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ABSTRACT The authenticity of digital images is a major concern in multimedia forensics due to the
availability of advanced photo editing tools/devices. In the literature, several image forensic methods are
available to detect specific image processing or editing operations. However, it remains a challenging task
to design a universal forensic method that can detect multiple image editing operations. In this paper,
a novel Multi-Scale Residual Deep CNN (MSRD-CNN) is designed to learn the image manipulation
features adaptively for multiple image manipulation detection. Our network comprises of three stages:
pre-processing, hierarchical high-level feature extraction, and classification. Firstly, a multi-scale residual
module is employed in pre-processing stage to extract the prediction error or noise features adaptively.
Afterwards, the obtained noise features are processed by feature extraction network having multiple Feature
Extraction Blocks (FEBs) for the extraction of high-level image tampering features. Lastly, the resultant
feature map is provided to the fully-connected dense layer for classification. The experiment results show
that our model surpasses the existing schemes even under anti-forensic attacks, when evaluated on large-scale
datasets by considering multiple image processing operations. The proposed network provides overall
classification accuracies of 97.07% and 97.48% for BOSSBase and Dresden datasets, respectively.

INDEX TERMS Multiple image manipulation detection, anti-forensic attacks, convolutional neural net-

works, multi-scale residual module.

I. INTRODUCTION

The digital information can be shared in the form of audio,
image, and video using various social media platforms such
as Facebook, Instagram, Snapchat, etc. The advent of pow-
erful editing software results in a significant increase in
the number of tampered images on social media related to
political, individual attacks, publicity, etc. Therefore, the
authenticity of digital images is very crucial. Moreover, the
investigation of digital images can play important role in
many fields related to medical, news media, scientific explo-
ration, law and crime [1]-[3]. Thus, it is a concern of great
importance in multimedia forensics.

The detection of different image processing operations
has a great relevance to the forensic community due to the
fact that these operations may be used by the counterfeiter
in the creation of an image forgery. It is perceived that
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different image processing operations embed special arti-
facts or footprints in the processed image. Several foren-
sic algorithms have been designed to detect the particular
image processing operation by analyzing the corresponding
artifacts. Some image processing operations considered are
resampling [4]-[8], JPEG compression [9]-[12], median fil-
tering [13]-[16], contrast enhancement [17]-[20], etc. Also,
many anti-forensic approaches related to different image pro-
cessing operations such as JPEG compression [21], [22],
median filtering [23], and contrast enhancement [24] have
also been proposed to mislead the forensic techniques by
concealing the footprints of corresponding image processing
operations.

The researchers have also developed general-purpose
image manipulation detection schemes to detect differ-
ent image processing operations [25]-[30]. Moreover, it is
observed that recent works on multi-purpose image tam-
pering detection are based on deep learning techniques,
for instance, Convolutional Neural Networks (CNNs).
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These CNNs have demonstrated the ability to automatically
learn the image manipulation features from data. A novel
constrained convolutional layer based CNN is proposed
in [25] to detect the multiple image processing operations by
suppressing the image content information and the authors
further optimized their constrained neural network in [28]
for better performance. In [26], a densely connected CNN
based on isotropic constraint is proposed for general-purpose
image forensics by considering the anti-forensic attacks.
The isotropic convolutional layer works as a high-pass fil-
ter to highlight the image processing operations artifacts
by suppressing the image content information. Moreover,
an image manipulation detection approach built upon [25]
and combined with a deep Siamese CNN network is pre-
sented in [27]. However, their work was not to identify the
specific image manipulation but to classify the input patch
pair (two images) whether they are identically processed or
not. In [29], Xception architecture is employed to classify
multiple image processing operations by considering small-
sized images. Most of the existing general-purpose forensic
techniques can be easily circumvented by using some anti-
forensic attacks. Recently, a universal image manipulation
detection approach based on densely-connected CNN is pro-
posed in [30] and it has also considered most of the image
processing operations including various anti-forensic tech-
niques for evaluation. However, the proposed CNN is sig-
nificantly different from the existing approach [30] in terms
of network architecture as well as used image manipulation
datasets.

Overall, designing a unified forensic scheme capable
of detecting different image manipulations under different
attacks is still a challenging task for the researchers. Also,
to the best of our knowledge, the existing works have not
performed any cross dataset testing to evaluate the gener-
alization of their models. In this work, we present a novel
and effective image manipulation detection approach capa-
ble of detecting multiple editing operations including anti-
forensic methods. The main contributions of our work are as
follows:

e We propose a novel method: MSRD-CNN for

general-purpose image manipulation detection.

o Inspired by Res2Net [31], we propose a multi-scale
residual module to obtain efficient noise features adap-
tively. Further, the obtained noise features are processed
by using FEBs to extract the high-level image manipu-
lation features.

o In this paper, we have considered several image pro-
cessing operations including anti-forensic schemes and
with arbitrary parameters to evaluate our network. The
extensive experiment results show that our MSRD-CNN
provides better accuracy in comparison to the existing
methods, even in cross-dataset settings.

The remaining part of the paper includes a detailed descrip-
tion of the proposed network in Section II and the experiment
results are discussed in Section III. Finally, we conclude our
work in Section I'V.
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Il. PROPOSED MSRD-CNN ARCHITECTURE

In this section, we propose a novel MSRD-CNN
architecture capable of detecting the traces of multiple
image processing operations and anti-forensic techniques.
The architecture of MSRD-CNN, as shown in Fig. 1, includes
three different stages i.e., extraction of noise features using
a multi-scale residual module, feature extraction network
to extract high-level features related to image tampering
artifacts, and classification.

A. MULTI-SCALE RESIDUAL MODULE

Most of the image manipulation detection schemes use the
idea of suppressing the content information of an input image
to highlight the image manipulation artifacts. Compared to
applying fixed filters to the input image prior to CNN for
the extraction of prediction error features, it is preferred to
employ a trainable filtering scheme for pre-processing to
potentially learn more appropriate image manipulation fea-
tures adaptively for image forensic tasks. In our approach,
we use a data-driven pre-processing scheme that consists of
a two-layer CNN and a multi-scale residual module. Each
convolution layer in the two-layer CNN contains 64 filters
of 3 x 3 followed by batch normalization and the ReL.U
layer. This two-layer CNN is employed to obtain better input
features for the multi-scale residual module. Let us denote the
functions of these two convolution layers by C;(-) and C»(-),
respectively. For a given input image I of size 256 x 256, the
output of this two-layer CNN is formulated as:

Ic,c, = CA(C1(D)), (D

This output I¢, c,, having size of 256 x 256 x 64, is then
passed to the multi-scale residual module which is inspired
from Res2Net [31] and designed to learn the suitable noise
features. The proposed multi-scale residual module explores
the multi-scale feature representation by dividing the input
features of size 256 x 256 x 64 along the channel axis, which
results in four different groups of size 256 x 256 x 16. These
groups are then interconnected in a hierarchical residual-like
style as shown Fig. 1(b). Each group is further processed by
a Convolutional Block (CB) having two convolution layers
with 16 filters of 3 x 3 followed by batch normalization and
ReLU layers. The output feature maps of the first CB is added
to the second group before passing to the second CB as shown
in Fig. 1(b). Let x; represents the feature maps of i’ group,
where i € {l1,2, 3,4}, and H;(-) is the function performed
by the convolutional block of i group. The output of H;(-)
which is y; will be added to x; group and passed to (i + 1)
convolutional block (H;1) as provided in Eq. (2).

yiz{Hi(xi) i=1

i=2,3,4 2)

H; (xi + yi-1)

The outputs of all the convolutional blocks are concate-
nated and passed to a convolution layer having 64 filters of
size 1 x 1. The output of this convolutional layer is subtracted
from the input of the multi-scale residual module to obtain the
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FIGURE 1. Proposed MSRD-CNN architecture.
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final noise features as:

Ivsgrm = MSRM (I¢,¢,) — Ic ¢, (3)

where, MSRM () denotes the function performed by the
multi-scale residual module. The feature extraction blocks
further process these noise features to extract the high-level
image manipulation features. Note that the features size i.e.,
height and width remains same during the pre-processing
stage except the channel size.

B. FEATURE EXTRACTION NETWORK

The noise features obtained from the multi-scale residual
module are passed to the feature extraction network to extract
the high-level image manipulation features. This feature
extraction network has four FEBs and each FEB (Fp) is
based on a residual skip connection containing two regular
convolution layers of size 3 x 3 and a 1 x 1 convolution
layer. The input of a FEB is added to the output of the second
convolution layer followed by the average pooling operation
as shown in Fig. 1(c). Note that we have not used the pooling
layer in the multi-scale residual module of pre-processing
stage because pooling layer strengths the image content
and reduces noise signal by averaging. The purpose of the
pooling layer is to down-sample the features for learning
high-level image manipulation features. Number of filters
in the four FEBs i.e Fp3;, B2, FB3,and Fp4 are 64, 64,
128 and 256 respectively. The resultant features obtained
from this feature extraction network can be formulated as:

Iz, = Fa(FB3(Fpo(Fp1(Umsrm)))) “

The output of this feature extraction network i.e. / }_-B is
further processed by two convolution layers each having
64 filters of size 3 x 3 to obtain the more relevant image
manipulation features. First convolution layer is followed by
batch normalization and ReLU and the second convolutional
layer is followed by batch normalization. Afterward, the aver-
age pooling layer with filter size 4 x 4 and stride 4 is applied
to reduce the feature dimension.

Lastly, the global features obtained after the average pool-
ing layer is fed to a fully-connected (FC) layer with 11 neu-
rons corresponding to image processing operations used for
classification. We use the softmax function to get the prob-
ability of predicted classes and the cross-entropy function to
calculate the overall network loss.

C. COMPARISON WITH GIMD-NET

The proposed CNN is significantly different from the existing
GIMD-Net approach [30] in terms of network architecture
as well as used image manipulation datasets. The model
proposed in [30] is inspired from DenseNet [32] employing
the concept of local and global residual learning for the
extraction of high-level image manipulation features using
residual dense blocks (RDBs). On the contrary, the pro-
posed MSRD-CNN is inspired from Res2Net [31] that learns
prediction error features adaptively to highlight the image
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manipulation artifacts and then extract high-level hierarchical
image tampering features by using feature extraction net-
work. In [30], there is no preprocessing used to extract the
noise features, whereas we propose a preprocessing stage
(multi-scale residual module) to extract the noise features
adaptively. The RDBs used in [30] are fussed globally and the
convolutional layers used in each RDB are densely connected
to comfort the training and optimization. But, instead of using
global fusion, the FEBs in proposed method are connected
sequentially to extract the high-level features. Also, the con-
volutional layers are employed without dense connectivity
in each FEB. Further, the image processing operations used
in [30] are based on fixed parameters to create image manip-
ulation datasets. On the other hand, we have created image
manipulation datasets based on arbitrary parameters as shown
in Table 1. Therefore, we have considered a more challenging
dataset in this work to evaluate the model performance as
compared to [30].

Ill. EXPERIMENTAL RESULTS

We conducted extensive experiments to evaluate the per-
formance of the proposed model in the detection of mul-
tiple image processing operations and various anti-forensic
attacks. Firstly, to confirm the multi-purpose nature of our
MSRD-CNN, we considered 10 image processing opera-
tions along with corresponding parameters listed in Table 1.
The image processing parameters are selected randomly to
create more challenging image manipulation datasets. For
instance, in JPEG compression, we compress the original
images by randomly selecting the Quality Factor (QF) rang-
ing from 60 to 90.

TABLE 1. Different image processing operations used for the generation
of manipulation datasets with arbitrary parameters.

Parameters
QF =60,61,62,...,90
c=20.7,0911,1.3
o=14,1.6,1.8,2
Scaling =1.2,1.4,1.6,1.8,2
Kernel = 3,5,7,9
~v=0.6,0.8,12,14
QF =60,61,62,...,90
QF =60,61,62,...,90
Kernel = 3,5,7,9
v=10.6,0.81.2,14

Image editing operations
JPEG compression (JPEG)
Gaussian Blurring (GB)

Adaptive White Gaussian Noise (AWGN)
Resampling (RS) using bilinear interpolation
Median Filtering (MF)

Contrast Enhancement (CE)

JPEG anti-forensics (JPEGAF) [21]
JPEG anti-forensics (JPEGAF) [22]
Median filtering anti-forensics (MFAF) [23]
Contrast enhancement anti-forensics (CEAF) [24]

We consider BOSSBase [33] and Dresden image
dataset [34] for the evaluation of different image tam-
pering detection approaches. The standard BOSSBase
dataset comprises of 10,000 grayscale images of resolution
512 x 512 in PGM format. We have transformed these
PGM images into PNG format for evaluation purposes. The
standard Dresden dataset contains 3008 x 2000 size 1491 raw
images in NEF format. We converted these raw images into
PNG format for evaluation. Our model is implemented by
using PyTorch 1.8 deep learning framework and all the exper-
iments are performed using Tesla V100 GPU with 32GB
RAM. We compared our network with recent multi-purpose
image tampering detection methods [26], [28]—-[30] in terms
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of detection accuracy. We also assessed our model’s robust-
ness and generalization by performing cross-dataset testing.
The experimental results exhibit the efficacy of the proposed
model in comparison to the existing image manipulation
detection methods. All the relevant codes are available on
request for reproducibility and research advancement.

A. MULTIPLE IMAGE MANIPULATION DETECTION

In this subsection, we evaluate our MSRD-CNN perfor-
mance in the detection of multiple image processing oper-
ations including anti-forensic techniques using BOSSBase
and Dresden datasets. We created one original image (OR)
and 10 tampered image datasets using the image processing
operations as listed in Table 1 by considering 4,167 and
1,333 images sequentially from the BOSSBase dataset for
training and testing, respectively. We extracted 4 patches of
size 256 x 256 from each of these images, which results
in 16,668 training and 5,332 testing images for each of
the image processing operations. Therefore, we obtained a
dataset having 2,42,000 grayscale images. We used 1,83,348
images (including 16,668 original images) for training, and
remaining 58,652 images (including 5,332 original images)
for testing purposes. Note that we follow the strategy used by
the existing works [28] to create image manipulation datasets
corresponding to different image manipulation operations to
make the comparison feasible. Therefore, we have used only
4167 and 1333 images from the BOSSBase dataset for train-
ing and testing, respectively. This may also be noted that the
complete BOSSBase dataset images are not used in consider-
ation to the limited computational facilities availability, as we
are considering 10 image manipulation methods including
anti-forensic approaches which are highly compute-intensive
and time-consuming.

We also evaluated our network ability using 881 images
from the Dresden dataset. We follow the same strategy as used
for the BOSSBase dataset in preparing image manipulation
datasets using different image processing operations. We con-
sidered 667 images for training and 214 images for testing
the considered neural networks. All of these images are
cropped from the center to obtain a sub-image region of size
1280 x 1280. Afterward, each sub-image region is pro-
cessed to extract 25 patches of size 256 x 256 and then
converted into grayscale format. Therefore, we obtained
16,668 (approx.) images for training and 5,332 (approx.)
images for testing corresponding to image processing oper-
ations provided in Table 1. The training of our network is
performed by using the Adam optimizer with a learning rate
of 0.001 and we trained our network for 100 epochs in each
experiment.

We evaluated confusion matrices for our model based
on multiple image processing operations for BOSSBase
and Dresden datasets as shown in Tables 2 and 3. Our
MSRD-CNN provides average accuracies of 97.07% and
97.48% for BOSSBase and Dresden datasets, respectively,
when evaluated on multiple image processing operations.
Table 2 reveals that the proposed network gives an accuracy of

VOLUME 10, 2022

greater than 97% for each image processing operation except
for the original and CE images on the BOSSBase dataset.
The accuracy of original and contrast-enhanced images is
87.92% and 90.15%, respectively for the BOSSBase dataset.
Table 3 demonstrates that our proposed approach identifies
each image processing operation with an accuracy of greater
than 97% except for the original and contrast-enhanced
images with 92.22% and 85.03% respectively on the Dresden
dataset. Moreover, the robustness of our model is confirmed
by the fact that it provides high accuracies against different
anti-forensic approaches on both the datasets.

We also conducted an experiment by combining both
the training sets of BOSSBase and Dresden datasets. It is
observed that combining both the training datasets increases
the model accuracy further, likely because of the increase
of training dataset size and/or more diversity. The testing
accuracy increases from 97.07% to 97.38% on the BOSSBase
test dataset. Similarly, model testing accuracy increases from
97.48% to 98.11% on the Dresden test dataset. However, the
training time increases significantly due to the large training
data.

B. COMPARATIVE ANALYSIS WITH EXISTING
APPROACHES

We compared our MSRD-CNN with existing multi-purpose
forensic schemes [26], [28]-[30] by considering multiple
images processing operations including anti-forensic tech-
niques using the same training and testing datasets as defined
in Section III-A. We provide the diagonal entries of confu-
sion matrices in Table 4 for different methods for ease of
comparison. The proposed model provides better detection
as compared to the existing approaches for all the consid-
ered image manipulations except GB, JPEGAF [22], and
CEAF [24] operations, when tested on the BOSSBase dataset
as shown in Table 4. Similarly, our network achieves better
detection accuracy for all image manipulations except JPEG,
GB, and CE operations for the Dresden dataset. However,
it may be noted that for GB and CEAF [24] operations in the
BOSSBase dataset, our model is second best and is around
0.2% lower than the best performing method. Also, for the
JPEG and GB operations in Dresden dataset, our method is
0.02% and 0.17% lower than the best performing method,
respectively. Moreover, Table 4 shows that our model out-
performs the recent deep learning based scheme [30] with
average accuracy improvements of 1.04% and 1.48% for the
BOSSBase and Dresden datasets, respectively.

C. PERFORMANCE EVALUATION BASED ON CROSS
DATASET IMAGES

In this subsection, we evaluate the performance of our net-
work by considering cross dataset testing images. In the first
experiment, the considered models, trained on the BOSSBase
training dataset images, are applied on the Dresden test set
images. Similarly, we also perform the experiments consid-
ering Dresden training dataset images and BOSSBase test
dataset images. The average accuracy results of these cross
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TABLE 2. Confusion matrix for the proposed model evaluated on multiple image processing operations as given in Table 1 on BOSSbase dataset
(1,83,348 training and 58,652 testing images. Overall test accuracy = 97.07%).

Predicted Class
JPEGAF | JPEGAF | MFAF | CEAF
OR JPEG GB WN RS MF CE 21] [22] (23] (24]
OR 87.92 0.00 0.47 2.06 0.11 0.00 7.95 0.02 0.00 0.00 1.46
JPEG 0.00 99.89 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.02
GB 0.00 0.00 99.70 0.00 0.17 0.00 0.08 0.00 0.00 0.00 0.06
P WN 0.47 0.00 0.00 99.34 0.00 0.02 0.15 0.00 0.02 0.00 0.00
E RS 0.21 0.00 1.26 0.00 97.81 0.00 0.39 0.00 0.00 0.00 0.34
% MF 0.00 0.00 0.02 0.00 0.00 99.76 0.17 0.00 0.00 0.06 0.00
E CE 6.15 0.02 0.21 1.29 0.06 0.08 90.15 0.02 0.00 0.00 2.03
JPEGAF [21] 0.02 0.00 0.00 0.06 0.00 0.00 0.08 98.42 143 0.00 0.00
JPEGAF [22] 0.08 0.00 0.00 0.13 0.00 0.00 0.02 1.91 97.86 0.00 0.00
MFAF [23] 0.00 0.00 0.00 0.00 0.00 0.11 0.13 0.00 0.00 99.76 0.00
CEAF [24] 0.32 0.00 0.83 0.00 0.08 0.08 1.54 0.00 0.00 0.00 97.17

TABLE 3. Confusion matrix for the proposed model evaluated on multiple image processing operations as given in Table 1 on Dresden dataset (1,83,348

training and 58,652 testing images. Overall test accuracy = 97.48%).

Predicted Class
JPEGAF | JPEGAF | MFAF | CEAF

OR | JPEG | GB WN RS MF CE 1] 2] 23] (24]

OR 92.22 | 0.00 0.00 0.02 0.02 0.02 7.63 0.00 0.00 0.00 0.09

JPEG 0.00 [ 99.98 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

GB 0.00 0.00 | 99.74 | 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.13

P WN 0.00 0.00 0.00 [ 99.94 | 0.00 0.00 0.00 0.02 0.04 0.00 0.00

ks RS 0.00 0.00 0.11 0.00 | 99.81 0.00 0.02 0.00 0.04 0.00 0.02

% MF 0.00 0.00 0.00 0.00 0.00 | 100.00 | 0.00 0.00 0.00 0.00 0.00

E CE 11.89 | 0.00 0.00 0.09 0.02 0.00 85.03 0.00 0.04 0.00 2.93

JPEGAF [21] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.49 0.51 0.00 0.00

JPEGAF [22] 0.00 0.00 0.00 0.00 0.02 0.00 0.00 2.55 97.43 0.00 0.00

MFAF [23] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00

CEAF [24] 0.36 0.00 0.09 0.00 0.02 0.00 0.84 0.00 0.06 0.00 98.63

TABLE 4. Performance comparison of different multi-purpose forensic schemes by considering multiple image processing operations.
BOSSBase Dataset Dresden Dataset

Chen [26] | Bayar [28] | Yang[29] | Singh [30] Ours Chen [26] | Bayar [28] | Yang[29] | Singh [30] Ours
OR 23.65 54.86 79.76 82.50 87.92 39.07 23.48 35.54 81.40 92.22
JPEG 96.66 99.72 99.83 99.76 99.89 99.36 99.72 100.00 100.00 99.98
GB 98.52 99.36 99.93 99.61 99.70 99.91 94.90 99.79 99.91 99.74
AWGN 80.65 93.12 98.54 98.33 99.34 98.95 96.02 98.91 99.94 99.94
RS 62.04 90.72 97.51 96.31 97.81 82.2 84.26 98.33 99.27 99.81
MF 88.77 97.32 97.60 99.40 99.76 93.55 97.39 99.81 99.96 100.00
CE 28.84 50.21 65.56 86.53 90.15 53.06 74.79 78.94 88.32 85.03
JPEGAF [21] 56.77 87.45 96.85 97.99 98.42 51.03 79.95 97.85 99.01 99.49
JPEGAF [22] 63.93 93.57 97.68 98.87 97.86 59.75 70.93 95.99 95.72 97.43
MFAF [23] 95.16 99.29 99.42 99.64 99.76 95.37 99.08 99.87 99.94 100.00
CEAF [24] 76.44 93.34 95.35 97.37 97.17 58.55 66.84 89.45 92.55 98.63
Overall Avg. 70.13 87.18 93.45 96.03 97.07 75.53 80.67 90.41 96.00 97.48

dataset testing experiments are presented in Table 5 and
it is observed that our MSRD-CNN architecture outper-
forms the recent multi-purpose forensic schemes by provid-
ing higher detection accuracies of 86.49% and 81.40% for
BOSSTrain-DRESTest and DRESTrain-BOSSTest, respec-
tively. It is also noted from Table 5 that all the considered
forensic methods do not perform well for the original images
because the proposed model focuses on the artifacts intro-
duced by the image manipulation operations in the image.
But, the original images do not have any manipulation arti-
facts except the camera fingerprint-related features. More-
over, the original images of these two datasets are acquired
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from different camera models/devices. Therefore, we also
provided the overall average accuracies excluding the original
images as shown in Table 5. These results are also in favour
of proposed MSRD-CNN, with 95.1% and 87.7% accuracies
in two settings considered. This highlights the overall best
generalization ability of the proposed approach.

D. ABLATION STUDIES

The performance of our MSRD-CNN is examined consider-
ing the different architectural design choices to achieve an
optimal design for the proposed model. Initially, we evalu-
ate our MSRD-CNN model with different number of initial
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TABLE 5. Performance comparison of different general-purpose image manipulation schemes by considering cross dataset testing.

Models trained on BOSSBase and tested on Models trained on Dresden and tested on
Dresden dataset (BOSSTrain-DRESTest) BOSSBase dataset (DRESTrain-BOSSTest)

Chen [26] | Bayar [28] | Yang[29] | Singh[30] | Ours | Chen [26] | Bayar [28] | Yang[29] | Singh [30] | Ours

OR 9.96 1.74 2.03 0.04 0.17 25.84 3.04 28.88 1.88 18.55

JPEG 97.09 99.59 99.42 99.59 99.96 94.71 98.57 97.21 98.91 99.83

GB 99.94 99.06 99.27 99.83 99.76 93.98 88.47 98.24 97.81 91.65

AWGN 94.28 78.17 93.45 89.89 95.09 71.92 79.41 94.34 92.16 85.60

RS 74.72 41.64 69.47 82.37 96.08 59.92 73.37 87.30 77.44 85.07

MF 74.47 95.09 92.74 99.34 99.98 81.73 94.35 96.19 98.54 98.35

CE 33.36 29.24 31.83 76.03 92.12 18.06 32.24 36.37 27.89 46.40

JPEGAF [21] 35.90 71.57 88.24 92.24 92.78 48.82 71.27 86.42 92.76 95.57

JPEGAF [22] 69.47 80.95 88.62 91.13 89.20 51.11 78.96 91.37 91.92 93.23

MFAF [23] 96.98 99.62 98.67 99.74 99.74 84.47 98.69 99.51 99.01 98.26

CEAF [24] 58.78 66.32 67.07 79.22 86.52 63.92 37.55 72.69 66.04 82.93

Overall Avg. 67.72 69.36 75.53 82.67 86.49 63.14 68.72 80.77 76.76 81.40

Overall Avg. 73.50 76.13 82.88 9094 | 9512 | 66.86 75.29 85.96 84.25 87.69
excluding OR

== MSRD-CNN with 1 initial Conv layer == MSRD-CNN with 2 initial Conv layers
MSRD-CNN with 3 intial Conv layers
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FIGURE 2. Testing accuracies versus number of epochs curves for our
model based on the different choices of initial convolutional layers on
BOSSBase dataset.

convolution layers in pre-processing stage. Then, we examine
the influence of multi-scale residual module on the model
performance. Moreover, we also conducted experiments to
evaluate the effect of number of FEBs on the model perfor-
mance. We also perform experiments related to the choice of
activation function used in the proposed model. All of these
experiments based on different structural design choices are
performed by considering multiple image processing oper-
ations on BOSSBase dataset. We have also plotted testing
accuracy versus number of epochs for these experiments,
as shown in Figs. 2 to 5.

In the first ablation study i.e., when different number of
initial convolutional layers are considered, the overall classi-
fication accuracy of 95.99%, 97.07%, and 97.06% is achieved
with one, two, and three convolutional layers, respectively.
It is observed that accuracy is around 1.07% less when using
only one convolutional layer and the accuracy in the case of
two and three initial convolution layers is almost same. But
training time increases significantly in the case of three initial
convolution layers. This is because the pre-processing stage
does not contain any pooling layer and perform convolution
operations with full sized image. This results in the increase
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== MSRD-CNN == MSRD-CNN without Multi-Scale Residual Module
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FIGURE 3. Testing accuracies versus number of epochs curves for our
model based on the different structural design choices related to
multi-scale residual module on BOSSBase dataset.

== MSRD-CNN 3 FEBs == MSRD-CNN with 4 FEBs
MSRD-CNN with 5 FEBs
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FIGURE 4. Testing accuracies versus number of epochs curves for our
model based on the different number of FEBs on BOSSBase dataset.

in the number of training parameters and the training time
with the addition of each initial convolution layer. It is clear
from the Fig. 2 that our MSRD-CNN with two initial convo-
lution layers consistently perform better by providing higher
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== MSRD-CNN with ReLU activation function == MSRD-CNN with Tanh activation function
MSRD-CNN with Mish activation function
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FIGURE 5. Testing accuracies versus number of epochs curves for our
model based on the different design choices of activation on BOSSBase
dataset.

classification accuracy for most of the epochs as compared
to the other design choices. Moreover, we also evaluated our
model performance without multi-scale residual module to
reveal its importance. It is observed from Fig. 3 that our
model with multi-scale residual module consistently per-
forms better as compared to MSRD-CNN without multi-scale
residual module by providing higher accuracy for most of the
epochs. Therefore, these results reveal the importance of the
multi-scale residual module in our proposed network.

In another experiment, we perform ablation study on num-
ber of FEBs. The classification accuracy with three, four, and
five FEBs is 95.69%, 97.07%, and 97.08%, respectively. It is
observed from Fig. 4 that there is a significant improvement in
accuracy for all epochs, when number of FEBs are increased
from three to four. But, when we evaluated our model by
considering five FEBs, there is not much improvement in
classification accuracy. However, adding FEBs to the model
also increases the computation cost by increasing the total
number of model parameters. Therefore, we choose four
FEBs in our proposed model.

We also perform experiments by considering Tanh and
recent Mish [35] activation functions to evaluate the model
performance. Again, it is observed that the proposed MSRD-
CNN (with ReLLU activation function) provides better perfor-
mance than the Tanh and Mish activation functions as shown
in Fig. 5.

IV. CONCLUSION

In this paper, a novel general-purpose forensic approach
is proposed for image manipulation detection. Our
MSRD-CNN employs a multi-scale residual module to learn
the prediction error features adaptively by suppressing the
image content information. A feature extraction network
further processes these low-level forensic features to provide
high-level image manipulation features for better classifica-
tion. A series of experiments were performed using two large-
scale datasets. The results consistently show that our model
can effectively classify different image processing operations,
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including anti-forensic attacks. Our model provides overall
accuracy improvements of 1.04% and 1.48% as compared to
the recent forensic method [30] on BOSSBase and Dresden
datasets, respectively. Even in cross dataset testing settings,
our model outperforms other approaches and exhibits good
generalization ability. In the future, we further plan to evalu-
ate the robustness of our network against adversarial attacks
and image manipulation chain detection scenarios.
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