
Received April 1, 2022, accepted April 12, 2022, date of publication April 18, 2022, date of current version April 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3167709

A Software-Circuit-Device Co-Optimization Framework
for Neuromorphic Inference Circuits
PAUL QUIBUYEN , TOM JIAO , AND HIU YUNG WONG , (Senior Member, IEEE)
Electrical Engineering Department, San José State University, San Jose, CA 95192, USA

Corresponding author: Hiu Yung Wong (hiuyung.wong@sjsu.edu)

This work was supported in part by the San José State University College of Engineering Small Group Project Team Fund.

ABSTRACT Neuromorphic circuits, which usually use analog computation for vector-matrix multipli-
cation (VMM) in neural networks (NN), are promising machine learning accelerators with much lower
latency and power consumption than digital ones. Analog computation is expected to have a more efficient
design space than digital computation since the signals are not digitized. Therefore, it is very suitable
for Internet-of-Thing (IoT) applications that require ultra-low power consumption at a low cost. For IoT
applications, sometimes it is also desirable to eliminate the digital circuits (such as adders, registers, shifters,
multiplexers, and Analog-to-Digital Converters) between the VMM arrays to further reduce the power
consumption. However, the optimization of a purely analog circuit is more difficult and requires full SPICE
circuit simulations. In this paper, we present a software-circuit-device co-optimization framework using a
python wrapper for automatic full circuit SPICE simulation and analysis for neuromorphic circuits. This
framework allows users to experiment with how the NN design (software) affects the performance of the
hardware neuromorphic circuits. It takes Verilog-A or SPICE models from calibrations or PDK in various
technologies and emerging memories (such as ReRAM) without further calibration (unlike using behavior
models). We show that the simulation time is reasonable even with hundreds of thousands of synapses under
limited computation resources. Using ReRAM and a 45nm generic technology as an example, the effects of
feedback network and OpAmp design, software ML architecture, and input data accuracy on the inference
accuracy are studied.

INDEX TERMS Device-technology co-optimization (DTCO), emerging memory, neural network,
neuromorphic computation, ReRAM, SPICE simulation.

I. INTRODUCTION
Machinelearning (ML), particularly the neural network (NN),
has revolutionized almost every aspect of our daily life.
There are two phases in an ML process, namely machine
training and data inference [1]. In the machine training phase,
a machine is trained by, usually, a large amount of data. In the
data inference phase, the trained machine is used to infer
the properties of the data (e.g. determines the number value
of a hand-written digit image [2]). Both phases involve the
movement of a large amount of data, resulting in an increase
in latency and energy consumption [3]. This creates an almost
impassable barrier to the further scaling of the traditional
von Neumann computing architecture, in which the memory
and computing units are separated by a higher and higher
‘‘memory wall’’ [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa Rahimi Azghadi .

To circumvent the memory wall, Compute-in-Memory
(CiM) has been proposed and attracted a lot of attention in
the last decade [5]–[7]. By performing the computation in
the memory element, most of the data movement is obvi-
ated and power consumption can be reduced substantially.
Among various CiM ideas, using emerging memories, such
as Resistive Random-Access-Memory (ReRAM) [8], [9],
Ferroelectric Random-Access-Memory (FeRAM) [10], Spin
Transfer Torque Random-Access-Memory (STT-RAM) [11],
Phase Change Memory (PCM) [12], Electro-Chemical
Random-Access-Memory (EC-RAM) [13], etc., is the most
promising one to be used for the task for NN. This is
because 1) they are non-volatile, 2) they naturally form an
array for a single constant time step analog computation to
replace the Vector-Matrix-Multiplication (VMM), which is
the most power- and time-consuming operation in NN [6],
[14], [15], and 3) they have very small form factors
(e.g. ReRAM and PCM are simple cross-point memories

41078 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4140-359X
https://orcid.org/0000-0003-0879-4805
https://orcid.org/0000-0003-0135-7469
https://orcid.org/0000-0001-7975-3985


P. Quibuyen et al.: Software-Circuit-Device Co-Optimization Framework for Neuromorphic Inference Circuits

which can be formed using the Back-End-of-Line (BEoL)
in a Complementary Metal-Oxide-Semiconductor (CMOS)
process [16]). In this neuromorphic computing architecture,
the emerging memories mimic the synapses in a biological
neural network.

Due to its non-volatility and low energy consumption
compared to the traditional architecture, the NN accelerator
using emerging memory is expected to be used in Internet-
of-Things (IoT) [17], [18], which is usually powered by
an irreplaceable battery or energy harvested from the
environment. Very often, the NN used in IoT is trained offline
using large servers and the weights are uploaded to the IoT
only for inference. Therefore, in this paper, only the inference
properties of the emerging memory-based NN are studied.

Since emerging memory-based NN are mostly analog in
nature, its optimization is not trivial. The accuracy, power
consumption, area, and speed depend on the NN (number
of layers and nodes), the Digital-to-Analog (DAC) con-
verter accuracy, emerging memory electrical characteristics,
amplifier properties, and the rectification unit performance.
For IoT applications, to minimize the cost while satisfying
the accuracy and power consumption requirements, a co-
simulation framework for software-circuit-device optimiza-
tion is necessary.

A. RELATED WORKS
There have been various studies of the neuromorphic circuits
using simulations but most of them do not use SPICE
simulations and cannot use the technology Process Design
Kit (PDK) directly. In [6], a MATLAB framework was
built to study the temperature, loading resistance, and input
voltage range effect on the performance, however, without
considering their interactions. It only studies the precision
of circuit behavior instead of the accuracy of the final ML
outputs. Since neuromorphic circuits are fault-tolerant, the
findings might be over pessimistic. In [19], a system-level
simulator is built intended to be used with behavioral models
for large system simulation. However, calibration against
the SPICE model is required for behavior models. Despite
its lower speed, SPICE simulation provides more insight
into circuit design and avoids the use of behavior models
and additional calibrations. In [14], SPICE is used but only
for studying the behavior of loading resistance and has no
interaction with ML algorithm design.

Some work has been done to develop system-level
simulation frameworks to quantify the performance trade-
offs between area, read/write energy, read/write latency, and
leakage power in implementing ReRAM arrays [20]–[24].
However, they do not cover other performance metrics when
they are applied in compute in-memory architectures and
neuromorphic circuits, such as classification accuracy, and
computational speed.

Lammie et al. [23] developed a simulation framework
that allows the sparse weights and neurons using L1
regularization and dropout during training. Also, the train-
ing is quantization-aware, which takes into account the

limited resolution of the ReRAM weights. After training,
the neuromorphic circuit is generated in SPICE or other
RRAM-based DL simulation frameworks to obtain the test
accuracy. The framework allows the simulation of various
device nonidealities such as device-to-device variability,
finite conductance states, stuck RON, ROFF, etc., as well as
functional models of the circuit blocks.

A Pytorch-based analog ANN simulation framework was
developed with hardware-aware training and a CUDA-
capable (GPU accelerated) C++ simulator [26]. The circuits
such asDAC,ADCs, etc., are replacedwith functionalmodels
and are not capable of transistor-level accuracy.

A simulation framework of differential-architecture cross-
bar arrays is developed in [27] to simulate spiking recurrent
neural networks with PCM.

Finally, in [28], a comprehensive summary of various
simulation frameworks of CiM is provided. The simulation
frameworks are classified based on e.g. the programming
languages, the capability of training simulations, the inclu-
sion of periphery circuit simulation, the types of device
supported, etc.

B. SUMMARY OF THIS WORK
In this paper, we developed and realized a software-
circuit-device co-optimization framework for neuromorphic
inference circuits using purely SPICE simulation based on
our previous works [29]–[31]. This framework automatically
constructs the neuromorphic circuit based on software ML.
It can take the Verilog or SPICE model for its 4 major com-
ponents, namely the DAC, neuromorphic memory, current
comparator, and rectification unit. It performs full analog
simulations. To minimize the energy consumption and the
area for IoT applications, no select transistors are included
and no digital circuits are used in the design (although they
can be included if needed). This allows us to study the close
interaction between the neuromorphic device and various
parts of the circuits, which is only possible with a full
analog circuit simulation. Since the periphery circuits are an
important part of the simulation, using SPICE models from
the PDK makes it more accurate and easier to perform co-
optimization.

The paper is organized as the following. Section II
explains the framework and its capabilities with an example
to show the interplay of the resistors in the feedback network
of the current comparator. Section III discusses the effect
of the DAC and input voltage range on inference accuracy.
Section IV discusses the OpAmp design consideration based
on inference accuracy requirement and its interaction with
the feedback network. Section V demonstrates the software-
circuit co-optimization, followed by conclusions.

II. THE FRAMEWORK
A typical neuromorphic circuit for NN is shown in Fig. 1.
As mentioned earlier, to minimize the area and power
consumption for IoT applications, only pure analog neu-
romorphic circuits are studied. Therefore, it does not have

VOLUME 10, 2022 41079



P. Quibuyen et al.: Software-Circuit-Device Co-Optimization Framework for Neuromorphic Inference Circuits

FIGURE 1. A typical neuromorphic circuit with the four critical components (DAC, ReRAM, Current Comparator, and
Rectification Unit) implemented in this study is shown. The details of the cross-bar array can be found in Fig. 3. Each
array corresponds to the VMM between two layers in a NN. The left-most one is the VMM from the input layer to the
first hidden layer. The rightmost one is from the last hidden layer to the output layer. This circuit corresponds to the
[50,20,8] NN for the UCI handwritten test set. Note that 2 arrays (for the VMM from 50 to 20 and 20 to 8) are not shown
for clarity.

FIGURE 2. The Software-Circuit-Device co-optimization framework in this
study.

inter-layer Analog-to-Digital Converters (ADC), multiplex-
ers, registers, shifters, and adders. It has 4 major components,
namely the DAC, emerging memory (ReRAM is shown as
an example), current comparator, and rectification unit [32].
The weight of the NN is encoded as the conductance of the
ReRAM. Since the conductance is always positive, to encode
negative weights, two ReRAM is used to encode one weight
and a current subtractor is used to convert the difference of the
currents to reflect the true values.When theweight is positive,
it is applied to the left string and the right string element is
set to the maximum gap size to achieve minimal conductance
(corresponds to ∼300k�) and vice versa when the weight is
negative.

Fig. 2 shows the framework. It consists of a jupyter
and python (version 3.7.3) wrapper. The jupyter wrapper is
the graphical user interface of the framework which allows
the user to view the plots and results of the simulations.
It also serves as a user-friendly interface for setting the
simulation and plotting options. The python wrapper receives
these settings and initializes the training of a software-
based Neural Network. The weights of the NN are then

FIGURE 3. Crossbar array schematic including the parasitic resistance and
capacitance.

automatically mapped into resistances of the memory devices
in the crossbar array (Fig. 1 and Fig. 3). In this study,
ReRAM is used and its Verilog-A model is developed
based on [33]. Temperature dependence of leakage current
is added by calibrating to the experiment in [6]. Moreover,
time integration methodology in the Verilog-A code is
improved over the original code so that program and erase are
independent of the initial bias before voltage sweeping [29]

41080 VOLUME 10, 2022



P. Quibuyen et al.: Software-Circuit-Device Co-Optimization Framework for Neuromorphic Inference Circuits

FIGURE 4. Electrical characteristics of the ReRAM used in this study. Left:
Current-Voltage characteristics; Middle: Gap size as a function of voltage;
Right: Gap size relationship to the conductance.

(a limitation in the original model). The framework is also
compatible with other types of memory devices as long as
the SPICE or Verilog-A model and the equation relating the
conductance to the parameter of the device are provided.
In the case of the ReRAM, the programmed parameter is
the gap size between the filament and the top electrode.
Fig. 4 shows the electrical characteristic of the ReRAM and
its relationship to the gap size. Cadence Spectre is used for
the circuit simulation [34] but other EDA software can be
integrated using the same setup. A generic 45nm technology
available in Cadence is used to design the peripheral circuits.

Once the weights have been mapped into the parameters of
thememory devices, the pythonwrapper proceeds to generate
the netlist of the neuromorphic circuit from the model files
and subcircuit templates of the memory devices and other
circuit blocks such as the DACs, current subtractor, and the
rectification unit as shown in Fig. 1 to Fig. 3. The input test
data is also scaled and converted into binary representation to
be fed into the DACs.

In order to assess the accuracy of the neuromorphic circuit,
multiple simulations are performed using the co-optimization
framework. Each of these simulations corresponds to a data
point in the test dataset. Multiprocessing is enabled in the
framework allowing up to 30 parallel Spectre simulations.

As an initial illustration, using the framework, a software-
based NN of size [50,20,8] (i.e. 3 hidden layers each with 50,
20, and 8 nodes, respectively) was trained with 1617 images
from the UCI dataset of handwritten digits [35]. Each
image is an 8 × 8 matrix. Therefore, the input layer has
64 nodes and the output layer has 10 nodes for the digits
from 0 to 9. Fig. 1 illustrates the corresponding circuits
with 8966 ReRAM (note that this includes the bias rows and
each ReRAM array corresponds to the VMM from one layer
to another layer and therefore there are 4 ReRAM arrays).
The python wrapper generates the netlist of the neuromorphic
circuit using Verilog-A models of ReRAM weights, DAC,
Op-Amp, and ReLU circuit blocks. Here only Verilog-A
models are used. The effect of Op-Amp design using SPICE
models will be discussed in the following sections. The
open-loop gain, AOL , of the op-amps is set to 80dB. The
resistances of the feedback network in the current subtractor

(Fig. 2), Rin, R1, and R2 were set to 100�, 1k�, and 100k�
respectively. The neuromorphic circuit and the software-NN
were then both tested on the remaining 180 images. The
accuracy of the neuromorphic circuit and the software-NN
are both 96.67%. TheMLPClassifier in Scikit-Learn (version
0.20.3) is used with default settings (e.g. adam solver is used
with the regularization parameter of 0.0001, shuffle=True,
and batch_size=auto, which is 200 in this study) [36].

The output of the current subtractor in Fig. 2 is given by
the equation:

Vsub =
(Icol+ − Icol−)

RinR2
R1

1+ R2+R1
R1AOL

(1)

here, Icol+ and Icol− are the currents flowing through the
positive and negative columns (Fig. 1). Ideally, with a very
large open-loop gain, the output is given by:

Vsub(ideal) = (Icol+ − Icol−)
RinR2
R1

(2)

Therefore, the current subtractor also acts as a current-to-
voltage converter with a ratio of RinR2

R1
and, thus, 1 + R2+R1

R1AOL
is the non-ideality factor. Based on the non-ideal equation
(Eq. (1)), it is expected that for a fixed R2, as R1 increases,
the non-ideality factor and gain error will decrease. However,
if R1 is too large, the closed-loop gain would be too small
to amplify the currents to useable voltage levels and causes
errors in the computation. Therefore, to keep R1 large enough
for high close-loop gain while reducing the gain error, Rin can
be increased as long as Rin is still much less than R2 + R1
and the resistances in the crossbar. Therefore, this is a non-
trivial optimization problem. Fig. 5 shows that the trade-off
between Rin and R1 is not trivial (for R2 = 100k �). Based
on the area requirement, resistance accuracy, and inference
accuracy requirement, one may choose different Rin and R1
pairs for the application. For example, Rin/R1 = 10�/100�
gives the highest accuracy of 97.22%. But one will choose
Rin/R1 = 1�/0.1� (96.67% inference accuracy) to get
the smallest layout area but might have the worse process
variation.

The framework also enables the plotting of the voltage,
current, resistance, power, and gap size of the ReRAMs
for visualization and debugging. Fig. 6 shows the potential
distribution in various layers (layer 0 to layer 3) of an example
(hand-written digit ‘‘3’’) and the input potential. It can be seen
that the potential is very uniform across the rows because
of the small potential drop across the horizontal lines. The
difference in the currents flowing through the ReRAMs in
adjacent columns represents a multiplication operation on the
input voltage and the conductance of the ReRAM. The total
current flowing in a column is the sum of all these products
and represents the accumulation operation. These form the
basis of the Multiply-and-Accumulate operation needed in
ANNs. In Fig. 7, the total column current in the last layer
is maximum in column 3. The neuromorphic circuit correctly
predicts the label (3) of the input shown in Fig. 6. Note that
the current plot has half the width of other plots because

VOLUME 10, 2022 41081



P. Quibuyen et al.: Software-Circuit-Device Co-Optimization Framework for Neuromorphic Inference Circuits

FIGURE 5. Training accuracy as a function of Rin and R1 in the current
comparator in Fig. 3. This is for the [50,20,8] NN for the UCI hand-written
test set with R2 = 100k�.

FIGURE 6. Top left: Example of an image (hand-written digit ‘‘3’’)
encoded with potential. Others: Potential maps of the 4 ReRAM arrays in
the [50,20,8] NN.

the difference in the currents of two adjacent branches is
displayed. Fig. 8 and Fig. 9 plot the ReRAM resistance maps
and power consumption maps. The total power consumption
is only 69µW.

By enabling parasitic simulation in the simulation options
of the Jupyter wrapper, parasitic components can be added
to the netlist as well as the post-layout extractions of the
subcircuits. This is useful for measuring the speed of the
neuromorphic circuit with transient simulations.

The ReRAM may be formed between the silicide poly
and M1 (poly/M1) or M1 and M2 (M1/M2). This framework
allows users to incorporate the parasitic resistance and
capacitance of the wires in the simulation (Fig. 3) to study
its transient response.

Table 1 show the extracted parasitic capacitance and
resistance when ReRAM is formed at the cross-points of
poly/M1 or M1/M2. Minimum spacing and line width of the
45nm technology are used.

FIGURE 7. ReRAM current maps of various arrays in the [50,20,8] NN.
Note that they display the current difference in each ReRAM pair. The
bottom shows the output layer total Icol+ − Icol− for each column. ‘‘3’’
has the largest current and thus the NN recognizes the digit ‘‘3’’ correctly.

FIGURE 8. Resistance maps of various arrays in the [50,20,8] NN.

TABLE 1. Extracted parasitic capacitance and resistance of the generic
45nm technology.

III. THE EFFECT OF DAC AND VOLTAGE RANGE
In reality, the input data to the neuromorphic circuit in an IoT
application can be analog or digital. Here it is assumed that
the input signal has been digitized (e.g. the digitized camera
image). Depending on the accuracy and power requirements,
it can be digitized to different numbers of binary digits.
Therefore, a DAC is needed to convert the digital signal to the
analog voltage for the neuromorphic circuit (Fig. 1). The UCI
images are used in this study. The pixel values in the UCI data

41082 VOLUME 10, 2022



P. Quibuyen et al.: Software-Circuit-Device Co-Optimization Framework for Neuromorphic Inference Circuits

FIGURE 9. Power dissipation maps of various arrays in the [50,20,8] NN
with total power dissipation = 69µW.

FIGURE 10. NN inference accuracy vs DAC resolution and scaling voltage
for a [8,8,8] neuromorphic circuit. Top: 3D view. Bottom: Top View.

set are in the range of p = 0 to 16 and can be represented by
5 bits. To emulate images digitized with a different number of
bits,M , the following equation is used to transform the pixel
values, p, in the testing data set.

V i = V sInt

(
p
2M − 1

2N − 1

)
/(2N − 1) (3)

whereVi is the input voltage to the neuromorphic circuits (e.g.
i = 0 to 63 in Fig. 1), N = 5, and Vs is the scaling voltage.
Int() is a round-off-to-integer function. Note that the training
process still uses the original UCI data (i.e. 5 bits).

We then study howM and Vs affect the inference accuracy.
Two NN are tested, namely [50,20,8] and [8,8,8]. Fig. 10 and
Fig. 11 show the surface plots of the prediction accuracy of
these two NN as a function ofM and Vs.

The accuracy of the [50,20,8] and [8,8,8] software neural
networks are 96.67% and 90% respectively. As expected,
for a reasonable Vs, as the DAC resolution is increased, the
neuromorphic circuit accuracy increases until it reaches the
software-neural network accuracy as the limit, in general.

FIGURE 11. NN inference accuracy vs DAC resolution and scaling voltage
for a [50,20,8] neuromorphic circuit. Top: 3D view. Bottom: Top View.

However, note that for the [50,20,8] NN, the hardware
accuracywhenVs = 0.1V andM ≥ 5 is 97.22% and is higher
than the software accuracy. This shows the non-trivialness in
neuromorphic circuit optimization.

It can also be seen that the larger NN is more robust than
the smaller NN. Firstly, the smaller NN [8,8,8] only has high
accuracy (within 10% of the peak accuracy) from Vs = 0.1V
toVs = 0.4V while the larger one [50,20,8] has high accuracy
from Vs = 0.04V to Vs = 0.48V . Moreover, there is a wide
range of Vs (also 0.04V to 0.48V ) in which the accuracy is
high even withM = 3 for the large NN but this happens only
for Vs = 0.16V in the small NN.

IV. EFFECT OF THE OPAMP DESIGN
As shown in Fig. 1, the OpAmp plays an important role in
the neuromorphic circuit. It is an essential part of the current
comparator. It also acts as the buffer for the rectification unit
(see [30]). Therefore, it is important to study its effect on
inference accuracy.

Table 2 shows the effect of the OpAmp open-loop gain
(AOL) on the inference accuracy compared to the software
one. R2 is set to 100k� and R1/Rin = 10. It is found that
an open-loop gain of 80dB is required to attain software
accuracy. When Rin is small (e.g. 10�), as discussed earlier,
there is a requirement of high AOL so that the gain error
in Eq. (1) can be reduced. For example, at AOL = 60dB
and Rin = 10�, the inference accuracy is reduced
substantially by 47%. Therefore, it might be desirable to use
R1/Rin = 50/500 by using unsilicided poly resistance to
reduce the design requirement of the OpAmp.

A two-stage amplifier using folded cascode followed by a
common source amplifier with a layout area of about 3µm2

is designed using the generic 45nm PDK. Fig. 12 shows the
schematic with AOL = 68dB. Fig. 13 shows it is stable with
the feedback. It is found that the stability increases R2/R1
increases. This is expected because the feedback factor is

VOLUME 10, 2022 41083



P. Quibuyen et al.: Software-Circuit-Device Co-Optimization Framework for Neuromorphic Inference Circuits

FIGURE 12. A two-stage amplifier with AOL = 68dB.

TABLE 2. Effect of OpAMP open loop gain on inference accuracy as
function of RIN/R1. The First number is the accuracy compared to
software and the second number is AOL.

R1/R2. Therefore, the system is more stable when R1/R2 is
smaller.

V. SOFTWARE CIRCUIT CO-OPTIMIZATION
An optimal NN is not necessarily the one that gives the
highest accuracy. Particularly, in IoT applications, the NN
size, power consumption, and circuit areas need to be
considered, to minimize the power consumption and cost.
This cannot be studied by software ML alone.

As an example, we consider the application of 1-hidden
layer NN for UCI and MNIST [37] handwritten datasets.
MNIST is a larger database of handwritten digits (70000
images) and the neural networks are trained and tested
with 60000 and 10000 images, respectively. Moreover, each
MNIST has 28 × 28 pixels with pixel values between 0 and
255.

We study the change of inference accuracy as a function
of the number of nodes in the hidden layer. The node
number changes from 100 to 13. For the 100-node case, the
MNIST circuit uses about 160,000 ReRAM. With 30 CPU
cores, the inference simulations are completed within
about 70 hours.

Fig. 14 shows that by using software ML, one cannot
predict the trend and actual performance precisely when it

FIGURE 13. Loop gain properties of the amplifier in Fig. 12 with the
feedback circuit in Fig. 3.

is applied to the neuromorphic circuit. For example, as the
number of nodes decreases in the UCI case, the software ML
predicts that the accuracy will drop rapidly when the number
of nodes is reduced from 100 to 50. However, the actual
hardware accuracy does not change. This results in a larger
design space than that predicted by the software.

On the other hand, the MNIST study shows that even with
13 nodes, the software ML can still achieve >90% accuracy
(equivalent to almost a 10X reduction in the array size and
number of the current comparator). However, the accuracy
is not acceptable (only 75%) when it is implemented in
the neuromorphic circuit. Therefore, it is very important to

41084 VOLUME 10, 2022



P. Quibuyen et al.: Software-Circuit-Device Co-Optimization Framework for Neuromorphic Inference Circuits

FIGURE 14. Inference accuracy vs hidden layer size in software ML and
neuromorphic hardware circuit. Top: UCI dataset. Bottom: MNIST dataset.

co-optimize the software architecture and the neuromorphic
circuit.

The UCI inference accuracy increases again when the
NN only has 13 hidden nodes. This shows that NN is too
complicated to understand (known as a black box) and often
gives unexpected results. Therefore, it is very important to
perform a full SPICE circuit simulation to find the optimal
setup.

VI. CONCLUSION
A Software-Circuit-Device co-optimization framework for
neural network inference is developed and presented. This
framework allows users to perform software machine learn-
ing and co-optimize with the corresponding neuromorphic
circuit through SPICE simulations. It takes Verilog-A or
SPICE models from the PDK without the need for additional
calibration to behavior models.

It is shown that this framework is particularly useful for
IoT edge inference device which has stronger requirements
on power and cost and where fully analog circuits are
desired. Fully analog neuromorphic circuits using ReRAM
have been simulated as an example. In addition, the
framework can handle MNIST data and perform inference
accuracy simulation in a reasonable time even with limited
computation resources. It is demonstrated that the co-design

of software NN architecture, DAC, OpAmp, and its feedback
network are important to optimize the neuromorphic circuit
in a 45nm technology.

VII. LIMITATIONS AND FUTURE WORK
This framework requires accurate SPICE or Verilog-A
models of the emerging memories. If they are not available,
a Verilog-A model needs to be developed based on the
behavior model, if available. Note that the frame supports
stochastic simulation. For example, the initial gap size can be
randomized as a parameter to the subcircuit of each ReRAM.
In this demonstration, the ReRAMweights are not quantized.
However, this can be done easily by digitizing the gap size for
each ReRAM before calling the subcircuit.

In the current framework, modular crossbar tiles and
ReRAM selectors are not used. Moreover, only fully-
connected neural networks with ReLU activation functions
have been tested. However, since the activation function is
implemented as a subcircuit, other activation functions can
be quickly added to the framework as long as the model
(Verilog-A or SPICE) is available. The current version of the
framework also does not support convolutional layers. There
are some methods to implement the convolution operation as
a vector-matrix product that is compatible with the ReRAM
array such as in [38] and the framework can be modified
accordingly.

In this framework, we assumed the circuit is fully analog
but noise is not considered. The impact of noise due to having
fully analog communication between layers should be studied
to ensure the circuit works in non-ideal environments.

DATA AVAILABILITY
The framework and data that support the findings of this study
are available from the corresponding author upon reasonable
request. The coding of the critical parts of the framework is
explained and can be found in [39], [40].

REFERENCES
[1] A. C.Müller and S. Guido, Introduction toMachine LearningWith Python,

1st ed. Boston, MA, USA: O’Reilly Media, 2016.
[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based

learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.

[3] E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn, ‘‘Estimation
of energy consumption in machine learning,’’ J. Parallel Distrib. Comput.,
vol. 134, pp. 75–88, Dec. 2019, doi: 10.1016/j.jpdc.2019.07.007.

[4] D. Ielmini and H. S. P. Wong, ‘‘In-memory computing with resistive
switching devices,’’Nature Electron., vol. 1, no. 6, pp. 333–343, 2018, doi:
10.1038/s41928-018-0092-2.

[5] H. Tsai, S. Ambrogio, P. Narayanan, R. M. Shelby, and G. W. Burr,
‘‘Recent progress in analogmemory-based accelerators for deep learning,’’
J. Phys. D, Appl. Phys., vol. 51, no. 28, Jul. 2018, Art. no. 283001.

[6] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, ‘‘Dot-product engine
for neuromorphic computing: Programming 1T1M crossbar to accelerate
matrix-vector multiplication,’’ in Proc. 53nd ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Austin, TX, USA, Jun. 2016, pp. 1–6, doi:
10.1145/2897937.2898010.

[7] Y.-F. Chang, F. Zhou, B. W. Fowler, Y.-C. Chen, C.-C. Hsieh, L. Guckert,
E. E. Swartzlander, and J. C. Lee, ‘‘Memcomputing (memristor + com-
puting) in intrinsic SiOx -based resistive switching memory: Arithmetic
operations for logic applications,’’ IEEE Trans. Electron Devices, vol. 64,
no. 7, pp. 2977–2983, Jul. 2017, doi: 10.1109/TED.2017.2699679.

VOLUME 10, 2022 41085

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.jpdc.2019.07.007
http://dx.doi.org/10.1038/s41928-018-0092-2
http://dx.doi.org/10.1145/2897937.2898010
http://dx.doi.org/10.1109/TED.2017.2699679


P. Quibuyen et al.: Software-Circuit-Device Co-Optimization Framework for Neuromorphic Inference Circuits

[8] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S.-P. Wong, ‘‘A low
energy oxide-based electronic synaptic device for neuromorphic visual
systems with tolerance to device variation,’’ Adv. Mater., vol. 25, no. 12,
pp. 1774–1779, Mar. 2013, doi: 10.1002/adma.201203680.

[9] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. T. Chen, and M.-J. Tsai, ‘‘Metal-oxide RRAM,’’ Proc. IEEE, vol. 100,
no. 6, pp. 1951–1970, Jun. 2012, doi: 10.1109/JPROC.2012.2190369.

[10] X. Sun, P. Wang, K. Ni, S. Datta, and S. Yu, ‘‘Exploiting hybrid
precision for training and inference: A 2T-1FeFET based analog synaptic
weight cell,’’ in IEDM Tech. Dig., Dec. 2018, pp. 3.1.1–3.1.4, doi:
10.1109/IEDM.2018.8614611.

[11] Z. He, S. Angizi, and D. Fan, ‘‘Exploring STT-MRAM based in-memory
computing paradigm with application of image edge extraction,’’ in Proc.
IEEE Int. Conf. Comput. Design (ICCD), Nov. 2017, pp. 439–446, doi:
10.1109/ICCD.2017.78.

[12] S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan,
G. W. Burr, N. Sosa, A. Ray, J.-P. Han, C. Miller, K. Hosokawa,
and C. Lam, ‘‘NVM neuromorphic core with 64k-cell (256-by-256)
phase change memory synaptic array with on-chip neuron circuits for
continuous in-situ learning,’’ in IEDM Tech. Dig., Dec. 2015, p. 17, doi:
10.1109/IEDM.2015.7409716.

[13] J. Tang, D. Bishop, S. Kim, M. Copel, T. Gokmen, T. Todorov,
S. Shin, K.-T. Lee, P. Solomon, K. Chan, W. Haensch, and J. Rozen,
‘‘ECRAM as scalable synaptic cell for high-speed, low-power neu-
romorphic computing,’’ in IEDM Tech. Dig., Dec. 2018, p. 13, doi:
10.1109/IEDM.2018.8614551.

[14] P. Gu, B. Li, T. Tang, S. Yu, Y. Cao, Y.Wang, and H. Yang, ‘‘Technological
exploration of RRAM crossbar array for matrix-vector multiplication,’’
in Proc. 20th Asia South Pacific Design Autom. Conf., Jan. 2015,
pp. 106–111, doi: 10.1109/ASPDAC.2015.7058989.

[15] M. Hu, H. Li, Q. Wu, and G. S. Rose, ‘‘Hardware realization of BSB recall
function using memristor crossbar arrays,’’ in Proc. 49th Annu. Design
Autom. Conf. (DAC), Jun. 2012, pp. 498–503.

[16] Y.-F. Kao, W. C. Zhuang, C.-J. Lin, and Y.-C. King, ‘‘A study of
the variability in contact resistive random access memory by stochastic
vacancy model,’’ Nanosc. Res. Lett., vol. 13, no. 1, p. 213, Dec. 2018, doi:
10.1186/s11671-018-2619-x.

[17] M. Ueki, K. Takeuchi, T. Yamamoto, A. Tanabe, N. Ikarashi, M. Saitoh,
T. Nagumo, H. Sunamura, M. Narihiro, K. Uejima, K. Masuzaki,
N. Furutake, S. Saito, Y. Yabe, A. Mitsuiki, K. Takeda, T. Hase,
and Y. Hayashi, ‘‘Low-power embedded ReRAM technology for IoT
applications,’’ in Proc. Symp. VLSI Technol. (VLSI Technol.), Jun. 2015,
pp. T108–T109, doi: 10.1109/VLSIT.2015.7223640.

[18] A. Baumann, M. Jung, K. Huber, M. Arnold, C. Sichert, S. Schauer, and
R. Brederlow, ‘‘A MCU platform with embedded FRAM achieving 350nA
current consumption in real-time clock mode with full state retention and
6.5µs system wakeup time,’’ in Proc. Symp. VLSI Circuits, Jun. 2013,
pp. C202–C203.

[19] P.-Y. Chen, X. Peng, and S. Yu, ‘‘NeuroSim+: An integrated device-
to-algorithm framework for benchmarking synaptic devices and array
architectures,’’ in IEDM Tech. Dig., Dec. 2017, pp. 6.1.1–6.1.4, doi:
10.1109/IEDM.2017.8268337.

[20] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie, ‘‘Design implications of
memristor-based RRAM cross-point structures,’’ in Proc. Design, Autom.
Test Eur., Mar. 2011, pp. 1–6.

[21] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, ‘‘Design trade-
offs for high density cross-point resistive memory,’’ in Proc. ACM/IEEE
Int. Symp. Low Power Electron. Design (ISLPED), 2012, pp. 209–214.

[22] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, ‘‘Overcoming the challenges of crossbar resistive memory
architectures,’’ in Proc. IEEE 21st Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2015, pp. 476–488.

[23] C. Lammie, J. K. Eshraghian, C. Li, A. Amirsoleimani, R. Genov,
W. D. Lu, and M. R. Azghadi, ‘‘Design space exploration of dense
and sparse mapping schemes for RRAM architectures,’’ 2022,
arXiv:2201.06703.

[24] D. M. Mathew, A. L. Chinazzo, C. Weis, M. Jung, B. Giraud, P. Vivet,
A. Levisse, and N. Wehn, ‘‘RRAMSpec: A design space exploration
framework for high density resistive RAM,’’ in Embedded Computer
Systems: Architectures, Modeling, and Simulation, D. N. Pnevmatikatos,
M. Pelcat, and M. Jung, Eds. Cham, Switzerland: Springer, 2019,
pp. 34–47.

[25] M. J. Rasch, D. Moreda, T. Gokmen, M. Le Gallo, F. Carta,
C. Goldberg, K. El Maghraoui, A. Sebastian, and V. Narayanan, ‘‘A
flexible and fast PyTorch toolkit for simulating training and inference
on analog crossbar arrays,’’ in Proc. IEEE 3rd Int. Conf. Artif. Intell.
Circuits Syst. (AICAS), Jun. 2021, pp. 1–4, doi: 10.1109/aicas51828.2021.
9458494.

[26] C. Lammie, W. Xiang, B. Linares-Barranco, and M. Rahimi Azghadi,
‘‘MemTorch: An open-source simulation framework for memristive deep
learning systems,’’ 2020, arXiv:2004.10971.

[27] Y. Demirag, C. Frenkel, M. Payvand, and G. Indiveri, ‘‘Online training of
spiking recurrent neural networks with phase-change memory synapses,’’
2021, arXiv:2108.01804.

[28] C. Lammie, W. Xiang, and M. Rahimi Azghadi, ‘‘Modeling and
simulating in-memory memristive deep learning systems: An overview
of current efforts,’’ Array, vol. 13, Mar. 2022, Art. no. 100116, doi:
10.1016/j.array.2021.100116.

[29] H. Cao, T. Lam, H. Nguyen, A. Venkattraman, D. Parent, and H. Y. Wong,
‘‘Study of ReRAM neuromorphic circuit inference accuracy robust-
ness using DTCO simulation framework,’’ in Proc. IEEE Workshop
Microelectron. Electron Devices (WMED), Apr. 2021, pp. 1–4, doi:
10.1109/WMED49473.2021.9425210.

[30] A. Nguyen, H. Nguyen, S. Venimadhavan, A. Venkattraman, D. Parent,
and H. Y.Wong, ‘‘Fully analog ReRAMneuromorphic circuit optimization
using DTCO simulation framework,’’ in Proc. Int. Conf. Simulation
Semiconductor Processes Devices (SISPAD), Sep. 2020, pp. 201–204, doi:
10.23919/SISPAD49475.2020.9241635.

[31] P. Quibuyen, T. Jiao, and H. Y. Wong, ‘‘2022 IEEE 4th international
conference on artificial intelligence circuits and systems (AICAS),’’ in
Proc. IEEE 4th Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jan. 2022,
pp. 1–5.

[32] X. Peng, R. Liu, and S. Yu, ‘‘Optimizing weight mapping and data flow
for convolutional neural networks on RRAM based processing-in-memory
architecture,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019,
pp. 1–5, doi: 10.1109/ISCAS.2019.8702715.

[33] Z. Jiang and H. P. Wong, Stanford University Resistive-Switching
Random Access Memory (RRAM) Verilog—A Model. Lafayette, IN, USA:
nanoHUB, 2014, doi: 10.4231/D37H1DN48.

[34] Spectre Simulation Platform. Accessed: Dec. 16, 2021. [Online]. Avail-
able: https://www.cadence.com/en_US/home/tools/custom-ic-analog-RF-
design/circuit-simulation/spectre-simulation-platform.html

[35] D. Dua and C. Graff,UCIMachine Learning Repository. Irvine, CA, USA:
Univ. California, 2019. [Online]. Available: http://archive.ics.uci.edu/ml

[36] Sklearn.Neural_Network.MLPClassifier—Scikit-Learn 1.0.2
Documentation. Accessed: Dec. 16, 2021. [Online]. [Online]. Available:
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html

[37] THE MNIST DATABASE of Handwritten Digits. Yann LeCun, Courant
Institute, NYU Corinna Cortes, Google Labs, New York Christopher J. C.
Burges, Microsoft Research, Redmond. Accessed: Jan. 15, 2020. [Online].
Available: https://yann.lecun.com/exdb/mnist/

[38] S. Ko, Y. J. Soh, and J. Zhao, ‘‘Efficient implementation of multi-channel
convolution inmonolithic 3DReRAMcrossbar,’’ 2020, arXiv:2004.00243.

[39] A. Nguyen, ‘‘Study of ReRAM neuromorphic circuit performance using
DTCO simulation framework,’’ M.S. thesis, Elect. Eng., San Jose State
Univ., San Jose, CA, USA, 2021.

[40] P. Quibuyen, ‘‘Study and design of analog circuit blocks for neuromorphic
computing using DTCO simulation framework,’’ M.S. thesis, Elect. Eng.,
San Jose State Univ., San Jose, CA, USA, 2022.

41086 VOLUME 10, 2022

http://dx.doi.org/10.1002/adma.201203680
http://dx.doi.org/10.1109/JPROC.2012.2190369
http://dx.doi.org/10.1109/IEDM.2018.8614611
http://dx.doi.org/10.1109/ICCD.2017.78
http://dx.doi.org/10.1109/IEDM.2015.7409716
http://dx.doi.org/10.1109/IEDM.2018.8614551
http://dx.doi.org/10.1109/ASPDAC.2015.7058989
http://dx.doi.org/10.1186/s11671-018-2619-x
http://dx.doi.org/10.1109/VLSIT.2015.7223640
http://dx.doi.org/10.1109/IEDM.2017.8268337
http://dx.doi.org/10.1109/aicas51828.2021.9458494
http://dx.doi.org/10.1109/aicas51828.2021.9458494
http://dx.doi.org/10.1016/j.array.2021.100116
http://dx.doi.org/10.1109/WMED49473.2021.9425210
http://dx.doi.org/10.23919/SISPAD49475.2020.9241635
http://dx.doi.org/10.1109/ISCAS.2019.8702715
http://dx.doi.org/10.4231/D37H1DN48

