and high recall at
the same time. There are usually trade-offs between precision
and recall. The F1-score, which considers precision and recall
at the same time, can thus be used as a good metric for perfor-
mance evaluation. When precision and recall are both 1, the
highest F1-score of 1 is achieved.

The above-mentioned descriptions are for the case of
binary-class classification metrics. For the case of multi-class
classification, this paper adopts the macro averaging scheme
to derive metrics. In general, for a k-class classification
case to classify data into class 1, class 2, . . . , and class k ,
the macro-averaged metric is calculated as follows. Taking
class 1 as the positive class and others as the negative class
to calculate the metric for class 1, . . . , taking class k as the
positive class and others as the negative class to calculate the
metric for class k , and finally averaging metrics of all classes
to derive the macro-averaged metric.

C. PERFORMANCE EVALUATION
The Electra dataset is first divided into a training dataset
of 80% training data, and a test dataset of 20% test data
for evaluating the performance of the proposed method. The
performance evaluation is for the Modbus protocol and the
S7Comm protocol, and has the following two cases: the
anomaly detection (or binary-class classification) case and
the anomaly multi-class classification case.

The training data first undergo redundancy removal. This
is because ICS control processes frequently repeat identical

actions, causing a great number of identical or redundant
packets. Note that the paper [9] performs redundant packet
removal for all data. However, this paper performs redundant
packet removal only for the training data, but not for the test
data. In practical applications, not all of data are available
in advance. Hence, test data do not undergo redundancy
removal.

The training data are used to train the DAE model. The
hyperband algorithm [37] is used to tune hyperparameters
of the DAE to derive the best model. Major DAE hyperpa-
rameters and their possible values are shown in Table 5. Note
that the asterisked and underlined values in Table 5 represent
the values selected by the hyperband algorithm for Modbus
traffic and S7Comm traffic, respectively. The selective values
are tuned for the multi-class classification case; they are also
applied for the binary-class classification case, though.

TABLE 5. DAE hyperparameters and values used by the proposed method.

The DAE model for Modbus traffic has the following neu-
ral network structure: the input layer of 21 neurons with batch
normalization, three hidden layers of 64, 32, and 64 neu-
rons, all with batch normalization, and the output layer of
21 neurons. Note that each encoder (resp., decoder) layer
of the DAE is assumed to have half (or twice) neurons as
its previous layer. The activation function of each neuron
is the scaled exponential linear unit (SELU) function [38].
The initializer is Glorot normal [39], and the optimizer is
Adam [24]. The DAE model for the S7Comm protocol case
has similar structure except that the input layer and the output
layer have 24 neurons. Note that batch normalization [40] is a
mechanism to improve neural network training through input
re-normalization for each layer of neurons.

The input data are fed into the DAE to extract features as
DAE codes. The SMOTE and the T-Link mechanisms are
then applied to the codes (or samples) for oversampling and
undersampling them. Note that the proposed method does
not apply the two resampling mechanisms for the anomaly
detection case, as its performance is good enough without
them. However, the proposed method indeed applies the
two mechanisms for the multi-class classification case. The
SMOTE mechanism adopts k = 5 for the k-NN algorithm to
oversample minority samples. For specific minority classes,
a target number of minority samples is set, and the under-
sampling continues until the number of the minority samples
approximates the target number. For example, the target num-
bers of the ‘‘replay attack’’ and ‘‘read attack’’ samples are
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FIGURE 5. The loss-epoch curves of DAE training for the Electra dataset.

both set to 5000 for Modbus traffic. For another example, the
target number of the ‘‘replay attack’’ samples is set to 700 for
S7Comm traffic. After the SMOTE oversampling, the T-Link
mechanism is then utilized to find a T-link pair for every
minority sample to remove the majority sample from the pair
to undersample majority samples. Afterwards, the resampled
data are then used to train the XGBoost model for classifying
input data.

Fixed hyperparameter settings are used for training the
XGBoost model. Some of important settings are as follows.
The number of estimators (DTs) is 1000, the maximum depth
of tree is 6, and the learning rate is 0.300000012. The parame-
ter settings are applied for both the binary-class classification
and the multi-class classification cases, and for both Modbus
traffic and S7Comm traffic.

After the training data are used to train the DAE and
the XGBoost models, the test data are then applied to the
trained DAE and the trained XGBoost models for clas-
sifying the data packets. Note that the test data do not
undergo the redundancy removing and resampling, as in
practice not all test data are known in advance. However,
the test data do undergo the standardization process by
using the mean and the standard deviation of the training
data.

Figure 5 shows the loss-epoch curves in training the DAE
model for the Electra dataset of Modbus traffic and S7Comm
traffic. The curves show that MSE losses converge very
soon in the training history. The early-stopping mechanism
is further employed to save training time and to avoid the
overfitting problem. The DAE training stops at the 323rd

(resp., 111st ) epoch for the Modbus (resp., S7Comm) traf-
fic data. Moreover, Figure 6 shows the loss-epoch curves
in training the XGBoost model for the Electra dataset of
Modbus traffic and S7Comm traffic. The curves show that
the cross-entropy losses converge soon in the training history.
The early-stoppingmechanism is also employed to save train-
ing time and to avoid the overfitting problem. The XGBoost
training stops at the 64th (resp., 88th) epoch for the Modbus
(resp., S7Comm) traffic data in the binary-class classification
case. It stops at the 52nd (resp., 73rd ) epoch for the Modbus

(resp., S7Comm) traffic data in the multi-class classification
case.

Table 6 shows the time overheads for training the DAE and
XGBoost models and for performing SMOTE and T-Link.
It also shows the time overheads for analyzing a test datum
for anomaly detection/classification. Note that a test datum
goes through data preprocessing, DAE feature extraction,
and XGBoost detection/classification. As shown in Table 6,
it takes only few milliseconds to analyze a test datum for
anomaly detection/classification, which makes the proposed
method meet the real time requirement.

The device used to train the DAE andXGBoost models and
to analyze a test datum has the following specifications.
• CPU : Intel R© Xeon R© Dual-core CPU E5-2630 v4 @
2.20 GHz and 2.20 GHz

• RAM : 256 GB
• GPU : Two NVIDIA GeForce GTX 1080

D. PERFORMANCE COMPARISONS
The performance evaluation results of the proposed method
for the binary-class classification case (i.e., anomaly detec-
tion case) are shown in Figure 7 in the form of confusion
matrices. The results of the proposed method are quite good
for both the Modbus and the S7Comm datasets. The preci-
sion, recall and F1-score are all 100%. That is to say, the pro-
posed method is a perfect classifier whose classifications are
all correct. Table 7 shows the anomaly detection performance
comparisons of the proposed method and other related ones
like the SVM, OCSVM, RF, IF, NN, and GAN+DNN meth-
ods investigated in [9], [17] in terms of the precision, recall
and F1-score. Note that the GAN+DNNmethod does not use
the S7Comm dataset to evaluate its performance. Therefore,
it is not included in the comparisons for the S7Comm dataset
in Table 7.

The performance evaluation results of the multi-class clas-
sification case are shown in Figure 8 in the form of confu-
sion matrices. Table 8 shows the multi-class classification
performance of the proposed method in terms of the pre-
cision, recall and F1-score. To the best of our knowledge,
there is no other research that proposes anomaly multi-class
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FIGURE 6. The loss-epoch curves of XGBoost training for the Electra dataset.

TABLE 6. The time overheads (in seconds) for training DAE, for performing SMOTE and T-Link, for training XGBoost with training data, and for analyzing a
test datum for anomaly detection and classification.

TABLE 7. Anomaly detection performance comparisons of the proposed
methods and related methods.

classification methods of which performance is evaluated on
the basis of the Electra dataset. Thus, Table 8 only shows
the performance of the proposed method. There is still room
to improve the performance of the proposed method for the

TABLE 8. Anomaly multi-class classification performance of the
proposed method.

multi-class classification case. Specifically, some anomalies
caused by read attacks are misclassified as those caused by
replay attacks in Modbus traffic. On the other hand, some
anomalies caused by replay attacks are misclassified as those
caused by write attacks in S7Comm traffic. This is due to
the fact that anomalies caused by read attacks and replay
attacks have very similar patterns in network traffic, a fact
also reported in [9].

As just shown, the proposed method integrating DAE,
SMOTE, T-Link, and XGBoost has the best performance
or very good performance results that are superior to
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FIGURE 7. Confusion matrices of the proposed method for the binary-class classification case.

FIGURE 8. Confusion matrices of the proposed method for the multi-class classification case.

those of related methods. Below we show some perfor-
mance results generated during the early stage of our
investigation to reveal the reason for choosing such inte-
gration. Table 9 shows performance results of various
combinations of different schemes, including XGBoost
alone, AE+XGBoost, DAE+XGBoost, DAE+SMOTE+
T-Link+XGBoost, DAE+SMOTE+T-Link+RF, and AE+
SMOTE+T-Link+XGBoost, based on the Electra Mod-
bus and S7Comm datasets for the anomaly classification.
Note that like the methods proposed in [9], the integrated
methods shown in Table 9 use the test data undergoing the

process of redundancy removal. This is because the methods
developed in our early investigation stage follow the practice
of the existing methods proposed in [9]. Therefore, the results
in Table 9 are a little different from those shown in Table 8.
According to our previous research [41], we know that

AE and RF are insensitive to imbalanced data and thus can
deal with them properly. DAE and XGBoost are advanced
schemes related to AE and RF, respectively. By performance
results shown in Table 9, we further know that DAE and
XGBoost can even achieve a little better performance than
AE and RF. In practice, XGBoost alone can achieve very
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TABLE 9. Performance results for different methods integrating various
schemes.

good performance. In addition to XGBoost, using DAE can
improve the performance a little. Furthermore, additionally
using SMOTE and T-Link can still improve the performance,
although the improvement is not very significant. There-
fore, the proposed method adopts the integration of DAE,
SMOTE, T-Link, and XGBoost for detecting and classifying
anomalies.

VI. CONCLUSION AND FUTURE WORK
An ICS anomaly detection and classification method is pro-
posed in this paper to detect and classify anomalies based on
network traffic data of industrial field protocols like Modbus
and S7Comm. The proposed method uses the DAE, SMOTE,
T-Link, and XGBoost mechanisms to achieve good detection
and classification performance. The Electra dataset is used
to evaluate the performance of the proposed method, and
the performance evaluation results are compared with those
of related methods, such as SVM, OCSVM, RF, IF, NN,
and GAN+DNN. The proposed method achieves the highest
(100%) precision, recall and F1-score for the case of binary-
class classification. It also achieves very high performance
for the case of multi-class classification.

Besides binary-class and multi-class classification perfor-
mance, this paper evaluates the convergence and time over-
head performance for the proposed method. The loss-epoch
curves of DAE and XGBoost training history are provided
to show the convergence of losses. The time overheads con-
sumed by the DAE, SMOTE, T-Link, and XGBoost mech-
anisms are also provided. However, this paper has a lim-
itation that it does not provide convergence analysis and
time complexity analysis for the proposed method. This is
because such analyses involve many factors, like tunable
hyperparameters and variant distributions of input data. Some
factors are even dynamically changing (e.g., adaptive learning
rates), unknown in advance or hard to model (e.g., input data
distributions).

The code implementing the proposed method is released
for public access through IEEE Code Ocean to facilitate read-
ers to apply the method to real world cases. The effectiveness
of the proposed method has been validated by the Electra

dataset that is based on the Modbus and the S7Comm proto-
cols. The two protocols are used or supported by many preva-
lent ICS devices and systems. For example, most SCADA
systems support the Modbus protocol, and numerous PLC
devices support the S7Comm protocol. The proposed method
is thus suitable for detecting and/or classifying anomalies
in practical ICSs adopting such SCADA systems and PLC
devices.

In addition to the Electra dataset, many datasets related
to ICS security are available publicly. Typical ICS secu-
rity datasets include the secure water treatment (SWaT)
dataset [42], water distribution (WADI) dataset [43], elec-
tric power and intelligent control (EPIC) dataset [44], gas
pipeline dataset [45], power system dataset [46], water stor-
age dataset [47], and power grid dataset [48], etc. The datasets
are associated with different scenarios, applications, com-
munication protocols, data features, and classes of attacks
(or anomalies). For example, the protocols related to the
datasets are the Common Industrial Protocol (CIP), Ether-
Net/IP, IEC 61850, Remote Terminal Unit (RTU) serial com-
munications, and Distributed Network Protocol 3 (DNP3).
Possible attacks considered are the altering sensor reading
attack, relay trip command injection attack, disabling relay
function attack, denial of service (DoS) attack, ARP spoof-
ing attack, evil twin attack, reconnaissance attack, command
injection attacks (e.g., the address scan, function scan, and
illegal setpoint attacks in the gas pipeline dataset, as well as
the state command injection, parameter command injection,
and function command injection attacks in the water storage
dataset), and data/response injection attacks (e.g., the neg-
ative value, burst values, fast change, single data injection,
slow change, value wave injection, and setpoint value injec-
tion attacks in the gas pipeline dataset, alongwith the negative
level, above high setpoint, below low setpoint, random, and
replay attacks in the water storage dataset, as well as the
naïve malicious response injection, and complex malicious
response injection in the water storage dataset). Possible data
features are the phase current magnitude measured at each
relay, relay status for each relay, snort alert status for each
relay, and control panel remote trip status in the power system
dataset, and command address, response address, command
memory, response memory, commandmemory count, control
mode, control scheme, subfunction code, command packet
length, response packet length, and time interval between
two packets in the water storage dataset, as well as electrical
pulses of junctions in the power grid dataset.

Due to the differences in scenarios, applications, commu-
nication protocols, data features, and classes of attacks of the
above-mentioned datasets, it may take considerable efforts
to adapt the proposed method for applying it to the datasets.
However, we still plan to apply the proposed method to the
above-mentioned datasets for verifying the effectiveness and
the applicability of the method. In practice, we will first apply
the proposed method to the water storage dataset [47], as the
dataset adopts the Modbus protocol, which is also adopted
by the Electra dataset, and has similar data features and
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attack labels, such as response injection attacks and command
injection attacks, to those of the Electra dataset.

Although the proposed method achieves the highest per-
formance in ICS anomaly detection and very high perfor-
mance in ICS anomaly classification, there are factors that
may degrade its performance, especially for the anomaly
classification case. One factor is that small class sizes may
degrade the performance even if the oversampling mecha-
nism is employed. We are planning to use few-shot meta
learning mechanisms [49], [50] to mitigate the effect of this
factor on performance. Another factor is that some anoma-
lies or attacks may have very similar patterns in a single
packet sample so that a class is misclassified as another
class. For example, many read-attack samples in the Electra
Modbus dataset are misclassified as replay-attack samples
due to the fact that read-attack and replay-attack samples have
similar patterns in network traffic, a fact already observed
in [9]. Since many specific and contiguous packets usually
precede a certain attack, it is useful to analyze a bunch of
packets within a time window for detecting and classify-
ing anomalies related to attacks. In the future, we plan to
use recurrent neural network (RNN) [51] models, such as
the long short-term memory (LSTM) neural network [52]
and the gated recurrent unit (GRU) neural network [53] to
extract feature from sequential packets to help distinguish
attacks having similar patterns in a single packet sample.
The negative effect of the second factor on performance may
thus become milder. Moreover, we also plan to apply other

potential methods to the Electra dataset for possible improve-
ment of the multi-class classification performance. The
potential methods are exemplified by the cost-sensitive deci-
sion tree, roughly balanced bagging, random oversampling
bagging, random undersampling bagging, synthetic minority
oversampling bagging, random undersampling boosting, and
synthetic minority oversampling boosting methods that are
investigated in [48].

We have noticed that a related paper [54] address-
ing the problem that machine learning models become
ineffective when facing evasion attacks, a special type of
adversarial attacks. Attackers launch evasion attacks by delib-
erately crafting fake data that are misclassified by machining
learning anomaly detection methods for reaching industrial
devices to disrupt ICS processes. Fortunately, the DAE can
defend against adversarial attacks, as suggested by Mahfuz
in [55]. The proposedmethodmay somewhat resist to evasion
attacks, since it integrates the DAE. In the future, we plan
to investigate adversarial attacks and improve the proposed
method so that it is less vulnerable to such attacks.

APPENDIX A
ILLUSTRATION OF A TEST DATUM GOING THROUGH
DATA PREPROCESSING, DAE PROCESSING,
AND XGBoost PROCESSING
The following shows a running example of a test data item
from the Electra S7Comm dataset going through data prepro-
cessing, DAE processing, and XGBoost processing.
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