
Received March 28, 2022, accepted April 13, 2022, date of publication April 18, 2022, date of current version April 27, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3168019

Gait Recognition With Wearable Sensors Using
Modified Residual Block-Based Lightweight CNN
MD. AL MEHEDI HASAN 1,2, FUAD AL ABIR 2, MD. AL SIAM2,
AND JUNGPIL SHIN 1, (Senior Member, IEEE)
1School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima 965-8580, Japan
2Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh

Corresponding author: Jungpil Shin (jpshin@u-aizu.ac.jp)

ABSTRACT Gait recognition with wearable sensors is an effective approach to identifying people by
recognizing their distinctive walking patterns. Deep learning-based networks have recently emerged as a
promising technique in gait recognition, yielding better performance than template matching and traditional
machine learning methods. However, most recent studies have focused on improving gait detection accuracy
while neglecting model complexity in the deep learning domain, making them unsuitable for low-power
wearable devices. Therefore, inference from these models results in latency due to calculation overhead.
This study proposes an efficient network suitable for wearable devices without sacrificing prediction
performance. We have modified the residual block and accumulated it in shallow convolutional neural
networks with five weighted layers only for gait recognition and proved the efficacy of all the architectural
components with extensive experiments over publicly available IMU-based datasets: whuGait and OU-ISIR.
Our proposed model outperforms all the state-of-the-art methods regarding recognition accuracy and is more
than 85 percent efficient on average in terms of model parameters and memory consumption.

INDEX TERMS Computational efficiency, gait recognition, lightweight CNN, memory-usage reduction,
parameter reduction, residual learning, wearable sensors.

I. INTRODUCTION
Biometrics is the process of automatically identifying an
individual based on physiological or behavioral characteris-
tics that are highly unique, stable, and easily obtained [1].
Physiological biometrics are concerned with the shape of the
body, such as the human face [2], fingerprints [3], iris [4],
etc., while behavioral biometrics are concerned with the
pattern of behavior of a person, such as keystrokes, gait,
signatures, etc. Many physiological biometrics have been
commercially deployed. However, some of these biometrics
are intrusive to users since they rely on the active participation
of the users to collect data [5]. For example, users may
be asked to place a finger on a gadget to take their
fingerprints or stare at a camera close enough to have
their irises photographed. In such circumstances, a user
may feel insulted and quickly understand that his or her
identity is being scrutinized [6]. Moreover, physiological
biometrics has several insurmountable flaws. First, sensors
for acquiring physiological characteristics (e.g., fingerprint
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scanners, cameras) are costly and large. Second, biometrics
can be falsified and hacked in some cases. Face recognition,
for example, may be tricked by using a picture or video of
the target face [7], [8]. Finally, if any unlocked device is lost,
there is a risk of revealing private data to strangers [9].

Gait is a behavioral biometric that refers to the walking
posture of a person [10], which is very difficult to duplicate
or copy [1], [2], [11]. The identity identification method
based on gait is dynamic, real-time, and continuous in nature
and does not require direct user participation and has a
high level of security [5], [9]. In addition, as microelectron-
ics technology has advanced, practically all the wearable
intelligent devices (WIDs) have been integrated with the
inertial measurement units (IMUs) because of their low cost,
compact size, and low power consumption, which enables the
researchers to collect gait information using the built-in IMUs
in the WIDs and authenticate the users [12]. Inertial sensors,
such as accelerometers and gyroscopes, are used to record
the inertial data created by the movement of a walking body
in inertia-based gait recognition approaches. As the sensors
record gait dynamics, the inertial data effectively extracts
walking patterns [13].
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Using IMU sensors, the effective use of wearable devices
for gait recognition requires efficient recognition networks
with minimal computation overhead. Therefore, we had to
encounter two major challenges: (a) designing a lightweight
model suitable for low-powered wearable devices; and
(b) achieving state-of-the-art performance in gait recognition,
which is particularly difficult for datasets with a large number
of subjects. Our study overcame all these challenges, and the
main contributions are as follows:
• We proposed an efficient residual convolutional neural
network for gait recognition, which is suitable for
wearable devices and outperforms all the state-of-the-
art methods on multiple publicly available IMU-based
datasets.

• We modified the residual block by using non-linear
activation function before the batch normalization layer
and showed the superiority of the proposed residual
block by comparing it with the existing residual blocks.
Finally, we designed a novel shallow convolutional
neural network using the proposed modified residual
block to build the lightweight model.

• Furthermore, we demonstrated the efficacy of all archi-
tectural components in the proposed lightweight model
through extensive ablation, insertion, and modification
experiments.

The rest of this paper is organized in the following manner:
Section 2 presents previous works related to this study. The
dataset is described in Section 3, along with the proposed
residual learning recognition methodology. The experimental
analysis and performance evaluation of the models are
presented in Section 4. Finally, this paper concludes by
emphasizing our contributions in Section 5.

II. RELATED WORKS
Gait recognition with sensors can be done in several
ways, including with sensors on the floor, shoes, and body
[14]–[16]. The inertia-sensor-based approaches are the most
appealing among these methods and their variations because
inertial sensors can be put on the body to collect movement
characteristics in great detail [17]–[23], and the acquired
time-series gait data can be used to identify and authenticate
people [24], [25]. Template matching and machine learning-
based methods are the two primary ways of IMU-based gait
recognition [26], [27]. The user is identified using template
matching methods by comparing the gait templates stored in
WIDs [28]. If the resemblance exceeds a predefined level,
the user is accepted as authentic. Dynamic time warping
(DTW) [29], Pearson correlation coefficient (PCC) [30],
and cross-correlation [31] are commonly used methods for
calculating resemblance. Many earlier studies have looked
at various template matching algorithms [32]–[38], and
good results have been produced under controlled laboratory
circumstances [39].

In their research, Ailisto et al. presented a signal-
correlation approach for inertia-based gait identification
where the recognition was done using template matching

and cross-correlation computing [40], [41]. Following this
research, Gafurov et al.made numerous significant improve-
ments [16], [37], [42], [43]. In [43], they looked at the
gait biometrics of the minimal-effort impersonation attack
and the closest person attack. By inserting an accelerometer
sensor into the pocket of the user, they were able to collect
300 gait sequences from 50 participants and achieve an
equal error rate (EER) of 7.3% [37]. In [16], they tested
user authentication using the foot, pocket, arm, and hip
and discovered that a sideways motion of the foot makes
the most difference and that a different portion of the gait
cycle often leads to a different level of discrimination.
DTW was used by Liu et al. to match gait curves [44].
As an improvement to this work, the wavelet denoising
and gait-cycle segmentation techniques were introduced in
their later work [45]. Trivino et al. proposed a method for
modeling the perception of signal evolution using a fuzzy
finite state machine (FFSM) [46]. Zhang et al. presented
a method for avoiding cycle detection failures and phase
misalignment between cycles [36]. Derawi et al. improved
the gait-based authentication by providing a stable cycle
detection mechanism [47] along with thorough comparisons.

Due to the fast growth of mobile devices in recent years,
the accelerometer and gyroscope have become increasingly
available on smartphones [48] and smartwatches [49]. In a
variety of scenarios, such as person authentication [50]–[52],
medical analysis [53]–[55], and impersonation-attack
defense [56], smartphones have been used for gait recogni-
tion [57]–[59]. Data can be collected by keeping smartphones
in participants’ pockets [50]. However, template matching
methods need to detect the gait cycles to construct the gait
template, and test samples [39]. Gait cycle identification is
difficult since it is sensitive to noise and device placements.
Changes in pace, road conditions, and device position are
all likely to produce gait cycle detection failures or inter-
cycle phase misalignment, resulting in incorrect recognition
results [36], [57], [60], [61]. Though there is currently
no standard for manually extracting distinguishing gait
features [62], Xu et al. proposed an adaptive preprocessing
algorithm for extracting the effective components from gait
data, and tested it on four publicly available datasets and
three different neural networks [63]. To acquire good results,
researchers must have extensive professional knowledge
and experience in related domains, as well as go through
data preprocessing, feature engineering, and continual
experimental verification and improvement, which takes time
and effort [64].

Gait recognition was performed using machine learn-
ing approaches that extracted and classified the unique
properties of gait signals into separate classes [65]–[67].
For gait identification, previous research employed support
vector machines (SVM) [68]–[70], k-nearest neighbors
(KNN) [71]–[73], and random forests (RF) [68], [69] and
found that these performed better than the template matching
approaches. The manually derived features used in machine
learning-based approaches had a significant effect on the
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recognition accuracy of these models. In recent years, deep
learning has seen much success in the fields of secure
computing [74], [75], and activity recognition [76]. Gait
identification based on deep learning approaches performed
better than classic machine learning-based methods [57],
[77], [78]. According to recent studies, the application of
deep learning approaches to research gait identification has
become a promising new trend [6], [26], [27], [61], [62],
[79], [80]. Gadaleta and Rossi [26] used convolutional
neural network (CNN) for gait recognition. They created an
IDNet framework based on CNN and one-class SVM [81]
for user identification and authentication, utilizing data
obtained by smartphones’ accelerometers and gyroscopes.
The PCA [82] approach was used to lower the dimension
of the gait features after they were extracted using a three-
layer CNN. The features were then used to identify and
authenticate users using the one-class SVM. Compared
to manual feature extraction, their findings demonstrated
that CNN automatically acquired more useful features and
performed better. In [83], three deep CNNs were built for
gait detection, utilizing the users’ gait energy images (GEIs)
as input. To boost classification accuracy, feature maps from
different convolutional stages were combined. Deep CNNs
with contrastive loss and triplet ranking loss were proposed
by Takemura et al. for cross-view gait recognition, and better
performance in person authentication and identification were
obtained [84]. Elharrouss et al. could be able to recognize the
gait with high accuracy using extracted GEIs and multitask
convolutional neural network models [85]. Gul et al.
proposed a 3D CNN architecture for gait recognition using
a holistic approach in the form of GEIs [86]. Liu et al.
presented a lightweight double-channel depthwise separable
convolutional neural network (DC-DSCNN) model for gait
recognition for wearable devices which could classify gait
with high accuracy using a lightweight model [87].

Traditional feature selection and machine-learning meth-
ods like PCA, Bayesian classifier, and SVM can also be
integrated with CNN [26], [88], [89]. In [90], CNN was
used to process three-dimensional data that included pictures
and optical flow information in order to recognize gait and
activity. In [76], to take the temporal characteristics into
account, a series of 2D images were combined into 3D data,
and 3D convolution kernels were used to derive activity
recognition characteristics. In the experiment performed by
Donahue et al., LSTMs andCNNswere integrated for activity
recognition [91]. Yu et al. built a gait feature extractor
using a generative adversarial network (GAN) to decrease
the influence of view angle, weight, and clothes [92].
Chen et al. used the Multi-view Gait Generative Adversarial
Network (MvGGAN) to produce synthetic gait samples
in order to augment existing gait datasets, which provide
sufficient gait samples for deep learning-based cross-view
gait recognition methods [93].

Deep learning-based gait recognition methods yield better
performance than template matching and machine learning
methods. However, there is an apparent flaw with them: the

models are too sophisticated with a large number of model
parameters for wearable intelligent devices with limited
computational power and capacity [6], [39]. Therefore,
inference from these models result in latency due to
calculation overhead. It is evident that we have to make
the models more efficient by constructing simpler models
with minimal computation overhead, i.e., fewer parameters
without sacrificing prediction performance to make them
suitable for wearable devices. Residual learning was firstly
proposed for computer vision tasks to train very deep
convolutional neural networks.We have successfully adopted
residual learning for gait recognition, accumulated in shallow
networks with a minimal number of parameters, and proved
the efficacy of all the components of the architecture with
extensive experiments. Our proposed model has achieved
state-of-the-art accuracy inmultiple widely used IMU sensor-
based gait datasets and is more than 85% efficient on average
in terms of parameter and memory consumption than the
latest gait recognition study [39].

III. MATERIALS AND METHODS
A. DATASET DESCRIPTION
We used two publicly available gait datasets, namely the
whuGait dataset and the OU-ISIR dataset. Both of them are
sensor data collected using accelerometer and gyroscope.
Ngo et al. from Osaka University released the OU-ISIR
dataset, which is the most extensive public gait dataset
with the most number of subjects [94]. Zou et al. from
Wuhan University provided the whuGait dataset. They also
preprocessed both of the datasets, benchmarked with train set
and independent test set and shared them in their research [6].

The whuGait dataset comprises inertial data from 118 per-
sons acquired using smartphones in an unconstrained envi-
ronment with no knowledge of when, where, or how the
subjects walked. The sensors sampled at 50 Hz, with each
sample containing 3-axis accelerometer and 3-axis gyroscope
data [6]. In this study, we have used four whuGait datasets
namely Dataset #1 to Dataset #4 for gait recognition. The
number of participants, data segmentation method, whether
or not the samples overlap, and sample size are the most
significant variations across the four datasets.

The OU-ISIR dataset consists of 744 subjects. Among
them, 389 are males, and 355 are females, with a broad age
range of 2 to 78 years. This dataset recorded Gait signals
at 100 Hz via a waist belt-mounted central IMU. On a flat
area, each of the 744 participants walked for 9 meters [6].
The 3-axis acceleration and 3-axis angular velocity data were
acquired from accelerometer and gyroscope. Summary of the
datasets used in this study is provided in Table 1.

B. PROPOSED METHODS FOR GAIT RECOGNITION
1) MODIFIED RESIDUAL BLOCK BASED LIGHTWEIGHT CNN
Since the inception of the residual learning, residual blocks
and skip connections have been an integral part of training
very deep neural networks with hundred to thousand
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TABLE 1. Summary description of the datasets used in this study [6], [39].

FIGURE 1. High-level architecture of the proposed (a) residual block and
(b) the residual convolutional neural network.

layers [95], [96]. Besides very deep architectures, residual
learning can be effective and efficient in shallow architectures
in many causes. In this study, we have designed a lightweight
residual convolutional neural network with two residual
blocks using a total of five convolutional layers only. The
proposed residual block is created by modifying the original
residual block [95]. Contrasting with [95], we have used non-
linear activation before the batch normalization operation.
We assume that if we insert the batch normalization layer
before an activation layer, the batch normalization layer may
fully control the statistics of the input going into the next layer
and yields better accuracy. Therefore, we have proposed our
residual block with batch normalization after non-linearity.
In order to incorporate non-linearity, we have investigated
the performance of four widely used activation functions:
Rectified Linear Unit (ReLU) [97], Exponential Linear Unit
(ELU) [98], Leaky Rectified Linear Unit (LeakyReLU) [99]
and Parametric Rectified Linear Unit (PReLU) [100] in our
study.

The high-level architecture of the proposed residual block
and the model is depicted in Fig. 1. In the model, two
subsequent residual blocks incorporate a weight layer in the
middle to increase the feature maps. Here, the weight layers
are the one-dimensional convolution layers, and the activation
refers to the various non-linearity from the ReLU family. The

TABLE 2. Network architecture of the proposed residual convolutional
neural network.

number of perceptrons with softmax activation in the dense
layer is likely to changewith respect to the number of subjects
in the dataset.

Table 2 contains further architectural details of the
proposed model. The operation, x conv, y refers that the
residual field size is x for convolution operation and y number
of filters and /z refers to global average pooling across
z channels. The operations, output shape and the number
of parameters for all the layers are about to be changed
with respect to datasets as the complexity of dataset and
the number of subjects varies (see Table 1). In Table 2, the
Operation, Output Shape and No. of Params. column has
been populated depending on Dataset #1 and Dataset #3 for
better understanding. Note that we have permuted the axis of
the signals beforehand so that the data shape of 6 × 128 is
converted into 128×6, which is suitable for our architecture.

2) PROPOSED AND OTHER VARIANTS OF RESIDUAL BLOCK
From the inception of the brilliant idea of residual learn-
ing [95], there have been numerous proposals for the residual
block architecture. Along with the original residual block,
He et al. proposed another four different configurations of
residual block [96]. Moreover, with different settings of
weighted layers, batch normalization, activation functions,
and skip connections, there are some other residual blocks
adopted to solve some other specific problems [101]–[104].
Fig. 2 contains a few of the depictions of the residual block
architectures found in the literature. The sequence of the
weighted and normalization layers and the skip connection
varies among the blocks, whereas some have tried to replace
the ReLU activation function with the other ones.

IV. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL SETTINGS AND EVALUATION METRICS
Zou et al. provided the benchmark datasets split into train
and independent test set [6]. We have further split the train
set into 90%–10% ramdomly, where 90% of the data was
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FIGURE 2. Different residual blocks used in the literature with the proposed one.

used for training and the other 10% as a validation set.
In all experiments, during training, we trained the models for
1000 epochs with an early stopping mechanism to monitor
validation loss using the Adam optimizer with a learning
rate of 0.001. After training, we evaluated the performance
of the models using the independent test set provided by
Zou et al. [6].

We have reported accuracy (Acc) as the primary metric of
measuring gait recognition performance and comparing the
methods (see (1)). To measure the efficiency with respect to
the previous studies in terms of parameter reduction (PR) and
memory-usage reduction (MR), we have used (2) and (3),
respectively. Moreover, the performance gain (PG) was
computed as the difference between the performance with the
existing methods and ours (see (4)). All of the experiments
conducted in this study were backed by a tensor processing
unit (TPU v2 with 8 cores) provided by Google Colab. The
Keras API over TensorFlow backend was used to construct
the models [105].

Acc (%) =
no. of correct predictions
total no. of test cases

× 100 (1)

PR (%) =
[
1 −

no. of params. (our model)
no. of params. (other model)

]
× 100

(2)

MR (%) =
[
1 −

memory usage (our model)
memory usage (other model)

]
× 100

(3)

PG = Acc (our model)− Acc (other model) (4)

Here, Acc, PR, MR and PG refers to accuracy, parameter
reduction, memory-usage reduction and performance gain,
respectively.

B. PERFORMANCE OF PROPOSED MODIFIED RESIDUAL
BLOCK
We have evaluated the performance of the proposed residual
architecture (see Fig. 1 (b) and Table 3) in different
configurations. Varying the activation functions and the
number of filters in the convolution layers in the second
residual block, the performance of the model is shown in
Table 3. We have fixed the number of feature maps in the
first residual block of the model to 6 as the number of
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TABLE 3. Performance of proposed residual block in different
configurations.

TABLE 4. Baseline configurations of the proposed architecture.

features in the input data. Convolving the output from the
first residual block using 1D convolution operation, we have
increased the number of feature maps into 16, 32, 64, 128,
and 256, which is continued to the second residual block.
Furthermore, the activation functions play an important role
in signal propagation inside the model.

From Table 3, we can see that the LeakyReLU acti-
vation performs best with respect to the other activation
functions in most of the cases. From the models that
outperformed the state-of-the-art, we have identified the
configurations based on the number of parameters and
calculations overhead (marked in bold in Table 3). We call
it the baseline configuration for our proposed model. The
baseline configuration differs in terms of number of filters
in the second residual block (# filters) and the non-linear
activation function keeping rest of the architecture identical.
For dataset #1 and dataset #3, we have selected the models
with 64 filters in the second residual block using LeakyReLU
as the activation function. We have selected the models
with identical settings for dataset #2 and dataset #4 for
32 filters. Interestingly, the ELU activation works well
for the OU-ISIR dataset. Therefore, we have selected the
model with 256 feature maps and ELU activation while
the LeakyReLU activation also outperformed all the state-
of-the-art methods. Table 4 contains the summary of the
baseline configurations of the proposed model. Although our
proposed architecture is shallow, the number of parameters
can increase if we use larger number of filters. Increasing the
number of filters causes the better accuracy, but our goal is to
make lightweight model with acceptable performance. Thus,
we have selected lower number filters, when the difference
of accuracy between the higher and lower # filters is
negligible.

C. COMPARISON WITH OTHER RESIDUAL BLOCKS
We have incorporated all the prominent residual block archi-
tectures into our proposed architecture (see Section IV-B) and
measured their performances. We have reported the results
in Table 5. The table shows that our proposed residual block
performs better than any other residual blocks for all datasets.
The notable change in our residual block architecture is to
perform non-linear activation before the batch normalization
layer, which yields better performance.

D. ABLATION, INSERTION AND MODIFICATION STUDY ON
PROPOSED ARCHITECTURE
To prove the efficacy and stability of our proposed architec-
ture and evaluate partial importance of the components of
the model, we have examined our model in three different
ways. Along with the widely performed experiments called
Ablation [106], [107], which was done by removing some
module or portion of the proposed models (see Section IV-B)
and measuring the performance to get the notion of partial
importance of that module, we have also done some
Insertions and Modifications in the model. Insertions are
cases where we incorporate some other modules to the
proposed model, andmodifications are done by making some
changes in some portions of the proposed model. In Table 6,
we have listed all the ablation, insertion, and modification
experiments and presented the performance of the models.
To ease of understanding, we have depicted these models in
Fig. 3.
We have ablated skip connections from the residual block

to make them simple feed-forward CNN (see Fig. 3 (a))
and batch normalization layers to observe the effect of
normalization (see Fig. 3 (g)). Insertion of the new modules
have been done for most of the times, e.g., new skip
connections from the input (head) (see Fig. 3 (b)), additional
residual block (repetition of second residual block) with and
without multi-headed skip connections (see Fig. 3 (e-f)),
additional convolutional layer (with # filters = # filters with
baseline configuration / 2) before the first residual block
(see Fig. 3 (d)), introducing dropout in batch normalization
layer [108] and tested with different dropout rates (see
Fig. 3 (i)). In modifications, we have modified the first layer
receptive field and tested with different kernel sizes (see
Fig. 3 (c) i), used 1 convolution operation to increase feature
maps in the convolution layer between the residual blocks
(see Fig. 3 (c) II) and replaced the global average pooling
with one and two layers of fully connected perceptron layers
incorporated with batch normalization and dropout with p =
0.3 (see Fig. 3 (j)). Note that all the ablations, insertions, and
modifications are independent of each other, i.e., we have
performed all these experiments over the proposed model
with baseline configurations defined in Section IV-B.

From Table 6, we can see that, the skip connections
plays an important role as the performance decreased for no
skip connection (Fig. 3 (a)) for all the datasets compared
to the proposed lightweight model whereas, additional
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TABLE 5. Performance comparison with other residual blocks incorporated with the proposed model.

FIGURE 3. Experimental architectures for ablation, insertion and modification studies.

skip connection from head (Fig. 3 (b)) shows similar
kind of results except for OU-ISIR dataset. Wei et al. [101]
have chosen their first layer receptive field to cover the
10-millisecond duration of the signal, similar to the window
size for many MFCC computations. The sampling rate of
the signals they used was 8000 Hz; therefore, they have
used 80 as their receptive field size. The sampling rate of

our datasets are 50Hz and 100Hz. So, the optimal receptive
field according to [101] will be 50/1000 ∗ 10 = 0.5 and
100/1000 ∗ 10 = 1. The receptive field size of 0.5 is invalid;
therefore, we have experimented with the receptive field size
of 1 along with 7 and 15 to observe the impact of increasing
receptive field size. Nevertheless, for most of the cases, the
proposed model (with receptive field size = 3) performs
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TABLE 6. Performance comparison of the ablation, insertion and modification on proposed architecture.

better, and increasing or decreasing the field size decreases
the performance.

Similarly, using 1 convolution operation, i.e., the receptive
field size of 1 at the middle convolution layer (Fig. 3(c) II)
performs worse than the proposed model. Additional con-
volutional layer before the first residual block (Fig. 3(d))
slightly improved the performance for dataset #1 whereas this
model acquired the best performance of (99.08%) for OU-
ISIR dataset. The additional residual block without multi-
headed skip connection (Fig. 3(e)) performed better for
all the datasets. Without the batch normalization operation
(Fig. 3(g)), the performance decreased drastically; therefore,
the batch normalization operation should be an integral part
of the residual models. As it is an evergreen debate: where
to put the batch normalization operation - before or after the
non-linear activation, contrasting with the proposed models
with batch normalization after the activation function and
the original residual block with batch normalization before
the activation function, we have experimented with batch
normalization - both before and after activation function
(Fig. 3 (h)); although it does not improve the performances.
Dropout in batch normalization layer was proposed in [108].
A very minimal dropout percentage p = 0.05 can improve
performance slightly, whereas increasing dropout percentage
reduces accuracy due to too much regularization. Replacing
global average pooling by fully connected layers with batch
normalization and dropout (Fig. 3 (h)) results in drastic
overfit. Increasing the number of fully connected layers
increases the performance a bit, but none of them are up to
the mark while increasing the number of parameters a lot.
Our proposed model maximizes the representation learning
in the convolutional layers without the use of fully connected
layers.

TABLE 7. Performance comparison with the existing methods.

From the above experimental result analysis, the per-
formance of our proposed model with baseline configura-
tions can be improved by additional weighted layers and
residual blocks and proper choice of dropout in the batch
normalization layers. Specially, insertion of an additional
residual block shows marginal better performance than the
lightweight model in all datasets. Since this insertion costs
more than the proposed lightweight model, we considered
to stick to the proposed model in further efficiency analysis
in terms of number of parameters and memory-usage as our
study aims to propose an efficient state-of-the-art model.

E. COMPARISON WITH THE STATE-OF-THE-ART METHODS
We have listed the performances of all the recent studies on
gait recognition utilized the whuGait datasets and OU-ISIR
dataset in Table 7 along with that of our proposed method.

We have reported the performances of the lightweight
models described in Section IV-B and proposed model
with an additional residual block from Section IV-D (see
Figure 3(e)). Although the proposed model with additional
residual block produces a little bit better accuracy than the
proposed model, it increases the number of parameters. Since
both of our models perform comparatively better than all
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TABLE 8. Number of trainable parameters and memory-usage (in MB) comparison with the existing methods.

TABLE 9. Relative efficiency achieved by our proposed model.

the previous methods and our goal is to produce lightweight
model, the rest of the analysis will be performed on only the
proposed lightweight model.

Simplifying the deep learning model is essential to
propose a real-time gait recognition system and reduce the
computation overhead. We have reduced the number of
trainable parameters by a considerable margin. Our proposed
model has a significantly lower number of parameters, and
therefore, the inference time is decreased. The average
inference time for Dataset#1 and Dataset#3 is 0.32 ms and
0.56 ms for GPU and CPU, respectively, whereas the time
for Dataset#2 and Dataset#4 is 0.29 ms (GPU) and 0.43 ms
(CPU). For the OU-ISIR dataset, the average inference
time is 0.57 ms for GPU and 3.71 ms for CPU. We have
calculated all these inference times in milliseconds (ms) on
the Intel (R) Xeon(R) 2.20GHz CPU and the Tesla K80 GPU.
Consumption of memory for inference has also dropped
drastically for our model compared to the previous ones.
Comparison with the existing methods in terms of the number
of trainable parameters andmemory-usage is listed in Table 8.

Using more than 99% fewer parameters than Zou et al. [6]
we have achieved better performance in dataset #1 and
dataset #2 whereas we have passed their performance by
nearly 26% for the OU-ISIR dataset with 88% fewer
parameters. On the other hand, using 92% fewer parameters
on average than Huang et al., we have achieved better
performance in all four whuGait datasets. Our model had to
use a greater number of feature maps in the second residual
block, as discussed earlier, to surpass Huang et al. [39] in the
OU-ISIR dataset. Still, the number of parameters is nearly
60% less than the mentioned study. Reduction in parameters
and memory-usage (see (2) and (3)) is presented in Table 9
along with the performance gain (see (4)). Though the

performance gain with respect to Huang et al. is marginal, our
model costs much lesser computation overhead. Moreover,
as we discussed in the ablation, insertion, and modification
study section, the performance of our model can further be
improved considering some tread-offs.

V. CONCLUSION
The primary intention of residual learning was to train
very deep architectures. Nevertheless, we have successfully
adopted the residual block with some modifications and
efficiently created shallow convolutional neural networks for
gait recognition. We have evaluated the performance of our
methodology with two publicly available datasets collected
in the wild and with the largest population and acquired
state-of-the-art accuracy while reducing more than 85% of
the parameters on average compared to the recent works.
Our model can predict better than any other methods to
date with minimum latency as the computation overhead
reduces with the number of parameters that are suitable
in practical applications using wearable devices. In future
studies, we will explore and evaluate our methodology in
other domains using IMU sensor datasets. Furthermore,
usage of mobile computing power in smartphone-based
recognition systems, response time, storage usage, energy
consumption, etc. can also be evaluated in real-life scenarios.
There are endless applications yet to be studied using gait
patterns in medicine—classification of gait abnormalities
that can utilize a similar setting. Abnormal gait patterns
such as spastic, scissors, propulsive, steppage, etc., can be
classified using wearable sensors. Moreover, abnormal gait
patterns that develop over time due to some musculoskeletal
or neurologic diseases can be predicted before they become
life-threatening, potentially saving lives.
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