
Received March 9, 2022, accepted April 8, 2022, date of publication April 18, 2022, date of current version April 27, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3168000

Stepwise Verification for the BPMN With Timed
and Stochastic Process Using a Colored
Generalized Stochastic Petri Net
C. DECHSUPA , W. VATANAWOOD , AND A. THONGTAK
Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Corresponding author: W. Vatanawood (wiwat@chula.ac.th)

The work of C. Dechsupa was supported by the Postdoctoral Fellowship (Ratchadaphiseksomphot Endowment Fund) of Chulalongkorn
University.

ABSTRACT Internet of Things (IoT) technologies have been increasingly developed for real-time applica-
tion in manufacturing processes to address heterogeneous devices and software effectively. Although almost
all activities in a manufacturing process can perform an action when data objects arrive at the activity,
physical devices or activities have process involving the operation of chance over time and probabilistic
function for proceeding with their operations. Therefore, the formal verification of an IoT process design
model have to consider the timed constraints, probabilistic tasks and dependencies between activities. This
paper proposes a quantitative verification approach for analyzing and optimizing IoT manufacturing design
models that are designed in business process model and notation (BPMN) representation. The transformation
rules of BPMN element into the colored generalized stochastic Petri net (CGSPN) are proposed, and the
stepwise approaches for refining and verifying the components of the CGSPN models are illustrated. Our
framework helps the designers to automate the CGSPN model and to localize the operational gaps, time and
flaws of the process manufacturing models.

INDEX TERMS Formal verification, colored generalized stochastic Petri net, timed and stochastic process,
process manufacturing model, BPMN.

I. INTRODUCTION
The existing process manufacturing may be composed of
many devices and individual machine systems. The load
balancing control and some manufacturing operations are
performed by the human (system control operators), which
some process works on time constraints [1], probabilistic
rules [2] and events. These manners result in the operational
gaps, time and flaws of the process manufacturing control.
To redesign the existing system, the stakeholders have to
learn the existing system firstly, and to analyse and verify the
designed model in order to make sure that the system to-be
with an applying can reduce the operational gaps, time and
flaws.

Communications and web service technologies [3] in the
IoT provide opportunities for enhancing an existing process
manufacturing system with integrated subsystems, physical
devices or things and with real-time monitoring and control.

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Nardone .

IoT process manufacturing models include three clusters:
the controller, IoT embedded software, and physical devices.
Business process modeling notation or BPMN [4] can be
used to design themiddleware alongwith logical data, control
flows and time constraints. The BPMNmiddleware describes
the part of controller behaviors like the IoT service orchestra-
tion. It also acts as the IoT controller managing the interac-
tions between the physical devices or between the physical
devices and the software applications. The physical devices
have an embedded software that is responsible for controlling
the machines.

To analyze the performance of the IoT process manufac-
turing models, we must consider all three clusters of an IoT
manufacturing model. A state transition of an activity in each
cluster not only depends on data but also relies on delay,
latency transition or random variables indexed by the time
parameters. Each part of the BPMN IoT process manufac-
turing models quite involve various control flows and time
constraints. These dependencies seem to be a complicated
design that cannot be verified uprightly by using ordinary

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 42983

https://orcid.org/0000-0001-8441-8962
https://orcid.org/0000-0003-0457-3474
https://orcid.org/0000-0001-7353-7528
https://orcid.org/0000-0003-4938-9216

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

software testing techniques or cannot be verified straight-
forwardly by using model checking techniques. Quantitative
verification [5] using model checking techniques are a cum-
bersome procedure for the modelers. They have to create the
formal model in the specific formal language and determine
the corresponding time function for each state transition in the
IOT process manufacturing models. Moreover, the modelers
are required to understand a model checking tool, and model
verification technique.

This paper proposes a methodology to help the IoT sys-
tem designers design and verify the time and stochastic
BPMN manufacturing models. The proposed methodology
addresses the model abstraction process by providing the
BPMN transformation rules and transformation framework
to automate the CGSPN model [6], [7] which the CGSPN
elements come from the extended BPMN time properties.
The proposed framework is validated by analyzing and local-
izing the process behaviors of the obtained CGSPN models
in Snoopy [33].

The organization of this paper is as follows. Section II
reviews the related researches. Section III describes the back-
ground of IoT process manufacturing model. section IV dis-
cusses methodology and the proposed stepwise verification
framework, and section V illustrates the implementation and
validation with case studies and Section VI is the study’s
conclusion.

II. LITERATURE REVIEW
Due to the increased capabilities of software verification
tools, formal verification using model checking [8] has
increasingly been applied in computer and software engineer-
ing in the last decade. Qualitative verification is a valuable
strategy for establishing reliability and validity for software
design and development, and quantitative verification is no
less important from an optimization perspective. The nature
of manufacturing systems includes heterogeneous resources.
The production process is complicated and may face verifi-
cation problems. However, the shortcoming can be addressed
by explaining and analyzing the manufacturing system in a
high-level Petri net.

El Mehdi et al. [9] provided an analysis of the reliability of
a repairable system using a deterministic and stochastic Petri
net (DSPN). The use of the DSPN is unpractical for modeling
the production system because it is not allowed to consider
the steady state with the marking enabling multiple transi-
tions. Peter Denno et al. [10] presented dynamic production
identification using a colored Petri net and genetic program-
ming (GA) [11] to offer the model of a smart manufacturing
system. The objectives of this paper were to analyze and
optimize the manufacturing system by developing a method
and solution for the recommendation of an accurate model
from the log operation content. This technique is appropriate
for analyzing a dynamic production of the process manufac-
turing that relates to the production line balancing and queue-
ing management. These authors checked the correctness of
the obtained solution by using a SPN and a probabilistic

Petri net [12]. In place of Petri net model automation by using
the system logs, we automated a CGSPN model from the
existing BPMN process models and represented the part of
individual machine systems and their controllers separately
as well. Zhang et al. [13] proposed an approach to enhance
the performance of the shop-floor planning, execution and
control of IoT real-time production. The authors used a hier-
archical timed-colored Petri net (HTCPN) [14] to present an
analysis module and analyze the interactions and the sensor
data objects and used a decision tree (DT) [15] to identify
the exceptions of production performance. The exception
information derived from the DT-based exception extraction
was important for system recovering andmaintaining the pro-
duction efficiency. The outcome of this work was a dynamic
decision support systemmodel that can be integrated with the
real-time scheduling system. Although the proposed HTCPN
models advocate multi-level event analysis, the behaviors of
physical system and controller were not represented sepa-
rately. We apply the multi-level model technique and capabil-
ity of color relations for the topology arrangement as themulti
individual representations, and represent the formal model by
using CGSPN instead of HTCPN. Zhang et al. [16] presented
a CPN-based prototype for monitoring and controlling the
real-time sensor of a shop flow. The proposed technique is
appropriate to manage and configure the multiple sensors.
The application services of prototype are readable, and they
run based on the heterogeneous sensors sent from the actual
devices.

Zhou et al. [17] provided the stochastic timed Petri nets-
based framework to analyze the emergency healthcare sys-
tems. The advantage of this work is that their implementation
on STPN tool supports non-Markovian transition firing times
and non-deterministic transition firing, supporting all timed
transition firing policies and server types. The framework
comes along with the simulation engine, STPN editor and
components of configurator and resources repository. The
authors should extend the STPN editor, and implement a
function that allows for transforming or importing the STPN
model generated from other modeling tools, in order to
describe a complex system and reducing the time consump-
tion of the STPN design process. Kheldoun et al. [18] pro-
posedthe formal semantics of BPMN using Petri net based
language, considering a subprocess, multiple instance, excep-
tion handling and data flow. Due to the limitation of high-
level Petri nets, the data manipulation on a data object cannot
be expressed and the actual data values cannot be considered.

Gharbi et al. [7] demonstrated the modeling and analysis
of the performance of a multiclass retrial system using a col-
ored stochastic Petri net (CSPN). TheCSPNmodel represents
several multi classes of customers and servers. The authors
experimented with random server discipline and fastest free
server discipline. This work shows a simple model, and the
colored functions of the model are not realistic. For sim-
ulating multipurpose plants, this article [19] provided an
approach to model the multipurpose plants by applying a
CSPN. The approach was used to show the shared resources

42984 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

and idle-time of the system. The objective of this work may
be quite viable for flexible plant configuration, but the authors
illustrated only a simplemodel with uncomplicated scenarios,
and they did not detail the color set mapping of the model
abstraction step. The work of [20] proposed the test case
generation of the BPEL model in which colored Petri and
the simple mapping rules are provided. But the mapping rules
cannot be applied in a real business because they are so simple
and they do not cope with BPEL fault handling.

The IoT manufacturing process involved in the cloud
technologies requires the model-based verification approach
of web service compositions. Domingos et al. [21] proposed
the analysis of variable context to monitor and detect the
changes in the values within the BPEL process by extending
the BPEL language. The proposed approach advocates IoT
data awareness for accessing IoT data objects to extract the
device’s behaviors, including the messaging of applications.
Mi et al. [22] proposed a reliability attribute and quantitative
verification for the BPEL specification. This was emphasized
in the web service invocation behavior by describing the
BPEL service composition in the Markov model, and the
probabilistic model checker tool Prism was used to prove it.
However, this work presented a simple case study.

Ana da Silva et al. [23] demonstrated that the Topol-
ogy and Orchestration Specification for Cloud Applica-
tions (TOSCA) standard [24] can be set up automatically
for Internet of Things environments. The authors showed the
deployment of IoT heterogeneous middleware by establish-
ing IoT environments using TOSCA, and the TOSCA model
can be reused without further modification.

The works of [21]–[23] did not focus on the verification of
IoT service integration; they only provided the solutions and
demonstrated that the web service orchestration paradigm can
be employed in IoT manufacturing. There are many research
studies [25]–[27] that have provided Petri net-based verifica-
tion approaches for modeling and analyzing the integration of
the web service orchestration specification, but they did not
consider the performance perspectives. In the model-based
development approach, the manufacturing process can be
modeled in terms of procedural logic using the semi-formal
model representation, such as in the work of [28].

There are many researches providing the qualitative ver-
ification approaches for the web service composition that
involves the probabilities. The work of [29] proposed the
probabilistic pre-computation from the software require-
ments as parameterized symbolic expressions. This work
is difficult to evaluate a set of symbolic expressions. The
works of [30]–[32] provided the web service composi-
tion techniques associated with both functional and non-
functional requirements. They classified the requirements of
web service interaction into functional and non-functional
requirements. Next, they implemented a tool supporting
the probabilistic hierarchical refinement using the seman-
tic principles according to the operational semantics of
WS-BPEL. Their techniques are comparable to those of stan-
dard qualitative verification. But our work is focused on

quantitative verification of the IoT manufacturing process
models designed based on existing resources. However, those
techniques can be applied for a qualitative verification of our
designed formal models in the part of the BPMN controller
model.

As in the cited related works, the use of the model check-
ing approach for analyzing the performance and control of
the IoT production process is an interesting paradigm for
manufacturers who are enhancing the existing system. Most
of them only provided qualitative verification. We aim to
provide a framework for modeling and quantitative analysis
by employing the CGSPN-based verification. Our techniques
will be a viable option for the modelers to abstract the system
model and demonstrate the system’s performance. The stock-
holders can use the verification’s results to make decisions
regarding the development plan, manufacturing configuration
and maintenance schedule.

III. BACKGROUND
A. A BPMN WITH TIMED AND STOCHASTIC PROCESS
IoT techniques generate viability in terms of process manu-
facturing in the supply chain management, real-time adjust-
ment, predictive maintenance and inventory management.
An example of the IoT process manufacturing, a dairy prod-
uct factory places sensor on every piece of production equip-
ment for inventory management and uses the IoT sensors to
monitor the temperature during milk pasteurization [34]. The
IoT also tracks howmany times a qualitative process has been
rechecked to influence the quality of finished dairy products
and so on.

The simplified IoT topology is composed of three main
layers [35], [36]: 1) the device layer has things with sensors
and actuators; 2) the connectivity layer includes the Internet
and gateway devices, including short-range wireless links,
Bluetooth, Wi-Fi, and a mix of wireless technologies; and
3) the data center and application layer contain data storage
and business applications of manufacturing. Microcontrollers
are used for fabricating things, with which modern microcon-
trollers can make the IoT capable of deep learning to respond
to the input data from devices and can send triggers to other
devices. All the physical events captured by the things are first
processed into information that wewant to store, and theywill
be sent to the data center through the networks.

IoT devices and associated services, applications and
manufacturing management processes are available for the
factory to consume the resources, for which the avail-
able functionalities may dynamically change over time.
To integrate the environment’s heterogeneous functionalities,
resources will be modeled as services. The heterogeneous
physical devices and software used in IoT process manufac-
turing can be designed by the design principles of service-
oriented architecture (SOA) [37]. There are many tools and
service orchestration languages [38] for specifying the IoT
service capabilities. They have a signature containing a set of
inputs and outputs, behavioral specifications, preconditions,
and postconditions. The capacity can also be orchestrated

VOLUME 10, 2022 42985

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 1. (a) Excerpt elements of BPMN, (b) BPMN use case scenario of the IoT milk pasteurization process.

by a IoT controler in a conversation called composite capa-
bilities or composite service [39]. Whereas IoT middleware
provides the services to software applications that use data for
automatic decision-making. One challenge of smart factory
design is how to measure the performance of production
process because the data used for decision-making depends
on the time and resources dependencies, and relies on ran-
dom variables over time. Optimizing production and on-time
resolution are difficult to evaluate for a process involving time
intervals.

Business process model notation is graphical standard
notation that comes along with many software modeling
tools. The core elements of BPMN are composed of con-
trol flows, data flows, events, and tasks. The modelers can
use BPMN to describe the IoT process diagram for more
sophisticated behavior comprising multiple tasks and events,
and these tasks may be executed simultaneously. Moreover,
the activity may be synchronized and require resources and
priorities to perform an execution. The determination of time
constraints and stochastic processes [40] of the IoT manufac-
turing processes design seem to be intricate fashion because
the BPMN time-events are not be designed for modeling a
time and stochastic process.

However, BPMN can be extended and applied to describe
the stochastic and timed process if it can store a time

property, so that the extension of the BPMN task and event
properties with time constraints is a crucial feature for this
work. Included an applying the BPMN conditional event, the
task operation specification based on certain conditions and
chance or random variables over time is applied. For example,
the arrival trigger data for the heating system depends on the
temperature, which is related to the time, the volume of raw
milk that pass in the holding tube, and the room temperature.
Thus, such trigger data are sent arbitrarily over time from the
controller to turn on or turn off the heating system. The core
elements of BPMN is shown in Figure 1(a) and the excerpt
BPMN specification of the milk pasteurization control is
shown in Figure 1(b).
Although the simulation mode of the BPMN designing

tool can validate the designed BPMN models, it cannot trace
the concurrent process execution and does not support the
performance analysis. Model checking [8] is one of formal
verification techniques that advocate the concurrent analysis
and performance analysis. In model checking process, a time
and stochastic BPMN process model are transformed into a
formal model written in specific formal language supporting
a performance analysis. The derived formal model represents
the process where tasks, control flows, events, and state tran-
sitions with times and uncertainties are quantified with oper-
ational semantics on the state transition that corresponds to

42986 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 2. An example of the excerpt CGSPN pasteurization process model that was designed by using Snoopy.

the BPMNmodel. The timed and stochastic transitions of the
obtained formal model are determined typically by the state
transition semantics decorated with delay-time, scheduled-
time and probabilistic weight, which these transitions can be
modified arbitrarily.

The obtained formal model can be verified from both qual-
itative and quantitative perspectives if the model inscriptions
are detailed adequately. In general, an event of the system
is a discrete event where the stochastic state occurs only at
an increasing sequence of random times. The current events
associated with ancestor events to trigger the next state are
called state transitions. Each state transition has a stochastic
mechanism or time function for determining the next state.
For analyzing the BPMN design model before implemen-
tation, there are many frameworks and tools [41]–[43] that
provide powerful composition features for modeling discrete-
event stochastic systems, which design with the building
blocks for the state transition expressions, event-scheduling
mechanisms, simulation mode, verification mode, and statis-
tical reports.

B. COLORED GENERALIZED STOCHASTIC PETRI NETS
(CGSPN)
The colored generalized stochastic Petri net [7], [44], [45] has
been shown to be an alternative formal model that is an appro-
priate representation for describing, verifying and analyzing
the performance of concurrent and synchronous systems. The
CGSPN is an extension of the stochastic Petri net (SPN) and
colored Petri net (CPN) [46] by the combination of the CPN
programing language and discrete-time Markov chain of the

SPN. The state transitions of the CGSPN model underlie
an event-scheduling mechanism or time function associated
with each transition. The transition firing may be probability
distribution values, delay, zero-delay and absolute points of
time.

The core elements of the CGSPN comprise the Place,
Transition, Arc and Inscription. The number of Tokens in the
place depends only on input and output incident functions
called arc inscriptions. Arcs terminating in open dots are used
to represent an inhibitor of transitions. a stochastic transition.
The immediate transition is the transition that is without a
time function or zero-delay because it rapidly fires the instant
it becomes enabled. The scheduled transition works under a
condition with absolute points of time, while the determin-
istic transition is the transition associated with delay-time.
Figure 2 shows an example of the CGSPN model designed
by using Snoopy [42].

The large size of a CGSPN model may result in a difficult
and error-prone analysis. The modelers can construct com-
pact models by using the advantages of parameterization and
restructuring of the model. The refinement in the hierarchical
structure [47] can alleviate the sophisticated behaviors and
avoid the state space explosion problem. Themodelers should
address the complicated behaviors of the components before
verification. However, this approach requires experiences
with partial and composite verification techniques to address
the tremendous number of system states.

Our reason for choosing CGSPN is that an optimization
stochastic control problem of the existing manufacturing pro-
cess fundamentally contains tasks with random behaviour

VOLUME 10, 2022 42987

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 3. Overview of the proposed stepwise verification process.

over time. Its occurrence colors, token colors and colors
relation are corresponding to the subscripted variables that
are defined by the functions attached to the arcs and corre-
sponding transitions. They are used for describing and rep-
resenting the properties of resources, things, and messages.
These advantages are relevant for building the system behav-
iors, the priority of the sensors, the message queue handling
and overriding policy, including the firing conditions of the
transitions.Moreover, we can build a formal model analogous
to the manufacturing process by using a CGSPN, whose
graphical process manufacturing model with the partitioning
clusters would reflect the better understanding.

Snoopy provides the animation mode and simulation mode
for analyzing the Petri net-based models. It supports the
hierarchy and color modeling concepts that are compact
and readable representations. Snoopy has been widely used
in many domains, such as biological science and computer
science. Quantitative verification with animation and sim-
ulation modes is an interesting feature because it provides
many functions to make verification easier. For qualitative
verification of a CGSPN model, the modelers can use tem-
poral logic to explore the undesirable properties, such as
deadlock, unreachable tasks, invariant and soundness proper-
ties [48]. Snoopy also provides the external analysis features:
Charlie [49], Marcie [33] and CPN tools. These features
include structural analysis, invariant checking, and explicit

computational tree logic (CTL) and linear temporal logic
(LTL) [50] model checking.

IV. TRANSFORMATION RULES AND FRAMEWORK
Our stepwise verification framework is shown in Figure 3.
The inputs of the process are the BPMN specification and
IoT device specification. We extended the CP4BPMN trans-
formation rules [52] to automate a formal model written in
the CGSPN XML format of Snoopy [33]. Next, the CGSPN
of IoT devices is created, and the inscriptions of the obtained
CGSPN models are refined if the BPMN model input are
detailed inadequately. Last, the performance analysis is per-
formed by using Snoopy. The extended BPMN transforma-
tion rules are in subsection A and the verification processes
are described in subsections B.

A. BPMN TRANSFORM RULES
We extended Eclipse BPMN2 modeler [51] to support the
configuration the time-processes for each Task or Event nota-
tion. Figure 4(a) shows the BPMN service task extended with
the scheduled time properties. The task information of BPMN
is shown in Figure 4(b), stored in XML format. The existing
transformation rules of [52] cannot be straightforwardly used
to transform BPMN models because a target model requires
the time transitions supporting a quantitative analysis. Thus,
we revise certain BPMN transformation rules and implement

42988 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 4. The extended BPMN task configuration and XML representation.

the BPMN transformation rules for time event and condi-
tional event notations. Due to space limitations, we describe
the part of the core extended BPMN transformation rules
for time task, time event and conditional event. We refer the
ordinary BPMN formal definition and transformation rules
defined in [52], [53] to create the extended transformation
rules. The additional formal definitions and the extended
transformation rules of the BPMN specification, and the
obtained CGSPN model are as follows.
Definition 1 (An Extended BPMN Process Model): A

BPMN model is a seventeen-tuple BP = (N, A, G, fGT, V_n,
V_a, F, F_x, E_start, E_end, L, M, eA, C, Tc, fA, fT) where
N is a finite set of nodes { event, task and gateway }.
A is a set of task and event, which is a sub-set of N;

(A ⊆ N).
G is a set of gateways, G ⊆ N.
fGT is a mapping function used to indicate the gateway

type, fGT: G→ {exclusive, inclusive, parallel, event-based}.
V_n is the name of task or gateway.
V_a is an operation of task.
F is a set of sequence flows (F ⊆ N × N).
F_x is a guard condition of gateway F→ F_x.
E_start is a set of start events, E_start ⊆ N.
E_end is a set of end events, E_end ⊆ N.
L is a set of swim-lane (If BPMN model is a process

diagram, L is an empty set).
M is a set of message flows that cross the swim-lane.
eA is a set of extended time BPMN nodes, eA ⊆ A. The

extended time BPMN nodes include the Task, Conditional,
Event notations along with the time property configuration.
For eai ⊆ eA, eai = (TName, Precon), where eai.TName
means the task name of eai described as a string expression.
eai.Precon means the task pre-condition of eai, which is
Boolean.
C is a set of conditional BPMN nodes.
Tc is a set of time constraints {General, Delay, Sched-

ule, Prob} where General is an original BPMN node and
the others are the extended time properties of the BPMN
node.

fA is a mapping function used to indicate a type of the
extended time BPMN node and the conditional BPMN node,
fA: eA→ Tc
fT is a labeling function used to indicate a time constraint

or probabilistic value configured, fT: (eA x Tc)→ time value.
Definition 2 (Colored Generalized Stochastic Petri Net

Model) A CGSPN model is a 10-tuple CGSPN = (P, T, fT,
fF, A, AI, 6, V, fC, fG, fE, fI) where:
P is a set of places.
T is a set of transitions such that P ∩ T = θ .
fT is a mapping function used to indicate the type of

transition fT: T → { Stochastic, Immediate, deterministic,
Scheduled }.
fF is a function that indicates the time function of a

transition. For each t ⊆ T, if fT(t) is Stochastic, the transi-
tion firing rate of t is the probability value or mathematical
function stored in a lookup table. If fT(t) is Immediate, the
timed function value of the transition is time zero. If fT(t) is
deterministic, the transition firing is dependent on a positive
amount. If fT(t) is Scheduled, the transition firing is rooted on
the periodic list of time.
A is a set of arcs, A ⊆ ((P × T) ∪ (T × P)).
AI is a set of inhibited arcs, AI ⊆ (P × T)
6 is a finite set of color sets.
V is a finite set of typed variables such that Type(v) ⊆ 6

for all variables v ⊆ V.
fC is a color function used to assign a color set to each

place, fC: P→ 6.
fG is a labeling function used to assign a guard to each

transition, fG: T→ conditional expression and Type(fG(t))=
Boolean such that t ⊆ T.
fE is an arc expression function used to assign an arc

expression to each arc, fE: A → arc expression such that
Type(fE(a))= fC (p), where p is the place connected to the arc
a. The arc expression may be a list of variables or conditional
expressions along with the lists of variables.
fI is an initialization function used to assign an initializa-

tion expression (initial marking) to each place, fI: P→ init
expression such that Type(fI(p))= fC (p) for all places p⊆ P.

VOLUME 10, 2022 42989

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

Definition 3 (A Hierarchical CGSPN Model): A hierarchi-
cal SCPN model is a tuple HCGSPN = (CGSPN, TS, PS)
where:
CGSPN is a set of non-hierarchical models.
TS is a set of macro nodes or macro transitions used as

agents of the subgraph CGSPN where CGSPN ∈ CGSPN.
PS is a set of interface places of the macro transitions.
The CGSPN structures obtained from the transformation

rules are called the CGSPN constructs. The extended transfor-
mation rules consist mainly of twelve rules, and the obtained
CGSPN constructs are shown in Figure 5 through Figure 16.

Rule no. 1: Time task transformation: To automate the
CGSPN constructs from a task notation, the control flow or
gateways including the BPMN elements associated with the
task are transformed into the CGSPN constructs by using
the extended transformation rules of [52], [54]. The obtained
CGSPN construct of the BPMN task contains three transi-
tions: T_Task_Str,T_Task_Act, and T_Task_Com , represent-
ing Start, Action and Completion state of a task execution.
The corresponding transition type relies on the time proper-
ties determined in the BPMN task, indicated by using the
mapping function fA(). The transition type of T_Task_Str
depends on the extended BPMN task properties, which the
mapping cases are shown as Equations 1. For example, the
transition type of T_Task_Str is mapped into a determinis-
tic transition if the task properties is delay time. Whereas the
transition type of T_Task_Act, and T_Task_Com is the deter-
ministic transition with zero delay. The CGSPN construct of
BPMN task is shown in Figure 5. However, the designers
have options to transforming the BPMN task into the CGSPN
construct with a single transition in line with Rule no. 4 in
order to reduce the model complexity.

f (eA)

=


DeterministicTran. fA(eA) = Delay
ScheduledTran. fA(eA) ∈ {General, Schedule}
StochasticTran. fA(eA) = Prob

(1)

Rule no. 2: Probabilistic task transformation:
For each BPMN task determined as a probabilistic activ-

ity, the CGSPN construct is similar to that of the time task
detailed in the transformation rule no. 1; but the transition
T_Task_Str is the stochastic transition attached with a proba-
bilistic function and firing rate that are automated from the
BPMN task properties. Figure 6 shows the CGSPN con-
struct of the BPMN task where ‘‘exp()’’ is the exponen-
tial probability distribution function and 0.2 is the firing
rate of the stochastic transition T_Task_Str. The inscription
‘‘[Count>5]’’ is the guard condition of transition, and the
other transitions are the deterministic transition with zero
delay.

Rule no. 3: Task with boundary event transformation:
For each boundary event on the task notation, the

CGSPN construct contains from two deterministic transi-
tions: T_Ev_B4Act and T_Ev_Aft_act, representing the events

FIGURE 5. Transformation rules of the task notation. (a) BPMN undefined
type Task with time scheduled configuration. (b) CGSPN construct of
BPMN scheduled task. T_Task_Str is scheduled transition, while
T_Task_Act and T_Task_Com are deterministic transition.

FIGURE 6. Transformation rules of the probabilistic task notation.
(a) BPMN undefined type Task with probabilistic activity configuration.
(b) CGSPN construct of BPMN probabilistic task.

that occur before and after the task’s execution. The default
delay time of them is zero, if BPMN boundary event is the
event without the time property determination. The delay
time of transition T_Ev_Aft_act can be refined to represent
the task that computes or aborts an operation because a
predefined interval of time has passed. Figure 7 shows the
CGSPN construct of the task with boundary event in which
the deterministic transitions T_Ev_B4Act and T_Ev_Aft_act
with zero delay connect to the core transitions of task.

Rule no. 4: Undefined-time task:
For each undefined-time task, it must be automated into

the delay transition by default due to the quantitative verifi-
cation purpose, thus the CGSPN construct of the undefined-
time task contains only one deterministic transition with zero

42990 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 7. Transformation rules of the boundary event notation. (a) the
boundary event on BPMN undefined type task with time schedule.
(b) CGSPN construct of boundary event that connects to CGSPN task
construct.

FIGURE 8. Transformation rules of the undefined-time task notation.
(a) the BPMN undefined-time task. (b) CGSPN construct of undefined
time task.

delay. Figure 8(b) illustrates the CGSPN construct of the
undefined-time task derived from the BPMN undefined-time
task in Figure 8(a).

FIGURE 9. Transformation rules of the timer notation. (a) the BPMN
delay-timer, (b) CGSPN construct of delay-timer.

Rule no.5: Timer event:
For each timer event, the target CGSPN construct con-

tains the deterministic transition attached by the delay that
comes from the BPMN timer configuration. If the timer
type is TimeDuration or Delay, the CGSPN transition is the
deterministic transition. If the timer type is TimeDuration or
Schedule, the CGSPN transition is the schedule transition.
While BPMN timer configured with a TimeDate expression
is mapped into the deterministic transition by default because
the verification tool does not support the TimeDate process.
Figure 9 shows the CGSPN construct of the BPMN timer
event that the modeler determines the timer properties is a
delay time with ‘‘<True: 1>’’, which the transition T_Timer
is the deterministic transition that the guard condition of the
transition is Boolean ‘‘True’’ and delay is ‘‘1’’.

Rule no. 6: Gateways (except Event-based gateway):
For each gateway including divergent gateway and con-

vergent gateway, the CGSPN construct and CPN construct
of [52], [54] are the same but the transition type of the
CGSPN construct is the immediate transition. The immediate
transitions of the CGSPN gateway represent that the transi-
tion fires the token(s) immediately when the token arrives.
Figure 10 shows the transformation rule of the BPMNparallel
gateways, which the transition T_GpD and T_GpC are the
immediate transition.

Rule no. 7: Event-based gateway:
For each event-based gateway, the CGSPN construct is

similar to the CPN construct of [52] but the transition depends
on the consecutive task or event of the gateway. Figure 11
illustrates the transformation rule of event-based gateway,
which the events rely on the receive Task and Event. Thus the
transitions in the CGSPN construct in Figure11(b) contains
the scheduled transition T_Task_str derived from the BPMN
task and the deterministic transition T_Event_read comes
from the BPMN event in (a). The CGSPN construct possesses

VOLUME 10, 2022 42991

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 10. Transformation rules of the gateway notation, (a) the BPMN
divergent gateway, (b) CGSPN construct of divergent gateway, (c) the
BPMN convergent gateway, (d) CGSPN construct of convergent gateway,
which T_GpD and T_GpC are immediate transition.

the inhibitor arc(s) to avoiding multiple-triggering events as
well.

Rule no. 8: Divergent exclusive gateway with probabil-
ity distribution function:

The divergent exclusive gateway is extended to describe
the stochastic distribution task because another objectives of
this work is designing and verifying the stochastic process
model. The exclusive gateway properties will be automated
to be the CGSPN construct containing the stochastic transi-
tions if the time function of the BPMN gateway properties
is ‘‘Probabilistic’’. Figure 12 shows the transformation rule
of the BPMN exclusive gateway determined as the stochas-
tic distribution process by using an exponential probabil-
ity distribution function ‘‘exp()’’. Figure 12(b) shows the
derived CGSPN construct of the BPMN divergent exclu-
sive gateway in (a), the guard condition ‘‘[Count>=5]’’ and
‘‘[Count<=5]’’ comes from the guard condition on the outgo-
ing sequence flowof the gateway, and the probability distribu-
tion function is derived from the BPMN gateway properties.

Rule no. 9: Conditional event:
For each conditional event, the CGSPN construct consists

of the single deterministic transition. The guard condi-
tion of the transition is derived from the BPMN con-
dition configuration and the delay is zero (‘‘<True:0>’’)
by default. The transformation rule of the BPMN condi-
tional event is shown in Figure 13. However, this trans-
formation rule support the single-condition determination
only.

Rule no. 10: Send event and receive message event:
For each send task or receive task, the deterministic transi-

tion is used to represent send or receive event. The delay time
is assigned to ‘‘<True:0>’’ by default. The transformation
rule of send and receive event are shown in Figure 14, which
Figure 14(a) and (b) are the BPMN send event and BPMN
receive event. Figure 14(c) and (d) are the CGSPN construct
of the send and receive event respectively.

Rule no. 11: Send task and receive task:
For each send task and receive task, the obtained CGSPN

construct consists of three transition that are similar to the
construct of the BPMN task transformation rule No.1 shown
in Figure 5. Figure 15 (c) is the obtained CGSPN construct of
the BPMN receive task and Figure 15 (d) is the CGSPN con-
struct of the BPMN send task. The transition type of transition
T_Task_str depends on the task properties. As the examples in
Figure 15(c) and (d), it indicates that the modelers set the time
function of BPMN task to be ‘‘Schedule’’ because the transi-
tion T_Task_str shows the scheduled transition with the firing
schedule [True: 0,2, 60].

Rule no. 12: Switch event:
Switch event is the novel BPMNnotation for describing the

valve of manufacturing process model. The transformation
of the switch event gives the CGSPN construct along with
the deterministic transition controlling the transition firing
by inhibitor arc. Figure 16 shows the transformation rule
of the BPMN switch event; the BPMN notation shows in
Figure 16(a) and the obtained CGSPN shows in Figure 16(b).
The transition T_On and T_Off represent the valve state ‘‘On’’
and ‘‘Off’’ respectively. They are the immediate transition
consuming the token received from a controller and firing the
token to control the valve closing and opening. The obtained
CGSPN construct of the switch event also consider the prior-
ity and ordering of the On-Off message. The modelers can set
the priority and queue of the messages for the transition firing
of the transition ‘‘Priority’’, and it sends an acknowledgement
message or current status back to the controller for each
corresponding time unit.

B. THE PROPOSED STEPWISE VERIFICATION
FRAMEWORK
As the stepwise verification process shown in Figure 3,
the process manufacturing models comprise the controller,
embedded software, and physical devices. It can be observed
that the verification steps are separated accordingly with the
components of process manufacturing model. The simplified
topology of themilk separation process is shown in Figure 17.
The IoT topology of the milk preparation process comprising
three parts is shown in Figure 17 (a), and the target CGSPN
model obtained from the transformation of the specifications
in (a) into CGSPN models is shown in Figure 17 (b), which
the connection to each other is at the corresponding transition
with the arcs. The blue place is an input/output place of the
CGSPN construct. The details of each verification process are
as follows.

1) AUTOMATE THE CGSPN CONSTRUCT OF THE
CONTROLLER, PHYSICAL DEVICES, AND EMBEDDED
SOFTWARE
The controller is an important component driving the physical
manufacturing process. A controller may control a single
device or multiple devices. For example, the controller of pas-
teurization manages two subsystems that comprise the heat-
ing system and cooling system with four physical devices.

42992 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 11. Transformation rules of the event-based gateway notation.

FIGURE 12. Transformation rules of the exclusive gateway notation.

The management of message queue and priority in the con-
troller is a straightforward manner. In practice, the multi-level
and multi-type of events are defined in a lookup table which
contains rule-based conditions. Our framework covers the
logical controller and physical devices of the manufacturing
process described in the BPMN representation. We transform
the BPMN specifications of the controller, physical devices,
and embedded software into the CGSPN models one by one.

The CGSPN constructs of embedded software will be
the mediator between the CGSPN models of physical

FIGURE 13. Transformation rules of the conditional event notation.

manufacturing and the CGSPNmodels of controllers.We can
represent device’s behaviors in three ways.

2.1) Using a transition t ∈ T if it is a simple event or atomic
task.

2.2) Manual creating the subnet if the device has com-
plicated events and setting it up to be the macro transition
ts ∈ TS.
2.3) Automating the CGSPN models of the embedded

software from the existing specification documents described
in BPMN representation by using CP4BPMN.

To reduce the model complexity, the embedded software
should be considered and modeled only on the considerable
events. The application of an equivalence class partitioning
technique [56] is applied for abstracting the device behaviors.
The behaviors of embedded software aremimickedwith input

VOLUME 10, 2022 42993

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 14. Transformation rules of the send and receive event notation.

FIGURE 15. Transformation rules of the conditional event notation.

and output sets as the token colors message received from the
controllers, and the token sent to the CGSPN construct of the
physical devices.

The considerable events of embedded software are imitated
as a data set to be a subTask as stub or mock-up task. For
instance, the thermometer on the milk holding tube sends
temperature measurement data every one second to the data

FIGURE 16. Transformation rules of the switch event notation.

center, but it triggers the heating system to turn on and
turn off when the temperature is lower than 80 or greater
than 100 degrees Celsius, respectively. Thus, considerable
cases of the thermometer are the values of the invalid lower
bound, max, norm, max and invalid upper bound, i.e., 79, 80,
90, 100 and 101, respectively. In the case that a subservice
requires the result of a consensus algorithm from multiple
devices, the considerable cases are a set of possible decision
cases of the consensus algorithm.

Due to the system having the commands priority, the
CGSPN construct of the embedded software must have a
message queue handler and an overriding policy. The CGSPN
construct receives the messages (tokens) from the other
devices or system control operators (SCOs), where the mes-
sages of SCOs usually have higher priority. We use the token
colors to determine the message priority. For instance, a set
of messages with three color tokens 1‘ (0, ‘X’)++1‘ (0,
‘Y’)++1‘ (1, ‘Z’) is in the InputPlace of the transition t. The
transition t will consume token 1‘ (1, ‘Z’) first, since it is set
to be the first priority with color ‘‘1’’. This practice is used for
the message command requested from SCOs to reset a system
or the messages produced from the event handling flow and

42994 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 17. The example of IoT topology of the milk preparation process.

from the system running into abnormal cases. The green
double dashed-line box in Figure 17(b) shows an example of
a CGSPN construct of IoT embedded software of a valve.

2) CONCATENATE AND REFINE THE CGSPN CONSTRUCTS
After all the component specifications are transformed into
the CGSPN constructs, they will be verified separately, and
be manually connected to each other at the corresponding
transition with the arcs. Figure 17(b) shows an example of
the CGSPN milk separation process comprising three parts;
the CGSPN physical devices and manufacturing flow, the
CGSPN embedded software specifications, and the CGSPN
controller. These CGSPN constructs are derived from the
BPMN specifications in Figure 17(a). The arc(s) connected to
the other construct (e.g. the incoming and outgoing arcs of the
place ‘‘MSG_arrived’’) require the arc inscription expression
that conforms to the Backus-Naur Form (BNF) [55]. At the
transition representing the synchronization process, we must
manually refine the transitions output arcs for choosing the
correct tokens and data version.

The target CGSPN model of the integrated CGSPN con-
structs that are obtained from subsections 1) through 4) the
CGSPN automation in Subsections 1) is a flat model. The
target CGSPN model may be large and sophisticated because
of the substantial size of the input specifications and devices

involved. The hierarchical verification can be applied to
alleviate the complexity and verification time consumption.
There are three approaches to rearrange the CGSPNmodel in
the hierarchical structure.

- Rearranging the part of the CGSPN model obtained
from the BPMN specification. The modelers can partition the
CGSPNmodel by using the physical subsystem. For example,
the dairy production process comprises four subsystems: the
preparation, pasteurization, homogenization and packaging.
The modelers can verify all of subsystems separately and
gradually, and can determine the verified subsystem to be the
macro transition.

- Reducing the CGSPN construct of embedded software
as macro transition. The mentioned CGSPN construct in
Figure 17(b) indicated by the double green line box repre-
sents the embedded software of the milk separation process,
which is reduced into the hierarchical structure with a macro
transition.

- Combining the above approaches is used to convey the
topmost model for integration verification.

3) VERIFY THE OBTAINED CGSPN MODEL IN SNOOPY
Since the proposed framework emphasizes a quantitative ver-
ification, we would like to omit the details of qualitative ver-
ification, such as deadlock checking and livelock checking.

VOLUME 10, 2022 42995

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

TABLE 1. The details of the primary IoT devices of the MPF.

After refinement the CGSPN constructs, we set and run the
simulation parameters for the obtained CGSPN model in
Snoopy. The tool show the simulation results as a table or
plot of colored places or transitions.

V. FRAMEWORK VALIDATION AND RESULTS
In this section, we validate our framework by using a case
study with the IoT manufacturing system models in the mas-
ter plan of milk products factory (MPF). The BPMN speci-
fications are automated into the CGSPN constructs by using
CGSPN. Next, the obtained CGSPN constructs are taken to
be an input models of Snoopy for refinement and analysis.
Figure 18 shows the topmost physical IoTmanufacturing pro-
cess and physical devices of dairy production manufacturing.

The rawmilk produced by the cooperativemembers will be
collected by the suppliers of raw milk storage units. The raw
milk details of every farm are recorded in a specific database
and periodically sent to the factory. When the raw milk is
transported to a MPF by tanker trucks, it will be transfused
into the holding and pumped through the main tubes to the
other machines. Based On the real factory, approximately
two hundred thousand litres a day of raw milk enter this
production process. During the milk production process, the
system control operators independently monitor and control
each mechanism underlying the data of the production plan
and materials plan. Table 1 shows the details of the primary
IoT devices (D1-D18) of the MPF. The devices receive and
send the data packages via the intra-web service. There are
five core steps of the production process: the raw milk prepa-
ration, the pasteurization, the homogenization, the packaging
and the cleaning. The cursory production flow is as follows.

First, the raw milk is tested in the physical and chemi-
cal laboratory by the quality control officers (QCOs). This

process requires three hours. If the raw milk satisfies the
quality standard, it will be partly distributed for the cheese-
making process. Before dairy product production, the sepa-
rator or centrifugal machine separates milk into cream and
skimmed milk. The cream will be sent for butter-making,
whereas the skimmedmilk is transmitted into the standardiza-
tion process to add the milk components that have been previ-
ously separated by the separator back into the milk in precise
standardized amounts and to add the optional vitamins and
flavors. Next, the pasteurization process is performed based
on the capacity, the target product type and available pas-
teurizers, in which the pasteurizer is under the control of
the water-heating system and the water-cooling system. The
pasteurization process takes approximately one minute with
precise controlling of the heating and cooling systems and the
amount of milk in the holding tube. Then, the fat molecules
in the milk are broken down by the homogenization machine.
Last, the milk of desirable standard will be packaged by the
packaging system. As the system runs, every twentieth hours,
the SCOs will request cleaning of the in-place system to clean
the holding tube, tank and process equipment.

Figure 18 shows the topmost physical IoT process man-
ufacturing the physical things with sensors of the process;
Figure 18 (a) shows the process shows only the case that the
step of standardization is performed before pasteurization.
Figure 18 (b) shows the topmost dairy process manufactur-
ing model depicted by using BPMN. However, the process
described in Figure 18 (a) is only one manufacturing pro-
cess of the dairy product. In general, one manufacturing
process can manufacture multiple dairy products. The sys-
tem also supports other production processes called multi-
purpose production. The step of each product is dependent on
the requirements of the product owner. For example, the raw
milk often passes the pasteurization process after standard-
ization and flavor addition, but some product owners need
to pasteurize the raw milk before the optional addition of
vitamins and flavor. Thus, the milk circulation is modeled
by the BPMN process as shown in Figure 18 (b), in which
the operation sequence is controlled by the system control
operators via the controllers that are designed in BPMN
representation.

Although the physical manufacturing process seems to be
simple and sequential, the controllers designed as BPMN
middleware are complicated. The BPMN models have many
more details with many control flows and data flows, includ-
ing the fault handling flows or the exception events that
handle the likely inevitable abnormal events to maintain the
process stability. We address these challenges by separating
the whole system into subsystems and using a bottom-up
verification approach. We transform the physical flows, IoT
embedded software specifications and BPMN processes of
each controller into CGSPN models. The obtained CGSPN
constructs of each subsystem or component are assigned to
be the subnets. Next, we manually refine the transition’s type
and corresponding time function and connect the CGSPN
constructs to each other with the arcs. Table 2 shows the

42996 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 18. The topmost physical IoT process manufacturing and the dairy process manufacturing model depicted by using BPMN.

TABLE 2. Result of applying CP4BPMN tool with the proposed
transformation rules to all existing dairy production subsystems.

CGSPN constructs derived from applying the CP4BPMN tool
with the proposed transformation rules to all existing dairy
production subsystems. The statistical report of the refined
CGSPN model components is detailed in Table 3.

TABLE 3. The CGSPN model of dairy production process after refinement.

Figure 19 shows the obtained CGSPN model in part of
the pasteurization process, which the cluster of the construct
is composed of three parts highlighted by colored elements.
The red construct is derived from the physical devices, and
the black construct is derived from the controller, while the

VOLUME 10, 2022 42997

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 19. Excerpt refined CGSPN model of the milk pasteurization process.

green construct is derived from the IoT embedded software
specifications. The blue arcs are the interface between the
controller and the IoT embedded software. Due to the many
inscriptions within the model, they are omitted to show full
inscriptions.

The beginning of the pasteurization controller is nodeMain
and consecutive nodes of Receive Request and AssignVar1
that are transformed into the CGSPN transition C_Main
and RecAssign, respectively. The controller’s information
(CTLData) is passed by the arc inscriptions with variables.
The communications between the controller and the IoT
embedded software are represented by the refined blue arcs.

For example, transition Inv_pastCTLD8 has an outgoing arc
sending data object UP_MSG to itself to command an IoT
embedded software to perform an action by the physical
device D8_Valve. After the valve performs an action, it will
send the current state back to the controller every minute via
the IoT embedded software.

At the red CGSPN construct of the physical device flow,
the value ofMilkData stores the information of raw milk and
the operation type OType. The operation type is the kind of
finished product, and x is the unit of milk in the pasteurization
tube. The transition D8_Valve represents the physical device
valve D8. It is enabled only when the temperature in the

42998 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

FIGURE 20. The simulation result of the CGSPN model in Figure 19. The
pasteurized milk of satisfied standard will require 33 minutes for two
thousand liters of raw milk.

heating and cooling tube is under normal working of the
pasteurizing devices (D9 - D12). The delay of transition
Heating_tube,Cooling_tubewith 0.5 and 0.25 represents that
the raw milk requires 30 seconds in the heating tube and
15 seconds in the cooling tube. Next, the pasteurizedmilkwill
be collected in the holding tank for the pasteurizing standard
measurement. The results of themeasurement are represented
by the stochastic transition with the transition firing rate of
0.95 for the milk satisfying the pasteurization standard and
0.05 for the milk that does not satisfy the standard. The
random value of the unsatisfied standard milk is uniformly
distributed between 0 and 5. It means that one thousand liters
of the pasteurized milk is possible to have the unsatisfied
standard milk not exceed fifty liters. In the case that the
pasteurizer status is not ready to work or in the event of the
temperature in the holding tubes not satisfying the lookup
table configured, the CGSPN construct of the IoT embedded
software of thermometers (D9, D12) will send commands to
the controller to close valve D8 to pause the milk circulation.

To simulate the CGSPN model of the pasteurization pro-
cess, we determine the initial markings with twenty tokens
representing two thousand liters of milk. The number of
simulation runs is 1000. This parameter value comes from the
number of data records of the system runs. The system runs
reports reveal the system outcomes consisting of the number
of satisfied and unsatisfied pasteurization standard milk, the
system issues and so on. The comparison of the number of sat-
isfied and unsatisfied pasteurization standard milk from the
simulation reports and that of the existing system logs report
help us indicate whether the CGSPN models are realistic or
not. The plot simulation results are shown in Figure 20. The
graph shows the amount of milk satisfying the pasteurization
standard and that of the unsatisfied pasteurization standard,
which the curves are the average metrics of 1000 simula-
tion runs. The pasteurizer requires approximately 16 minutes
for a thousand liters of milk. Thus, the pasteurizer requires

FIGURE 21. The simulation result of the CGSPN model from an overall
perspective.

approximately 33 minutes for two thousand liters of milk.
Two thousand liters of milk is determined for simulating the
case of overloaded milk streaming into the pasteurizer and
holding tank with the capacity of one thousand liters. The
report shows the capacity of the pasteurizer, which conforms
to the actual capacity of the existing system. From the sim-
ulation report, we observe that the CGSPN model is quite
realistic, because the number of satisfied and unsatisfied pas-
teurization standardmilk of themodel simulation and existing
report is agreeable. Given the assumption that IoT can reduce
the gap and time between subsystems of the heating and
cooling systems, we believe that, after the transformation of
the existing pasteurizer to the IoT pasteurizer, the percentage
of unsatisfied pasteurization standard milk may become quite
close to zero. Thus, we adjust the firing rate of the transitions
by decreasing from 0.05 to 0.02 for unsatisfied standard milk
and increasing the firing rate from 0.95 to 0.98 for satisfied
standard milk. The simulation result shows that the pasteur-
izer takes less than 2 minutes for two thousand liters of milk
or 1 hour 30 minutes for a day.

To verify the overall system model, we partition the target
model into the subnets following the subsystems shown in
Table 3 and separately simulate and incrementally compose
a subnet to verify them from an overall perspective. Each
subnet coming from the subsystem will be independently
refined based on the dependencies among the subnets. For
example, the subnet of the pasteurization process receives the
milk from a tank of the separation process. Thus, the data
dependencies of the pasteurization processes are the amount
of milk in the separation tank and the flow-out valves of
the separation tanks. We manually refine the CGSPN model
based on these constraints, including the addition of the
CGSPN construct the user tasks or the other tasks that did not
appear in the specification models to complete the CGSPN
model.

Figure 21 shows the simulation result of the CGSPNmodel
from an overall perspective. An initial marking is determined

VOLUME 10, 2022 42999

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

TABLE 4. Comparison of contributions in related works and our work.

at the beginning of the production process, and the amounts
of the finished dairy products are monitored at the end of the
packaging process. It can be observed that the first finished
dairy product will be produced at the 30th minute and com-
pletely packaged at the 70th minute for two thousand liters
of raw milk. This simulation did not include the consumption
time of the user tasks for the gravity separation of 1 day and
the microbiological checking of 3 hours. We calculate the
electric power consumption based on the times used of an
overall perspective by the comparing it with the times used of
the existing system. The results show that the production time
decreases by 15 minutes. It represents that the productivity
increases by 2.97 % and the product cost in the part of
electrical power decreases by 3.12 % a year.

We compare the relevant contributions of the four related
works and proposed approach. Table 4 shows the comparison
details: ‘‘Yes’’ means that the technique supports the contri-
bution and ‘‘No’’ is opposite. ‘‘N/A’’ is that the authors did not
detail but we believe it can handle or support the determined
contribution because of the capability of formal modeling
languages or verification tools.

VI. CONCLUSION
IoT technologies can be applied to the existing system to
reduce the operational gaps, time and flaws of the process
manufacturing control. These technologies can use BPMN
to detail the orchestration and composition of the heteroge-
neous IoT devices. Model checking can be used to verify the

43000 VOLUME 10, 2022

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

IoT design models from the perspectives of both qualitative
and quantitative verification. But the time and stochastic
processes cannot be designed by using the existing BPMN
notations. This work extended Eclipse BPMN2 modeler and
transformation rules of CP4BPMN to automate BPMN nota-
tion into a CGSPN construct. The stepwise quantitative veri-
fication processes and framework are provided for modeling,
simulating and analyzing the process’s performance. The
design models consisting of three clusters (controller, IoT
embedded software and physical manufacturing flow) are
transformed into CGSPN models.

We validate proposed framework by using the case study
of the process manufacturing of dairy product factory. All
three clusters are transformed by the extended CP4BPMN
tool. The obtained CGSPN models are imported and refined
in the model checking tool named Snoopy. In the parts of
the IoT embedded software, we used equivalence class par-
titioning techniques to determine the considerable input and
output cases in order to bound the input and output range of
CGSPN construct. The CGSPN model is simulated based on
the parameters automated from the BPMN process model.
From the case study, the experimental results show that the
productivity of the whole dairy manufacturing process is
increasing by approximately 3%, and the timed gaps between
subprocesses are significantly decreasing. This observation
indicates that the IoT dairy manufacturing design model
exhibits not only increasing productivity but also decreasing
production cost in the aspect of electrical power.

Based on the results of validation, our framework is a
viable option that assists the system analysts and software
modelers who need to analyze the performance on a time
and stochastic BPMN process model. The CGSPN models
support qualitative verification, performance analysis and
flow animation. The shortcoming is that the model checking
still remains difficult to perform for large model verification
because Snoopy is time-consuming to check themodel syntax
before simulation, and the queueing and prioritizing manage-
ment is using non-preemptive scheduling. Our ongoing work
is directed towards an enhancing and prioritizing manage-
ment of the controller to be preemptive scheduling, and will
apply LSTM network for the faults prediction.

ACKNOWLEDGMENT
The authors would like to thankWang Nam Yen Dairy Coop-
erative Ltd., Thailand, which gave advice regarding the dairy
production process.

REFERENCES
[1] E. Johann, E. Panagos, and M. Rabinovich, ‘‘Time constraints in workflow

systems,’’ in Seminal Contributions to Information Systems Engineering.
Berlin, Germany: Springer, 2013, pp. 191–205.

[2] L. Henrik, M. Niepert, M. Weidlich, J. Mendling, R. Dijkman, and
H. Stuckenschmidt, ‘‘Probabilistic optimization of semantic process model
matching,’’ in Proc. Int. Conf. Bus. Process Manage., 2012, pp. 319–334.

[3] F. Dieter, H. Lausen, A. Polleres, J. D. Bruijn, M. Stollberg, D. Roman, and
J. Domingue, Enabling Semantic Web Services: TheWeb Service Modeling
Ontology. Berlin, Germany: Springer-Verlag, 2006.

[4] O. M. G. OMG, ‘‘OMG unified modeling language TM (OMG UML)
version 2.5,’’ Object Manage. Group, Needham, Massachusetts, USA
Tech. Rep. Formal, Mar. 2015.

[5] M. Huth and M. Kwiatkowska, ‘‘Quantitative analysis and model check-
ing,’’ in Proc. 12th Annu. IEEE Symp. Log. Comput. Sci., Jun. 1997,
pp. 111–122.

[6] K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and Applica-
tion. Berlin, Germany: Springer, 2012, pp.219–235.

[7] N. Gharbi, C. Dutheillet, and M. Ioualalen, ‘‘Colored stochastic Petri nets
for modelling and analysis of multiclass retrial systems,’’ Math. Comput.
Model., vol. 49, nos. 7–8, pp. 1436–1448, Apr. 2009.

[8] C. Baier and J. P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[9] S. O. El Mehdi, R. Bekrar, N. Messai, E. Leclercq, D. Lefebvre, and
B. Riera, ‘‘Design and identification of stochastic and deterministic
stochastic Petri nets,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans,
vol. 42, no. 4, pp. 931–946, Jul. 2011.

[10] P. Denno, C. Dickerson, and J. A. Harding, ‘‘Dynamic production system
identification for smart manufacturing systems,’’ J. Manuf. Syst., vol. 48,
pp. 192–203, Jul. 2018.

[11] W. B. Langdon and R. Poli, Foundations of Genetic Programming. Berlin,
Germany: Springer, 2013.

[12] M. Kudlek, ‘‘Probability in Petri nets,’’ Fundamenta Informaticae, vol. 67,
nos. 1–3, pp. 121–130, 2005.

[13] Y. Zhang, W. Wang, N. Wu, and C. Qian, ‘‘IoT-enabled real-time produc-
tion performance analysis and exception diagnosis model,’’ IEEE Trans.
Autom. Sci. Eng., vol. 13, no. 3, pp. 1318–1332, Jul. 2016.

[14] H. Z. Huang and X. Zu, ‘‘Hierarchical timed colored Petri nets
based product development process modeling,’’ in Proc. CSCWD, 2004,
pp. 378–387.

[15] Y. Sheng and S. M. Rovnyak, ‘‘Decision tree-based methodology for
high impedance fault detection,’’ IEEE Trans. Power Del., vol. 19, no. 2,
pp. 533–536, Apr. 2004.

[16] Y. Zhang, W. Wang, W. Du, C. Qian, and H. Yang, ‘‘Coloured Petri net-
based active sensing system of real-time and multi-source manufacturing
information for smart factory,’’ Int. J. Adv. Manuf. Technol., vol. 94,
nos. 9–12, pp. 3427–3439, Feb. 2018.

[17] J. Zhou, J. Wang, and J. Wang, ‘‘A simulation engine for stochastic timed
Petri nets and application to emergency healthcare systems,’’ IEEE/CAA
J. Automatica Sinica, vol. 6, no. 4, pp. 969–980, Jul. 2019.

[18] A. Kheldoun, K. Barkaoui, and M. Ioualalen, ‘‘Formal verification of
complex business processes based on high-level Petri nets,’’ Inf. Sci.,
vols. 385–386, pp. 39–54, Apr. 2017.

[19] H. Foster, S. Uchitel, J. Magee, and J. Kramer, ‘‘LTSA-WS: A tool for
model-based verification of web service compositions and choreography,’’
in Proc. 28th Int. Conf. Softw. Eng., May 2006, pp. 771–774.

[20] H. Jahan, S. Rao, and D. Liu, ‘‘Test case generation for BPEL-based web
service composition using colored Petri nets,’’ in Proc. Int. Conf. Prog.
Informat. Comput. (PIC), Dec. 2016, pp. 623–628.

[21] D. Domingos, F. Martins, C. Cândido, and R. Martinho, ‘‘Internet of
Things awareWS-BPEL business processes context variables and expected
exceptions,’’ J. Univers. Comput. Sci., vol. 20, no. 8, pp. 1109–1129, 2014.

[22] C. Mi, H. Miao, J. Kai, and H. Gao, ‘‘Reliability modeling and verifi-
cation of BPEL-based web services composition by probabilistic model
checking,’’ in Proc. IEEE 14th Int. Conf. Softw. Eng. Res., Manage. Appl.
(SERA), Jun. 2016, pp. 149–154.

[23] A. C. Franco da Silva, U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp,
F. Leymann, B. Mitschang, and R. Steinke, ‘‘Internet of Things out of the
box: Using TOSCA for automating the deployment of IoT environments,’’
in Proc. 7th Int. Conf. Cloud Comput. Services Sci., 2017, pp. 330–339.

[24] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, ‘‘TOSCA: Portable
automated deployment and management of cloud applications,’’ in
Advanced Web Services. Germany, Europe, Univ. Stuttgart, Inst. Archit.
Appl. Syst., 2014, pp. 527–549.

[25] X. Li, Y. Fan, Q. Z. Sheng, Z.Maamar, andH. Zhu, ‘‘A Petri net approach to
analyzing behavioral compatibility and similarity of web services,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 41, no. 3, pp. 510–521,
May 2011.

[26] Z. J. Ding, J. L. Wang, and C. J. Jiang, ‘‘An approach for synthesis Petri
nets for modeling and verifying composite web service,’’ J. Inf. Sci. Eng.,
vol. 24, no. 5, pp. 1–20, 2008.

[27] P. Xiong, Y. Fan, and M. Zhou, ‘‘QoS-aware web service configuration,’’
IEEE Trans. Syst., Man, A, Syst. Humans, vol. 38, no. 4, pp. 888–895,
Jul. 2008.

VOLUME 10, 2022 43001

C. Dechsupa et al.: Stepwise Verification for BPMN With Timed and Stochastic Process Using CGSPN

[28] T. Eterovic, E. Kaljic, D. Donko, A. Salihbegovic, and S. Ribic, ‘‘An Inter-
net of Things visual domain specific modeling language based on UML,’’
in Proc. 25th Int. Conf. Inf., Commun. Autom. Technol. (ICAT), Oct. 2015,
pp. 1–5.

[29] A. Filieri, C. Ghezzi, and G. Tamburrelli, ‘‘Run-time efficient probabilis-
tic model checking,’’ in Proc. 33rd Int. Conf. Softw. Eng., May 2011,
pp. 341–350.

[30] M. Chen, T. H. Tan, J. Sun, Y. Liu, J. Pang, and X. Li, ‘‘Verification of
functional and non-functional requirements of web service composition,’’
in Proc. Int. Conf. Formal Eng. Methods, 2013, pp. 313–328.

[31] M. Chen, T. H. Tan, J. Sun, Y. Liu, and J. S. Dong, ‘‘VeriWS: A tool
for verification of combined functional and non-functional requirements
of web service composition,’’ in Proc. Companion Proc. 36th Int. Conf.
Softw. Eng., May 2014, pp. 564–567.

[32] É. André, T. Huat Tan, M. Chen, S. Liu, J. Sun, Y. Liu, and J. Song Dong,
‘‘Automated synthesis of local time requirement for service composition,’’
2020, arXiv:2003.08116.

[33] M. Schwarick, M. Heiner, and C. Rohr, ‘‘MARCIE–model checking and
reachability analysis done efficiently,’’ in Proc. 8th Int. Conf. Quant. Eval.
Syst., Sep. 2011, pp. 389–399.

[34] N. Yildirim and S. Genc, ‘‘Thermodynamic analysis of a milk pasteuriza-
tion process assisted by geothermal energy,’’ vol. 90, pp. 987–996, 2015,
doi: 10.1016/j.energy.2015.08.003.

[35] M. R. Abdmeziem, D. Tandjaoui, and I. Romdhani, ‘‘Architecting the
Internet of Things: State of the art,’’ in Robots Sensor Clouds. Cham,
Switzerland: Springer, 2016, pp. 55–75, doi: 10.1007/978-3-319-22168-
7_3.

[36] P. Sethi and S. R. Sarangi, ‘‘Internet of Things: Architectures, protocols,
and applications,’’ J. Elect. Comput. Eng., vol. 2017, Jan. 2017, doi:
10.1155/2017/9324035.

[37] J. S. Hurwitz, R. Bloor, M. Kaufman, and F. Halper, Service Oriented
Architecture (SOA) for Dummies. Hoboken, NJ, USA: Wiley, 2009.

[38] C. Peltz, ‘‘Web services orchestration and choreography,’’ Computer,
vol. 36, no. 10, pp. 46–52, Oct. 2003.

[39] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, ‘‘QoS-aware
replanning of composite web services,’’ in Proc. IEEE Int. Conf. Web
Services (ICWS), Jul. 2005, pp. 121–129.

[40] G. Ciardo, R. German, and C. Lindemann, ‘‘A characterization of the
stochastic process underlying a stochastic Petri net,’’ IEEE Trans. Softw.
Eng., vol. 20, no. 7, pp. 506–515, Jul. 1994.

[41] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson,
W. Yi, and M. Hendriks, ‘‘Uppaal 4.0,’’ Dept. Inf. Technol. Uppsala Univ.,
Sweden, Uppaal, Tech. Rep. 4.0, 2006.

[42] M. Heiner, M. Herajy, F. Liu, C. Rohr, and M. Schwarick, ‘‘Snoopy—
A unifying Petri net tool,’’ in Proc. Int. Conf. Appl. Theory Petri Nets
Concurrency. Berlin, Germany: Springer, Jun. 2012, pp. 398–407.

[43] M.Kwiatkowska, G.Norman, andD. Parker, ‘‘PRISM: Probabilisticmodel
checking for performance and reliability analysis,’’ ACM SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 4, pp. 40–45, Mar. 2009.

[44] K. Jensen and G. Rozenberg, High-Level Petri Nets: Theory and Applica-
tion. Berlin, Germany: Springer, 2012.

[45] M. Li and N. D. Georganas, ‘‘Coloured generalized stochastic Petri nets for
integrated systems protocol performance modelling,’’ Comput. Commun.,
vol. 13, no. 7, pp. 414–424, Sep. 1990.

[46] K. Jensen, L. M. Kristensen, and L. Wells, ‘‘Coloured Petri nets and CPN
tools for modelling and validation of concurrent systems,’’ Int. J. Softw.
Tools Technol. Transf., vol. 9, nos. 3–4, pp. 213–254, 2007.

[47] P. Huber, K. Jensen, and R. M. Shapiro, ‘‘Hierarchies in coloured Petri
nets,’’ in Proc. Int. Comf. Appl. Theory Petri Nets, 1989, pp. 313–341.

[48] W. M. Van Der Aalst, K. M. Van Hee, A. H. Ter Hofstede, N. Sidorova,
H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn, ‘‘Soundness of
workflow nets: Classification, decidability, and analysis,’’ Formal aspects
Comput., vol. 23, no. 3, pp. 333–363, 2011.

[49] J. Wegener, M. Schwarick, and M. Heiner, ‘‘A plugin system for Charlie,’’
in Proc. CS&P, 2011, pp. 531–554.

[50] M. Fisher, An Introduction to Practical Formal Methods Using Temporal
Logic. Hoboken, NJ, USA: Wiley, 2011.

[51] BPMN2 Modeler Project. Accessed: Dec. 29, 2021. [Online]. Available:
https://www.wikibooks.org

[52] C. Dechsupa,W. Vatanawood, and A. Thongtak, ‘‘Hierarchical verification
for the BPMN design model using state space analysis,’’ IEEE Access,
vol. 7, pp. 16795–16815, 2019.

[53] C. Dechsupa, W. Vatanawood, and A. Thongtak. (2020). Techni-
cal report: Mapping of BPEL and Examples. [Online]. Available:
https://www.researchgate.net/profile/Chanon_Dechsupa2

[54] C. Dechsupa, W. Vatanawood, and A. Thongtak, ‘‘Transformation of
the BPMN design model into a colored Petri net using the partitioning
approach,’’ IEEE Access, vol. 6, pp. 38421–38436, 2018.

[55] L. Fei, H. Monika, and R. Christian, ‘‘The manual for colored Petri
nets in snoopy–QPN C/SPN C/CPN C/GHPN C,’’ Computer Sci. Rep.
Brandenburg Univ. Technol., Cottbus, Germany, Tech. Rep. Report02-12,
2012.

[56] C. Braunstein, A. E. Haxthausen, W. L. Huang, F. Hübner, J. Peleska,
U. Schulze, and L. V. Hong, ‘‘Complete model-based equivalence class
testing for the ETCS ceiling speed monitor,’’ in Proc. Int. Conf. Formal
Eng. Methods. Cham, Switzerland: Springer, Nov. 2014, pp. 380–395.

C. DECHSUPA received the B.S. degree in
computer information system from Burapha Uni-
versity, Thailand, in 2008, the M.S. degree in soft-
ware engineering from Chulalongkorn University,
in 2012, and the Ph.D. degree in computer engi-
neering from the Faculty of Engineering, Chula-
longkorn University, in 2018. From 2008 to 2015,
he was a Database Programmer and a Senior
System Analyst with many private sectors. His
research interests include the formal method in

software engineering and workflow design and an applying AI in the formal
verification approaches.

W. VATANAWOOD received the Ph.D. degree in
computer engineering from Chulalongkorn Uni-
versity, Thailand. He is currently an Associate
Professor of computer engineering at the Fac-
ulty of Engineering, Chulalongkorn University.
His research interests include formal specification
methods and software architecture.

A. THONGTAK received the Dr.Eng. degree in
electrical and electronic engineering from the
Tokyo Institute of Technology, Japan. He is cur-
rently an Assistant Professor at the Department
of Computer Engineering, Chulalongkorn Univer-
sity, Thailand. His research interests include asyn-
chronous logic design and verification, dependable
computing, and computer architecture.

43002 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.energy.2015.08.003
http://dx.doi.org/10.1007/978-3-319-22168-7_3
http://dx.doi.org/10.1007/978-3-319-22168-7_3
http://dx.doi.org/10.1155/2017/9324035

