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ABSTRACT We propose finite-difference time-domain (FDTD) modeling suitable for healthy skin, basal
cell carcinoma, dysplastic pigmentary nevus, and non-dysplastic pigmentary nevus in the frequency range
of 0.25 THz to 1.05 THz. Toward this purpose, we utilize the complex-conjugate pole-residue (CCPR)
dispersion model, because it is very simple to extract the accurate CCPR coefficients using the powerful
vector fitting tool. In the FDTDmethod, it is of great importance to check the numerical stability conditions.
If the coefficients extracted through the vector fitting tool do not satisfy the numerical stability conditions,
the particle swarm optimization (PSO) algorithm is employed to obtain the accurate and numerically stable
coefficients. Numerical examples are provided to validate our proposed FDTD modeling.

INDEX TERMS Dispersionmodel, dispersivemedia, finite-difference time-domain (FDTD)method, human
skin tissues, terahertz (THz).

I. INTRODUCTION
In the case of basal cell carcinoma, which accounts for 75%
of all skin cancers, the incidence in Europe is increasing by
5.5% per year in recent years [1], [2]. In addition, malig-
nant melanoma, which evolves from dysplastic pigmentary
nevus, accounts for 3% of skin cancers, and has gradually
increased since the 1960s, with nearly 96,000 new cases in
2019 [3]. Early detection of these skin cancers is impor-
tant because they have high metastasis and poor progno-
sis. Terahertz (THz) imaging technology for diagnosing skin
cancer has been actively studied. Note that THz radiation
is non-hazardous since it is non-ionizing and low average
power for THz imaging is usually used [4]. THz imaging
technology of skin cancer can differentiate healthy skin tis-
sues and diseased skin tissues [5], [6]. For example, a THz
pulsed system was used to image basal cell carcinoma ex
vivo for total 21 samples [7]. When basal cell carcinoma and
normal tissues are compared, basal cell carcinoma has much
higher absorption at THz. Therefore, the regions of basal cell
carcinoma marked by THz pulsed imaging systems have a
high correlationwith histology. In addition, THz radiation can
be harnessed for cancer treatment because of its interaction
with cellular components [8], [9]. Numerical methods are
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highly required to accurately analyze electromagnetic wave
interaction with various human tissues in THz band.

Among many methods in computational electromagnet-
ics [10]–[15], the finite-difference time-domain (FDTD)
method has been widely used to analyze various electromag-
netic wave problems due to its simplicity, robustness, and
accuracy [16]–[26]. In addition, a wideband response can
be obtained with a single time domain analysis. The FDTD
method has been successfully used to analyze complex dis-
persive medium. Various dispersion models such as Debye,
Drude, Lorentz, complex-conjugate pole-residue (CCPR),
quadratic complex rational function (QCRF), and modified
Lorentz (mLor) [27]–[38] have been introduced so far to
examine electromagnetic wave interaction with dispersive
media. The Debye dispersion model has been widely used for
the dispersion modeling of human tissues and it was success-
fully used for healthy skin and basal cell carcinoma tissues
in THz band [39]–[41]. In this work, the CCPR dispersion
model is employed because it is a more general dispersion
model of theDebye, Lorentz, andDrudemodels. Note that the
Debye model requires one term per one pole, where both pole
and residuemust be real-valued and the CCPRmodel requires
two terms (conjugate pairs) per one pole. However, the CCPR
model has a higher degree of freedom than the Debye model
because both pole and residue can have nonzero real and
imaginary parts simultaneously, which indicating that fewer
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poles are required for the CCPRmodel than the Debye model
to have the same modeling accuracy. In addition, the sum
of CCPR two terms cancels out the imaginary parts due to
the complex conjugate property and thus FDTD computa-
tional operation can be reduced. Therefore, the computational
efficiency of CCPR-based FDTD simulations is significantly
enhanced than Debye-based FDTD simulations owing to
the higher degree of freedom and complex-conjugate prop-
erty [33], [36]–[38]. In addition, the CCPR parameters of
dispersive media can be simply obtained by the powerful
vector fitting tool [42]. Based on the CCPR dispersion model,
we present an accurate FDTD modeling of four different
types of human skin tissues such as healthy skin [39]–[41],
[43], [44], basal cell carcinoma [39]–[41], [44], dysplastic
pigmentary nevus [43], [44], and non-dysplastic pigmentary
nevus [43], [44] in the THz range of 0.25 THz to 1.05 THz.

Due to the explicit solution of the time-dependentMaxwell
curl equations, the FDTD simulation is conditionally sta-
ble [45], [46]. Therefore, it is very important to investigate
the numerical stability conditions of dispersive FDTD mod-
eling developed in this work. It must be checked whether
the extracted CCPR coefficients satisfy the numerical stabil-
ity conditions of the CCPR-FDTD formulation [47]. When
the extracted CCPR parameters are not numerically stable,
we employ the particle swarm optimization (PSO) algo-
rithm [48], [49] to derive the CCPR parameters that satisfy the
numerical stability conditions. This additional procedure can
guarantee accurate and numerically stable FDTD modeling
of human skin tissues. Numerical examples are employed to
validate our proposed FDTD modeling for the four human
skin tissues in the frequency of interest.

II. METHODOLOGY
Assuming an ejωt time dependence, the relative permittivity
of the CCPR dispersion model [33] can be expressed as

εr (ω) = εr,∞ +
M∑
q=1

(
rq

jω − pq
+

r∗q
jω − p∗q

)
(1)

where εr,∞ is the relative permittivity at the infinite fre-
quency, pq (rad/s) and rq (rad/s) denote the pole and residue
of the CCPRmodel, respectively,M is the total number of the
CCPR pairs, and ∗ means the complex conjugate.
As alluded previously, the aim of this work is to develop

accurate and stable FDTD dispersion modeling to perform
electromagnetic wave analysis on various human skin tissues.
First, FDTD dispersion modeling is based on the measure-
ment data. When the measurement data are expressed as
refractive index n(ω) and absorption coefficient α(ω), they
should be converted to the real part and the imaginary part of
the relative permittivity using the following relations:

ε′r (ω) = n2(ω)− K 2(ω) (2)

ε′′r (ω) = 2n(ω)K (ω) (3)

where K is the extinction coefficient, defined as [50]

K (ω) =
α(ω)c0
2ω

(4)

and c0 is the speed of light in free space, c0 = 1/
√
µ0ε0.

Next, the CCPR coefficients are extracted using the simple
and powerful vector fitting tool [42]. The vector fitting tool
can robustly provide rational function approximations for the
measured values in the frequency domain because it does not
fail for poorly selected initial guess. In addition, it is very easy
to implement in a computer program with the aid of standard
software packages which are used to solve matrix problems.

Note that even if the dynamic stability condition is satis-
fied, the numerical stability conditions may not be satisfied,
since the discretization in both space and time domains is not
considered in the dynamic stability condition [45], [51]. The
dynamic stability condition for the CCPR dispersion model
is Re(p) ≤ 0, which can lead to stable and causal εr (ω) [33].
After utilizing this vector fitting tool, in this work, we check
whether the derived CCPR parameters satisfy the numerical
stability conditions [47]:

Re(p) ≤ 0,Re(r) ≥ 0,Q ≥ 0, ν2 ≤ 1 (5)

where

Q = 2Re(p)Re(rp∗)− |p|2Re(r)

ν2 = (c01t)2
∑

α=x,y,z

sin2(k̃α1α/2)
(1α)2

.

In above, 1t is the FDTD time step size, 1α is the FDTD
space step size, and k̃α denotes the numerical wavenumber
in the α direction [47]. In the numerical stability analy-
sis, sin2(k̃α1α/2) is set as one for all possible numerical
wavenumbers. Note that the above four numerical stability
conditions are derived by the von Neumann method with the
Routh-Hurwitz (R-H) criterion [27] and details can be found
in [47]. The first numerical stability condition can be inferred
from the dynamic stability condition and the last numerical
stability condition is exactly same as the standard Courant–
Friedrichs–Lewy (CFL) condition [52], [53].

In this work, if the CCPR parameters do not satisfy the
above numerical stability conditions, the PSO algorithm
[48], [49] is performed to extract the numerically stable coef-
ficients. The PSO algorithm is one of the most popular opti-
mization algorithms, which was developed with ideas from
social behavior patterns of bee, bird, and fish groups. The
PSO algorithm uses groups of particles called swarms and
these particles navigate through the search space. Because
each particle knows where it has moved before, it remembers
the location with the most optimal fitness (pBest) among the
positions it has passed, and shares the position with the best
fitness in the swarm (gBest). By repeating this procedure,
an optimal solution with the best fitness can be derived. In the
PSO algorithm, the next position of each particle can be found
from the following equation [49]:

vi+1n = vin + c1 · rand() · (pBest
i
n − x

i
n)
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FIGURE 1. Flow chart for the proposed CCPR-FDTD dispersion modeling.

+c2 · rand() · (gBestin − x
i
n) (6)

x i+1n = x in + v
i+1
n (7)

where vi+1n is the velocity of particle n at iteration i + 1,
x in is the current position of particle n at iteration i, and
rand() is a random number between 0 and 1. Also, c1 is the
cognitive parameter and represents confidence of particle in
itself, and c2 is the social parameter and denotes confidence
of particle in its neighbors. These two parameters control the
overall velocity of particle. When the value of the velocity
is too large, particle may pass the position of the optimal
solution, and when the velocity is too small, it may not be
able to sufficiently explore the solution space. Therefore, the
selection of the appropriate values of c1 and c2 is required.
In this work, the fitness is defined as the inverse of root mean
square relative error (RMSRE):

RMSRE =

√√√√ 1
N

N∑
n=1

∣∣∣∣ ε̃r (ωn)− εr (ωn)εr (ωn)

∣∣∣∣2 (8)

where N means the number of sampling frequencies, and ε̃r
and εr indicate the curve-fitted data and the measurement
data, respectively. In the conventional PSO algorithm, an opti-
mal solution is derived such that it leads to the best fitness.

TABLE 1. Numerically stable parameters of the CCPR dispersion model
for healthy skin and basal cell carcinoma.

In this work, an additional process is performed to extract
the CCPR coefficients that satisfy the numerical stability con-
ditions. In specific, when the CCPR coefficients are numer-
ically unstable, we intentionally set the fitness value as a
very small number so that the particles of the PSO algorithm
can escape from the numerically unstable CCPR coefficients
and find the new optimal CCPR coefficients that satisfy the
numerical stability conditions. Fig. 1 shows the flow chart for
CCPR-FDTD dispersion modeling developed in this work.

III. NUMERICAL EXAMPLES
Asmentioned previously, we consider healthy skin, basal cell
carcinoma, dysplastic pigmentary nevus, and non-dysplastic
pigmentary nevus. The measurement data for refractive index
n(ω) and absorption coefficient α(ω) in the frequency range
of 0.25 THz to 1.05 THz can be found in [44].

A. HEALTHY SKIN AND BASAL CELL CARCINOMA
First, we extract the parameters of the CCPR dispersion
model for healthy skin and basal cell carcinoma by utilizing
the powerful vector fitting technique only, as the conventional
approach. Let us address the total CCPR pairs number (M ).
As the number of poles increases, the computational effi-
ciency of the FDTD simulation decreases. In this work, the
number of CCPR terms is determined when its RMSRE
is equal to or less than 3% while gradually increasing the
number of CCPR terms. The resulting CCPR parameters are
listed in Table 1. It is confirmed that these extracted CCPR
coefficients satisfy the numerical stability conditions of (5)
as long as the FDTD time step size is limited by the CFL
condition. Fig. 2 shows the complex relative permittivity of
the CCPR dispersion model (solid red line) and measurement
data (black dots) for healthy skin tissues. It is found out that
the maximum error between the measured data and the fitted
data is 4.7% and the RMSRE over the whole range of interest
frequencies is 1.81%. The measured data and fitted data for
basal cell carcinoma tissues are shown in Fig. 3 and its maxi-
mum error and the RMSRE are 2.5% and 1.3%, respectively.
The numerically stable coefficients of the CCPR model can
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FIGURE 2. Complex relative permittivity of healthy skin. (a) Real part.
(b) Imaginary part.

FIGURE 3. Complex relative permittivity of basal cell carcinoma. (a) Real
part. (b) Imaginary part.

be accurately derived by employing only the powerful vector
fitting tool for healthy skin and basal cell carcinoma.

B. DYSPLASTIC PIGMENTARY NEVUS AND
NON-DYSPLASTIC PIGMENTARY NEVUS
For dysplastic pigmentary nevus and non-dysplastic pigmen-
tary nevus, it is found out that the CCPR parameters that
satisfy the numerical stability conditions of (5) cannot be
obtained by using the vector fitting tool only, different from
the previous two skin tissues. To illustrate this, we first extract
CCPR dispersion modeling of dysplastic pigmentary nevus
by utilizing only the vector fitting tool. The resulting CCPR
parameters are listed in Table 2. Fig. 4 shows that the CCPR
parameters agree well with the measurement data and its
RMSRE is 1.78%. Albeit with good accuracy, this CCPR dis-
persionmodeling cannot be employed for the electromagnetic
analysis of dysplastic pigmentary nevus due to numerical
instability, which will be shown later.

Next, the CCPR parameters are extracted by using the
vector fitting tool and the PSO algorithm simultaneously.
In this work, we set the maximum number of iteration as
30, and the swarm size as 8000 for the PSO algorithm. Also,
the number of independent trials is set to 30, and since the
best RMSRE is derived when the cognitive parameter c1 and
the social parameter c2 are 2, respectively, these values are
used in this work. As mentioned previously, when the CCPR
coefficients do not satisfy the numerical stability conditions,
we deliberately set the fitness as a very small value. Table 3
shows the CCPR parameters for dysplastic pigmentary nevus
and non-dysplastic pigmentary nevus by employing our pro-
posed technique. Fig. 5 shows the measurement data (black
dots) and the complex permittivity fitted through the CCPR
dispersion model (red solid line) for dysplastic pigmentary

TABLE 2. Numerically unstable CCPR parameters for dysplastic
pigmentary nevus using the vector fitting tool only.

FIGURE 4. Complex relative permittivity of dysplastic pigmentary nevus
fitted through only the vector fitting tool. (a) Real part. (b) Imaginary part.

nevus. The maximum error of the fitted data against the
measured data for dysplastic pigmentary nevus is 4.9% and
the RMSRE over the whole frequencies is 2.05%. The plot
of the measurement data of non-dysplastic pigmentary nevus
and its fitted complex permittivity is shown in Fig. 6. It is
observed that its maximum error and the RMSRE are 4.13%
and 2.17%, respectively.

Now, we perform actual FDTD simulations to investigate
numerical stability of CCPR-FDTD modelings. For sim-
plicity (without loss of generality), one-dimensional (1-D)
electromagnetic analysis for dysplastic pigmentary nevus is
considered as shown in Fig. 7. In the FDTD simulations,
the time step size 1t = Cn1z/c0 and the Courant number
Cn = 0.99 [52], [53] are employed and the FDTD grid
size of 1z = 1.1µm is used. Note that the FDTD grid
size is chosen such that the point per wavelength (PPW)
is larger than 100 for the smallest wavelength in the fre-
quency range of interest. The whole computational domain
consists of 2000 FDTD cells with 1000 FDTD cells of the
free space and the other 1000 FDTD cells of dysplastic
pigmentary nevus. The sinewave-modulated Gaussian pulse
with x-polarization is excited in the free space and denoted as

Mx(t) = sin(2π f0t)e
−

(t−t0)
2

t2w (9)

where f0 is the center frequency, t0 is the time delay, and tw is
the half width of the pulse. In this work, f0 = 0.65 THz, t0 =
4.43 ps, and tw = 1.48 ps to consider the frequency range of
interest. Also, the 10 layers of perfectly matched layer (PML)
are used for the absorbing boundary condition [16]. Fig. 8(a)
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TABLE 3. Numerically stable parameters of the CCPR dispersion model
for dysplastic pigmentary nevus and non-dysplastic pigmentary nevus
extracted using the vector fitting tool and the PSO algorithm
simultaneously.

FIGURE 5. Complex relative permittivity of dysplastic pigmentary nevus
fitted through the vector fitting tool and the PSO algorithm
simultaneously. (a) Real part of complex permittivity. (b) Imaginary part
of complex permittivity.

shows Ex at the discontinuity interface when the numerically
unstable CCPR parameters (Table 2) are used. As expected
from our previous observation, the FDTD simulation suffers
from numerical instability, although the CCPR parameters
are in good agreement with the measurement data. Fig. 8(b)
shows the Ex counterpart for the numerically stable CCPR
parameters (Table 3) are used. Numerical stability is observed
since the CCPR parameters satisfy the numerical stability
conditions of (5).

Next, we investigate the reflection coefficient for numer-
ically stable CCPR-FDTD simulations for four different
human skin tissues. FDTD simulation results for four human
skin tissues and the theoretical results [44] are in good
agreement with each other. The RMSRE for the reflec-
tion coefficients of the four types of skin tissues is 2.21%
(healthy skin), 1.73% (basal cell carcinoma), 2.1% (dys-
plastic pigmentary nevus), and 1.68% (non-dysplastic pig-
mentary nevus). The amplitude and phase of the reflection
coefficients change with the frequency. The amplitude of the

FIGURE 6. Complex relative permittivity of non-dysplastic pigmentary
nevus fitted through the vector fitting tool and the PSO algorithm
simultaneously. (a) Real part of complex permittivity. (b) Imaginary part
of complex permittivity.

FIGURE 7. FDTD simulation setup.

FIGURE 8. 1-D FDTD simulation results for dysplastic pigmentary nevus.
(a) Unstable CCPR-FDTD. (b) Stable CCPR-FDTD.

FIGURE 9. Reflection coefficient for four human skin tissues. (a) Healthy
skin. (b) Basal cell carcinoma (c) Dysplastic pigmentary nevus
(d) Non-dysplastic pigmentary nevus.

reflection coefficient is inversely proportional to the fre-
quency in 0.25 THz - 0.75 THz and the phase of the reflec-
tion coefficient is generally proportional to the frequency.
The electromagnetic response depends on the skin tissue
type. It is clearly observed that the amplitude slope (versus
the frequency) of healthy skin tissue is the steepest and its
phase slope (versus the frequency) is the flattest among four
human tissues. Our proposed FDTD dispersion modeling of
human skin tissues can be used to understand electromag-
netic phenomena of human skin tissues and provide in-depth
foundation for systematic development of THz imaging tech-
nology as well as THz therapeutics. For example, the optimal
system parameters such as the operating frequency and the
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bandwidth can be found by various numerical simulations
based on our FDTD modeling. In addition, our work can
be useful for studying THz tumor diagnosis methodology
such as the Cole-Cole diagram [43], [44] and its principal
component analysis [43].

IV. CONCLUDING REMARKS
In the previous works [39]–[41], FDTD dispersion modeling
was presented for healthy skin and basal cell carcinoma tis-
sues but there is no literature for dysplastic pigmentary nevus
and non-dysplastic pigmentary nevus. In this work, we have
proposed accurate and robust FDTD modeling for healthy
skin, basal cell carcinoma, dysplastic pigmentary nevus, and
non-dysplastic pigmentary nevus. For accurate FDTD mod-
eling of various human skin tissues, we employ the CCPR
dispersion model since accurate CCPR parameters can be
simply extracted by utilizing the vector fitting tool. First, the
coefficients of the CCPR dispersion model for four different
skin tissues are extracted using the vector fitting tool. Then,
it is checked whether the extracted coefficients satisfy the
numerical stability conditions or not. If the parameters are
not numerically stable, the PSO algorithm is employed to
obtain the numerically stable and accurate CCPR coeffi-
cients. It should be noted that, in this work, the numerical
stability conditions are merged into the PSO algorithm so that
the extracted CCPR coefficients can lead to numerical stable
FDTD analysis. For healthy skin and basal cell carcinoma,
the vector fitting tool is enough to extract the numerically
stable CCPR coefficients and the RMSREs are less than
2%. On the other hand, the vector fitting tool and the PSO
algorithm should be employed simultaneously for dysplastic
pigmentary nevus and non-dysplastic pigmentary nevus to
obtain accurate and robust FDTD dispersion modeling. It is
observed that the RMSRE for dysplastic pigmentary nevus
is 2.05% and the RMSRE for non-dysplastic pigmentary
nevus is 2.17%. Actual FDTD simulations are performed
to validate CCPR-FDTD modeling developed in this work.
Although our accurate and robust FDTD dispersion model is
applied for the CCPR dispersionmodel of various human skin
tissues, it can be easily extended to other dispersion model of
general complex dispersive media in a similar fashion. In the
future, more practical 3-D examples for skin cancers will be
conducted, similar to breast cancer examples [26].
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