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ABSTRACT Monitoring financial transactions is a critical Anti-Money Laundering (AML) obligation
for financial institutions. In recent years, machine learning-based transaction monitoring systems have
successfully complemented traditional rule-based systems to reduce the high number of false positives
and the effort needed to review all the alerts manually. Unfortunately, machine learning-based solutions
also have disadvantages: while unsupervised models can detect novel anomalous patterns, they are usually
characterized by a high number of false alarms; supervised models, instead, usually offers a higher detection
rate but require a large amount of labeled data to achieve such performance. In this paper, we present
Amaretto, an active learning framework for money laundering detection that combines unsupervised and
supervised learning techniques to support the transaction monitoring processes by improving the detection
performance and reducing the compliance management costs. Amaretto exploits novel selection strategies
to target a subset of transactions for investigation, making more efficient use of the feedback provided
by the analyst. We perform the experimental evaluation on a synthetic dataset provided by the industrial
partner, which simulates the profiles of clients trading in international capital markets. We show that
Amaretto outperforms state-of-the-art solutions by reducing money laundering risk and improving detection
performance. In particular, we compare state-of-the-art unsupervised and supervised techniques commonly
used in the AML domain with the ones implemented in this work. We show that the Isolation and Random
Forests of Amaretto perform best in the task under analysis, with an AUROC of 0.9 for the first (20% better
on average) and a detection rate of 0.793 for the second (30% better on average). In addition, they are
characterized by lower investigation costs computed in terms of the daily number of transactions to be
examined and the number of false positives and false negatives. Finally, we compare Amaretto against a
state-of-the-art active learning fraud detection system, achieving better detection performances and lower
costs in all the analyzed scenarios. Worth mentioning, Amaretto improves the detection rate up to 50% and
reduces the overall cost by 20% in the most realistic scenario under analysis.

INDEX TERMS Active learning, anti-money laundering, financial systems, supervised learning,
unsupervised learning, selection strategies.

I. INTRODUCTION

Money laundering encompasses any process by which the
income of unlawful activities (e.g., drug trafficking, illegal
arms trafficking, tax evasion) is introduced into the financial
system through multiple operations that conceal their illicit
origins. Nowadays, money laundering affects all worldwide
economies and is responsible for generating illegal financial
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flows between $1.6-2.85 trillion per year, equivalent to
2.1%-4% of the Gross World Product [1]. Transaction
monitoring in AML consists of a set of activities carried out
by analysts and automated systems to scrutinize customers’
transactions. The aim is to detect suspicious behaviors
linked to money laundering. Financial transactions include
bank transfers, credit card payments, or investment banking
transactions such as equity and derivative trades.

An expert system is often the first step to implement
AML procedures by deploying rules that are configured
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to monitor pre-determined unusual behaviors. The expert
system generates alerts if rules are triggered (e.g., if amount
> 10,000,000 then raise alert). The benefits of a
heuristic-based approach are the ease in interpreting the
output of the system and the ability for subject matter experts
(i.e., analysts working in the AML domain) to use that
information easily. The disadvantage of expert systems is
that money laundering techniques and financial crime are
always evolving, so the rules need to be updated to ensure
they are fit to capture these changes. Moreover, rules can only
cover known anomalous behaviors, and they cannot detect
unknown unusual behaviors resulting in false negatives.
The fact that rules have to be configured using specific
static thresholds results in a high number of false positives
and, subsequently, an increase in the volume of manual
investigations.

Machine learning enhances these AML techniques by
overcoming some of the pitfalls in rule-based systems.
Machine learning models can extract and analyze patterns and
insights from data and assess unusual correlations unknown
to subject matter experts. Supervised machine learning
models can classify transactions as normal or anomalous.
However, they require a large sample of manually reviewed
transactions (labels). In order to collect a valuable set
of labeled data as quickly and as efficiently as possible,
these modern systems can leverage active learning. Active
learning is a technique that uses machine learning models to
select transactions for an investigation that have the highest
probability of improving the performance of the supervised
machine learning system.

In this paper, we present Amaretto, an active learning
system that combines unsupervised and supervised mod-
els organized in an ‘“‘analyst-in-the-loop” framework. The
unsupervised model allows the system to detect unknown
anomalies and new patterns that have not been seen before,
while the supervised model can use labels previously
classified by subject matter experts to improve the detection
rate. The system preprocesses the raw transactional data,
converting it to aggregated vectors; the aggregation is per-
formed because money laundering patterns usually comprise
multiple transactions executed within a period of time. The
unsupervised and supervised models take the vectors as input
and compute an anomaly score for each one. Subsequently,
a selection strategy is applied to choose the samples that
the analyst will review. Finally, the labels collected from the
analyst are used as training data for the supervised model
that will compute the final risk score for the aggregated
vectors.

We perform the experimental evaluation on a synthetic
dataset provided by the industry partners we collaborated
with. The dataset includes both normal transactions and
anomalous patterns that may be linked to potential money
laundering activities. The dataset is modeled based on
real-world investment banking scenarios. On this data,
we compare state-of-art unsupervised models, and we
demonstrate that Isolation Forest is the best performing for
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AML tasks under analysis. Then, we conduct a similar
assessment amongst supervised techniques concluding that
Random Forest outperforms the others. Subsequently,
we prove the contributions made by the unsupervised model
to complement the ability of supervised models by detecting
new types of anomalies. Finally, we confirm the robustness
of our design in a real-world scenario, identifying the best
selection strategies from the ones proposed and showing that
Amaretto outperforms state-of-the-art solutions by improving
the detection rate and reducing the compliance management
costs for financial institutions. Amaretto improves the True
Positive Rate (TPR) up to 50% and reduces the overall
cost by 20% in the most realistic scenario under analysis.
It is important to highlight that, to provide a meaningful
comparison between Amaretto and the other approaches
under analysis, we perform the entire experimental evaluation
on the same dataset. In addition, to allow the reproducibility
of the results, we released the synthetic dataset of transactions
at https://github.com/necst/amaretto_dataset.
In summary, the contributions are the following:

o Amaretto, an active learning system that combines
unsupervised and supervised models organized in an
““analyst-in-the-loop” framework.

« A novel selection strategy for an active learning frame-
work that detects potential money laundering patterns.
This strategy considers event diversity and prioritizes
new anomalous patterns to improve the quality of the
knowledge base and training set.

« The experimental evidence that demonstrates the impor-
tance of an active learning framework to achieve
better detection performance and to reduce the cost of
monitoring transactions for financial institutions. This
analysis includes the comparison of supervised and
unsupervised algorithms for detecting potential money

laundering, including detailed benchmarking.
The remainder of this paper is structured as follows: In

Section II, we provide some background concepts related
to the money laundering detection problem, alongside an
analysis of the main challenges, fundamental for under-
standing the choices we made in Amaretto. In Section III,
we present some of the most relevant works related to
money laundering and fraud detection, highlighting the
main differences with Amaretto. In Section IV we describe
the synthetic dataset at our disposal and the classes of
anomalies considered in this work. In Section V, we provide
a detailed description of Amaretto, its main components,
as well as the design choices that were made to build an
end-to-end active learning framework. Then, in Section VI,
we show the experimental evaluation of our framework.
Finally, in Section VII and VIII, we discuss the limitations,
the future works, and the conclusions of our work.

Il. BACKGROUND AND CHALLENGES

Detecting money laundering can be considered one of
the most challenging tasks within anomaly detection. First
of all, there is no common worldwide regulation that
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sets standards for which transactions are suspicious with
respect to money laundering activities. Furthermore, money
laundering processes involve multiple transactions between
different counterparties using diverse monetary instruments;
therefore, traditional anomaly detection techniques analyzing
transactions in isolation may be ineffective. This paper
focuses on detecting unusual transactional activities that
may be linked to money laundering occurring in capital
markets. Unusual transactions and customer behaviors are
considered outliers associated with a money laundering
risk. In [2], an outlier is defined as “an observation (or
subset of observations) which appears to be inconsistent
with the remainder of that set of data”. In this paper,
an anomalous behavior is considered high risk for money
laundering and, therefore, should be investigated. This is
similar to fraud; however, money laundering often involves
multiple transactions across multiple accounts, while fraud
mainly occurs at a transactional level. In an ideal world
with unlimited resources, an analyst would look at every
transaction and then decide which one is worth investigating
further as it may be linked to money laundering. Considering
the large volume of transactions executed daily in global
markets, this approach is not feasible because financial
institutions, regulators, and enforcers have a limited amount
of subject matter experts to deal with such a demand. To solve
this problem, organizations employ a risk-based approach by
adopting automated systems to flag and allocate transactions
for review. The objective is to maximize the time spent
investigating suspicious activities with a high risk of money
laundering.

One of the key challenges in researching novel approaches
to detect money laundering is the lack of standardized
and available datasets. Financial institutions rarely share
data due to confidentiality reasons and specific regulations.
As part of this research, we leveraged a dataset generated
by our industry partners; they specialize in AML and work
with financial institutions to help them comply with AML
regulations. The dataset implements different suspicious
patterns similar to those defined by the Financial Action Task
Force (FATF) on money laundering [3].

llIl. RELATED WORKS

In the last years, several systematic review papers have
been published, which describe machine learning applied
to the fraud and money laundering detection domains
[4]-[12]. From a high level point of view, current approaches
can be divided into unsupervised, supervised, and active
learning techniques. In addition, these works describe each
method’s strengths and weaknesses, highlighting the need for
combining them and providing further motivation to the work
presented in this paper. While supervised solutions have high
performance in detecting known frauds, they cannot find new
fraudulent patterns and have a high rate of false positives;
therefore, unsupervised techniques are needed to detect novel
money laundering patterns.
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A. UNSUPERVISED LEARNING

Unsupervised learning is mainly used to detect unusual
correlations, and it is applied where it is expensive to obtain
labels (i.e., multiple analysts need to review a significant
number of data points). The main principle in money
laundering detection is to quantify how a transaction (or
group of transactions) deviates from the norm.

In the fraud detection domain, Ramaswamy et al. [13]
propose a formulation for outliers in terms of the distance of
a point from its neighbors.

Williams et al. [14] prove that a Replicator Neural Net-
work can detect anomalies in very diverse datasets, and in
some cases, it overcame issues commonly affecting Neural
Networks such as training with a small dataset.

BankSealer [15], [16] works in an unsupervised setting,
extracting local, global, and temporal profiles [17] for each
user to capture their behaviors. The same authors also study
the security of fraud detection systems against mimicry and
adversarial attacks [18], [19].

In the AML domain, a recent research trend has demon-
strated the effectiveness of the application of Isolation Forests
and Support Vector Machines to the detection of money
laundering patterns [20], [21].

Le-Khack and Kechadi [22], [23] focus on detecting
anomalies in investment funds; they suggest an approach
based on clustering profiles into categories and feeding
a Backpropagation Neural Network with the transformed
data to output an anomaly score for each transaction. This
approach is specific to the problem and dataset: the entire
learning process is based on two high-level features derived
from the raw data. This seems to offer a limited perspective
on the complexity of the underlying behaviors.

Torres and Ladeira [24] propose a hybrid approach
composed of unsupervised outlier detection algorithms and
the use of Visual Analytics methods to support the real-time
human analysis to reduce the incidence of false positives.
Similarly to Amaretto, the proposed approach targets the
problem of improving the analysis of the vast daily volume
of financial transactions. However, due to the exploitation of
Visual Analytics techniques, the presented approach impacts
human analysts’ processing time, possibly increasing the
investigation costs.

Paula ef al. [25] address the problem of money laundering
in Brazilian exports using Deep Learning Autoencoder
demonstrating its effectiveness against PCA-based methods.

The disadvantage of unsupervised models is that in
practice, an analyst will still have to verify whether all the
predictions were correct, and an unsupervised model will not
be able to fully leverage the output of the reviews as part
of subsequent runs. Also, unsupervised techniques tend to
generate a large number of false positives due to unusual data
correlations that are perfectly acceptable [26]. This is an issue
for institutions since reviewed false positives translate into a
direct cost for the organization. Moreover, the lack of focus
due to the high number of alerts could lead to potential money
laundering cases not being reviewed promptly or missed.
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B. SUPERVISED LEARNING

Supervised learning is used when labels are available. The
main principle in money laundering detection is to quantify
how a transaction (or group of transactions) is similar to
known fraudulent patterns.

In the fraud detection domain, Batthacharyya et al. [27]
demonstrate that in a real credit card fraud scenario, a Ran-
dom Forest model outperforms Support Vector Machines
and Linear Regression across all metrics used for the
comparison. One of the first AML specific studies focused
on rule-based methodologies (Decision Trees). This approach
was used to create automated systems such as Financial
crime law enforcement network AI System (FAIS) [28].
This system allows the analyst to follow evidence left by
linked transactions and computes an anomaly score for
each transaction. Simple Bayesian networks are used to
update and combine evidence that a transaction or activity is
illicit.

In the AML domain, the most common used techniques are
Random Forests, Support Vector Machines, Decision Trees,
deep neural networks, and rule-based systems [9]-[11], [29].
In the last year, also gradient bosting techniques have been
successfully exploited [29]-[33].

Jullum et al. [30] detect money laundering at a transac-
tional level using XGBoost and demonstrate its effectiveness
against traditional rule-based systems. Alkhalili ef al. [34]
propose a watch-list filtering component applied to ML
methods (i.e., Support Vector Machines, Decision Trees, and
Naive Bayes) to reduce the number of false positives and
to minimize analyst effort. They demonstrate that the SVM
outperforms other algorithms. Similarly to Amaretto, both
works [30], [34] highlight the importance of a selection strat-
egy that takes into consideration non-reported alerts/cases.
However, their works focus only on supervised learning
techniques.

Tertychny et al. [31] address the scalability and the
imbalance-resistance problem of the AML detection domain
by proposing a two-layered ensembled modeling approach
composed of a Logistic Regression model and gradient
boosting techniques. They validate the approach using a
real dataset of customer profiles and transaction histories,
together with labels provided by AML experts.

Farrugia et al. [32] extract features from the historical
transaction data of accounts marked as illegal activities by the
Ethereum community and regular accounts on the Ethereum
platform. The authors use XGBoost to build a classification
model to detect illegal accounts.

Vassallo et al. [33] propose an adaptation of the XGBoost
algorithm and present a comparative analysis of various
offline decision tree-based ensembles. They demonstrate that
decision tree-based gradient boosting algorithms outperform
state-of-the-art Random Forest results at both account and
transaction levels. In this work, as presented in Section VI,
we compare gradient boosting and random forest techniques
too, which achieve comparable performance. However,
we decided to use the Random Forest algorithm for Amaretto
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supervised module due to its lower cost in terms of false
positives and negatives.

Supervised learning directly exploits manually reviewed
transactions (i.e., labeled data) and generally outperforms
unsupervised learning in anomaly detection and classification
tasks [35]. However, a large amount of labeled data is
required to achieve adequate performance. Additionally,
supervised learning is not as effective at detecting new
anomalous patterns (resulting in false negatives) compared
to unsupervised learning. This is where active learning plays
an important role in bridging unsupervised and supervised
anomaly detection.

C. ACTIVE LEARNING

Amaretto implements an active learning system combining
both supervised and unsupervised learning, leveraging their
strengths and mitigating their weaknesses. Active learning is
a process whereby a traditional anomaly detection system is
enhanced with a model that queries a subject matter expert
to label a transaction or group of transactions (suspicious or
genuine). This model is used to select which transactions the
subject matter expert should investigate to minimize manual
data reviews and, at the same time, ensure the output of the
overall anomaly detection system is improved. In [36], the
authors exploit analyst feedback to self-tune and improve
BankSealer’s detection performance using a multi-objective
genetic algorithm. In [37], the authors propose an ensemble
of unsupervised methods, including a Density-based model,
a Matrix Decomposition-based model, and a Replicator
Neural Network. By combining the anomaly scores computed
by the three models, their system ranks the instances based
on the most anomalous ones and then presents them to the
subject matter expert for review; the feedback collected is
used to train a Random Forest model. Further to this research,
in [38], the authors point out the importance of selecting
different types of anomalies to enhance active learning
frameworks (i.e., selecting different classes of anomalies).

D. DISCUSSION
With respect to the presented works, Amaretto explicitly
focuses on reducing the cost and risk for a financial
institution; the cost is due to the resources involved in
manually reviewing multiple transactions, whilst the risk is
linked to not detecting illicit activities. To do so, we directly
exploit the main insights and results of the presented research
works, evaluating them in terms of the investigation costs
and not only from the detection performance point of view.
Amaretto also optimizes the selection strategy (i.e., the
strategy used to select the transactions for the subject matter
expert to investigate) in order to spot novel anomalous
patterns and improve the detection rate. This strategy
prioritizes which transactions should be further investigated
by AML investigators by considering the ““diversity” of the
output produced by the unsupervised module.

Another approach commonly applied in fraud and money
laundering detection is the analysis of graphs, which is
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TABLE 1. Capital market dataset details: Number of transactions (total (T), legitimate (L), and anomalous (A)), the ratio of anomalies over the total
number of transactions, number of attributes, and number of transaction originators. The dataset is highly unbalanced, with only a small portion of

transactions being anomalous.

Transactions
Total (T) Legitimate (L) Anomalous (A)
29,704,090 29,622,822 81,268

Attributes  Originators
Ratio (A/T)

0.27 % 12 400

out of scope for Amaretto. For instance, Alarab et al. [39]
present a novel approach based on Graph Convolutional
Network combined with MultiLayer Perceptron to predict
illicit transactions in the Bitcoin transaction graph. We refer
the reader to [40]-[42] for a review of the research regarding
graph-based anomaly detection methods in fraud detec-
tion, intrusion detection, telecommunication, and opinion
networks.

IV. CAPITAL MARKET DATASET ANALYSIS

In the AML domain, one of the major limitations is the
difficulty to obtain a real dataset from financial institutions
due to privacy concerns. Besides, it is even more complicated
to get a labeled dataset. Therefore, we make use of a
synthetic dataset generated by our industry partner using
a custom-built data generator, which simulates transaction
profiles of clients transacting in international capital markets.
We use the same synthetic dataset for all the experiments
presented in Section VI in order to provide a meaningful
evaluation of the performance of Amaretto and the other
methods under analysis. In addition, to allow the repro-
ducibility of the results and a fair comparison with future
works, we released our synthetic dataset of transactions
at https://github.com/necst/amaretto_dataset.

The data combines more than 10,000 parameters extrap-
olated from real market data. The dataset consists of
29,704,090 transactions executed by 400 end clients buying
and selling specific securities in a specific market. Circa 90%
of the users made at least 50,000 transactions while 10% of
the users performed circa 400,000, which means that 10% of
the clients executed almost 50% of the transactions. 98.43%
of the transactions have an amount less than 1M USD, and
40% of them have an amount less than 10K USD. Data
covers 60 days divided into 12 weeks (a week is composed
of 5 days. Saturdays and Sundays are not included because
during the weekend markets are closed). Transactions are
evenly distributed between the 12 weeks, and most of them
are executed during market opening hours, while only a small
percentage is executed during the early morning hours and
at the end of the day. Table 1 shows a summary of the
statistics of the dataset. Key fields contained in the data
include the transaction amount, the product class (There
are 17 different products representing the main product
traded in the capital market — e.g., Equity, Fixed Income),
product type (e.g., cash equity, future equity, bond), time
field, currency, market. Within the data, it is not possible
to identify any specific statistical distributions in any key
field.
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A. SYNTHETIC ANOMALIES OVERVIEW

Financial datasets are known to be extremely unbalanced,
usually containing from 0.1% to 1% [18] of anomalous
transactions. This information was also confirmed by the
domain experts we interviewed. Therefore, to replicate real-
world scenarios, we set the number of anomalies to less
than 1% of the data. As part of this dataset, we generated
five classes of anomalies based on examples of suspicious
patterns suggested by FATF [3], an inter-governmental body
that promotes effective implementation of legal, regulatory,
and operational measures for combating money laundering.
Anomalous transactions will follow the same trend to
reinforce the concept that anomalous transactions are well
hidden in the dataset. Below, we describe the classes of
anomalies injected into the dataset.

Small but highly frequent transactions generated
within a short timeframe: A pattern that contains multiple
transactions below applicable reporting thresholds.

Transactions with rounded normalized amounts
bought or sold within an account: It is unusual for
transactions in capital markets to have rounded amounts
(unless they occur in markets where foreign exchange
conversion causes rounding errors).

Security bought or sold at an unusual time: It is unusual
for clients to trade specific securities outside of a specific
timeframe (for example, outside of the opening and closing
times of a stock exchange).

Large asset withdrawal: A sudden spike in transaction
amount withdrawn from an account or transferred out, which
deviates from the previous transactional activity and is absent
of any commercial rationale or related corporate action event.

An unusually large amount of collateral transferred in
and out of an account within a short period of time: This
behavior is unusual as a client would not be able to invest by
simply trading collateral, or at least such a strategy would be
unusual.

V. AMARETTO APPROACH

Supervised detection of money laundering requires sufficient
labeled data. The only way to have reliable labels is to
have all transactions manually reviewed by subject matter
experts, which is not feasible. For this reason, we opted for
a hybrid solution, using active learning [43]. This consists
of combining both unsupervised and supervised techniques
in an analyst in-the-loop framework. In this active learning
framework, the system uses unsupervised learning to analyze
the most suspicious activities ranked by anomaly score.
Supervised models are, then, trained on the domain experts’
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FIGURE 1. Amaretto approach overview. The main steps are highlighted in red: (1.) Aggregation of historical
transactions into high-level vectors; (2a.) Training of the unsupervised learning model with the high-level
vectors; (3.) Anomaly scoring of the high-level vectors by the unsupervised model; (4.) Application of the
selection strategies; (5.) Collection of the analyst’s labels; (2b.) Training of the supervised learning model
with the high-level vectors of step 1 and the feedback collected in step 4; (6) Aggregation of the supervised

and unsupervised scores (i.e., prediction).

feedback (i.e., labeled dataset) to select additional data points
for review.

A. APPROACH OVERVIEW

In Figure 1, we present an overview of the approach imple-
mented in Amaretto. The first step in the Amaretto workflow
is to aggregate the raw transactional data across a specific
timeframe to produce features representing high-level vectors
that capture the behavioral profile of a customer. The models
employed in Amaretto are trained with these high-level
vectors generated from historical data. After the training
phase, Amaretto computes an anomaly score for each new
vector using both unsupervised and supervised models (if
enough data is available to train the latter). A specific
selection strategy based on the anomaly score is then used
to choose vectors that will be sent to the domain expert for
review. The number of transactions sent each day for review
(k) is a parameter of our system, based on the resources that
a financial institution can allocate to this task. The domain
expert analyzes these transactions to ascertain whether they
are anomalous or not. This information is then saved as
labels in the dataset. The reviewed labels contribute to a
historical set of labeled data that is the input for the supervised
component of the system. The supervised component is then
used alongside the unsupervised model to continuously select
the data to be reviewed by the domain expert. In Algorithm 1,
we outline the pseudocode for the key steps of Amaretto.

B. DATA PREPROCESSING MODULE

Amaretto generates a set of high-level features derived
from the transactional data. These aggregated features are
based on an aggregation window. In particular, this window
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RAW HIGH-LEVEL
TRANSACTIONS VECTORS

TRANSACTIO_ID  ORIGINATOR ENTRY_DATE  NORM_AMONT

00001 AAAAAA 2019-01-01 123,456 ORIGINATOR: AAAAAA

ENTRY_DATE: 2019-01-01

COUNT: 3
AMOUNT_AVG: 300,477
AMOUNT_SUM: 901,431

TRANSACTIO_ID  ORIGINATOR ENTRY_DATE  NORM_AMONT
AAAAAA 2019-01-01 321,654

TRANSACTIO_ID  ORIGINATOR ENTRY_DATE  NORM_AMONT
00003 AAAAAA 456,321

2019-01-01

ORIGINATOR: BBBBBB.
TRANSACTIO_ID  ORIGINATOR ENTRY_DATE  NORM_AMONT

BBBBBB 2019-01-01 12,345 ENTRY_DATE: 2019-01-01
COUNT: 2

AMOUNT_AVG: 28,883
TRANSACTIO_ID  ORIGINATOR  ENTRY_DATE  NORM_AMONT AMOUNT_SUM: 57,666

BBBBBB 2019-01-01 45,321

ORIGINATOR: DDDDDD
ENTRY_DATE: 2019-01-01
TRANSACTIO_ID ORIGINATOR  ENTRY_DATE  NORM_AMONT COUNT: 1

DDDDDD 2019-01-01 999,999 AMOUNT_AVG: 999,999
AMOUNT_SUM: 999,999

FIGURE 2. Graphical representation of the aggregation of raw
transactions into high-level vectors. On the left, it shows the sequence of
raw transactions, while, on the right, the aggregated high-level vectors.

represents the time over which transactions are aggregated
and is used for computing each set of aggregated features.
The aggregation windows have the objective of capturing
the short-term, mid-term, and long-term behavior of the user.
We look for the most used sizes in literature [17], [37]: We
use 1 hour and 1 day for the short-term, 7 days for the mid-
term, and 1 month for the long-term. For example, as shown
in Figure 2, if a daily window is chosen, the aggregated
features’ set is produced for each day by aggregating all
the transactions the customer performed on that day. Also,
aggregating transactions over a period of time is helpful in
the AML use case since it can be used to capture correlations
over time across multiple transactions. Within each period,
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Algorithm 1 Pseudocode of Amaretto’s Approach: L Is the
Set of the Feedback Received by the Fraud Analyst; U/ Is the
Set of Transactions; Mod Is the Machine Learning Model;
sup Stands for Supervised; Unsup Stands for Unsupervised;
Strat 1s the Selection Strategy; K Denotes the Top-XC High-
Level Vectors in the Ranking; 7 Denotes the Set of Time
Windows)

Input: £ = @, U, mody,p, modunsup, Strats,y, stratuysp, K,

T
1: fort €{0,..., T} do
2: if t = O then
3: Train mod,sup on U’ -1
4: Compute the scores S(x;) where x; € U’
5: Query K samples from U’ using the sampling
strategy stratynsup
6: sampley,,,, = Collect analyst feedback
L= LU (v, yi) € sample!,,,,, > Add the
selected points to £/~
: end if
9: if # > 0 then
10: Train mod, sy on U’ -1
11: Train mody,, on L' -1
12: Compute the scores S(x;) where x; € U’
13: Query % samples from U’ using the sampling
strategy stratypsup
14: sampley,,,, = Collect analyst feedback
15: U' = U \ sampley,,,,
16: Select % samples from U/ using the
17: sampling strategy stratg,,
18: sample(,,=Collect analyst feedback
19: L' = L' U samplel,,,, U samplet,, > Add the
selected points to £/~
20: end if
21: end for

multiple features are extracted and aggregated: total amount
traded; average amount traded; the number of transactions;
the number of transactions traded for each product class; the
number of transactions traded for each currency; total amount
traded for each product type for each product class; total
amount traded for each product type for each currency; the
average amount traded for each product type for each product
class; the average amount traded for each product type for
each currency and the number of transactions traded during
specific times of the day. When aggregating transactions over
a timeframe for a customer, the set of aggregated transactions
is considered anomalous if at least one of the underlying
transactions is anomalous. The result of the aggregation
and feature extraction process will be referred to as high-
level vectors. First of all, the EntryDate column is used to
extract temporal features like Weekday, Month, Hour. The
DataFrame containing the transactional data is grouped by
using the Originator and the temporal features mentioned
before. Then, the financial features are extracted from the
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DataFrameGroupBy object. A data frame is created for each
window in which the user performed at least one transaction,
collecting all the customer’s activities. These records are
uniquely indexed through the features used to create the
DataFrameGroupBy. The financial features extracted in this
phase are designed to model the behavioral signature of
the user in each window, capturing the spending patterns.
The features of interest comprise a combination between
Currency, Product Class, Product Type, and InputOutput
columns. These high-level features are carefully selected,
exploiting the domain expertise of the Napier Al team to
be able to detect all kinds of behavioral variations that
might indicate anomalous activity. The first step is to
transform the Product Class, Product Type into new features
called Cash and Collateral that indicate if a transaction
is performed through a simple transfer using cash or
other types of security. Then, a first aggregation, called
Amount_IO_Aggregation, is carried out extracting informa-
tion about the amount of the transactions included in the
aggregation window as statistical features like mean_amount,
sum_amount or code_small_amount, code_round_amount.
Furthermore, during this step, InputOutput_delta and
Collateral_delta are determined, indicating the differ-
ence between bought and sold operations or the dif-
ference between collateral and the other securities.
Afterward, another DataFrameGroupBy object, called
Product_Currency_Aggregation, is created aggregating by
Currency, Product Class, Product Type, and InputOutput
columns and computing the mean_amount, sum_amount,
and count for each different value of the pivot columns.
Finally, the two aggregations, Amount_IO_Aggregation and
Product_Currency_Aggregation, are merged and indexed
using the Originator and the temporal columns. This is
the final high-level vector used to train or analyzed by the
Anomaly Detection Module. An example of high-level vector
is shown in Table 2.

C. UNSUPERVISED MODULE

As pointed out in Section III, an unsupervised method is
essential to detect new anomalous patterns never seen before.
We decided to use Isolation Forest [20], [21] due to its high
performance in detecting outliers even if they are present in
small amounts [20], [21]. Another feature of Isolation Forest
is its ability to deal with random noise. This is particularly
useful in scenarios where subject matter experts may provide
an incorrect label for a set of transactions.

Isolation Forest: The Isolation Forest algorithm is based on
the isolation principle: it tries to separate data points from one
another by recursively and randomly splitting the dataset into
two partitions along its features axes. The idea is simple: if
a point is an outlier, it will not be surrounded by many other
points, and therefore it will be easier to isolate it from the
rest of the dataset with random partitioning. The algorithm
uses the training set to build a series of isolation trees, which,
when combined, form the Isolation Forest; each isolation tree
is built upon a subset of the original data, randomly sampled.
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TABLE 2. Features (and example of values) of the high-level vector resulting from the aggregation of raw transactions.

Feature name Value
Originator Client_304
EntryDate 2019-01-01 00:00:00
Weekday 1

Hour 7

Night 1

Morning 0

Evening 0
Anomaly 1
Transactions_count 73
Normalized Amount_sum 20886919.32000001
Transactions_count_Small_Amount 15.0
Transactions_count_Round_Amount 0.0
InputOutput_delta 17
Collateral_delta -39
Transactions_count_Buy_Collateral_Cash_Currencyl 0.0
Transactions_count_Buy_Collateral_Security_Currencyl 3.0
Transactions_count_Sell_Collateral_Cash_Currencyl 1.0
Transactions_count_Sell_Collateral_Security_Currencyl 2.0
Normalized Amount_sum_Buy_Collateral_Security_Currencyl 34888.65
Normalized Amount_sum_Sell_Collateral_Cash_Currencyl 16782.43
Normalized Amount_sum_Sell_Collateral_Security_Currencyl 27584.75
Normalized Amount_mean_Buy_Collateral_Cash_Currencyl 0.0
Normalized Amount_mean_Buy_Collateral_Security_Currencyl 11629.550000000001
Normalized Amount_mean_Sell_Collateral_Cash_Currencyl 16782.43
Normalized Amount_mean_Sell_Collateral_Security_Currencyl 13792.375

The splitting is performed along a random feature axis, using
a random split value that lies between the minimum and
maximum values for that feature amongst the data points
in that partition. This split process is performed recursively
until a single point has been isolated from the others. The
number of splits required to isolate an outlier is likely to be
much smaller than the one needed by a regular point due to
the lower density of points in the surrounding feature space.
Isolation Forest leverages an ensemble of isolation trees, with
anomalies exhibiting a closer distance to the root tree. The
anomaly score can be derived from path length /(x) of a point
x, which is defined as the average number of splits required to

isolate the point across all the trees in the forest. The anomaly
_ E(x)
score s of an instance x is defined as s(x,n) = 2 <» and

c(n) = 2H(n — 1) — 221 where E(h(x)) is the average
of h(x) from a collection of isolation trees. Furthermore, c(n)
is the average path length of unsuccessful searches in binary
search trees.

The system extracts high-level vectors related to historical
transactions for each customer and uses an Isolation Forest to
generate an anomaly score per high-level vector. We built a
model for each customer to capture variations in individual
behaviors and, at the same time, use the score to compare
different behaviors. Subsequently, the score generated by the
Isolation Forests is used as part of the selection strategy of the
system to select the transactions for the subject matter expert
to investigate.

D. SUPERVISED MODULE

A supervised model, used alongside an unsupervised model,
improves the ability of the system to make future predictions.
Supervised models usually yield more accurate predictions
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than unsupervised ones. Therefore the combination of these
approaches leads to more robust results. In Amaretto,
we adopt Random Forest [44] because it exhibited the best
performance when compared to other supervised algorithms
(as highlighted in Section III).

Random Forest: The basic component of a Random Forest
is a Decision Tree [44]. It is a structure that allows the
categorization of data points into different classes. Starting
from the root node, each data point traverses through different
branches of the tree, depending on conditions set out for each
node, until a leaf node is reached. The node rules are simple
conditions verified by a given feature of the data point (e.g.,
is feature a; > K? Or, for categorical features, is feature
ap equal to Cp?). In the leaf node, the class of the data point
is determined by looking at the most common / majority
class present in that leaf node. A major advantage of this
technique is the possibility to explain the outcome of the
algorithm by following the route of the datapoint through
the tree to determine which conditions were met / not met
in order to classify the point. One of the key challenges in
using decision trees is overfitting. To deal with this problem,
an ensemble of multiple decision trees can be utilized to
form a Random Forest [45], which consists of multiple weak
learners characterized by low bias and high variance. The
bagging ensemble of these weak learners will be a robust
model since the overall prediction is made by averaging the
prediction of each individual tree. Initially, when the system
is bootstrapped, no labeled data is available. In this situation,
the unsupervised model is used for anomaly detection. When
enough feedback from the subject matter expert is collected,
it is possible to train the Random Forest model. We train a
single Random Forest model using high-level vectors across
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Algorithm 2 First Stage: SELECT-TOP Strategy. High-Level

Vectors Are Ranked in Decreasing Order Based on the

Anomaly Score, and the Topmost Anomalous Vectors Are

Selected

Input: U', ratio sy

Output: sample;,,,

1: Sort U’ by unsupervised score

2: C = Select ratio,,s,, most anomalous aggregations.

3: sampley,g,, = sampley,,., U C > Append C to
sample

!
4: Return sample

unsup
t
unsup

all customers. The supervised model outputs an anomaly
score by computing the probability that a high-level vector is
anomalous or not. As new labels are obtained from the subject
matter expert, the Random Forest is re-trained accordingly,
and predictions are run against the remaining unlabeled
vectors (unlabeled data).

E. SELECTION STRATEGIES MODULE
Amaretto combines supervised and unsupervised learning in
three stages, each one with a different selection strategy.

1) FIRST STAGE: NEW ANOMALOUS PATTERNS DETECTION
The purpose of the first stage is to detect new anomalous pat-
terns as well as common anomalous patterns. As previously
mentioned, the anomaly score computed by the Isolation
Forest is fundamental to detecting new anomalous behaviors.
Two possible active learning selection strategies are available
for this stage: the SELECT-TOP and SELECT-DIVERSE
strategies. In the SELECT-TOP strategy, high-level vectors
are ranked in decreasing order based on the anomaly score
generated by the Isolation Forest. The system then selects
the topmost anomalous vectors. However, this approach may
not guarantee that all types of anomalies are covered (i.e., the
top anomalies by anomaly score may all belong to the same
anomaly type). In Algorithm 2 we present the pseudocode of
the SELECT-TOP strategy.

As previously evidenced in Section III by [38], it is
important to diversify the type of unusual patterns that are
selected. For this reason, the SELECT-DIVERSE strategy
uses clustering to group similar high-level vectors and draw
samples from each cluster based on the anomaly score.
Samples are drawn from each cluster, starting from the least
dense cluster until the desired number of samples has been
reached. The decision of starting from the least dense cluster
is motivated by the following assumption: given that the
number of non-anomalous high-level vectors is greater than
the number of anomalous vectors, the latter should form less
dense clusters. In Algorithm 3 we present the pseudocode of
the SELECT-DIVERSE strategy.

The clustering algorithm used for this strategy is
HDBSCAN [46], [47]. This algorithm is based on the
work by [46] and [47]. The first step of the algorithm
is to build a weighted graph, where each data point
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Algorithm 3 First Stage: SELECT-DIVERSE Strategy.
It Clusters Similar High-Level Vectors and Draws Samples
From Each Cluster Based on the Anomaly Score Until the
Desired Number of Samples Has Been Reached

Input: U, ratiounsup, Punsup

Output: sample,,,,,

: Sort ! by unsupervised score

: xp = Find pysp percentile

anomsyusyp = Select x; C U' with score s; > x,
: Run HDBSCAN algorithm on anomssup

ratio
: Define cluster,q, = max {1, ——£}

: Sort cluster by cluster jensiry
foric {0,..., nqusers} do
Ci = Select cluster,qyi, samples from cluster;
Append C; to sample;,,,,,
> i.e. sample,,
| > ratioypsypy then

’ Nelusters

= sampley,g,, U Ci

10: if [sample;,,,,,

11: Break
12: end if
13: end for

14: Return sample’

unsup

represents a node of the graph. The weights of this graph
are computed using a metric called mutual reachability
distance between two points, defined as: d(a,b) =
max {corey(a), corex(b), d(a, b)}. corer(x) is the core dis-
tance for a point x which is the distance between that
point and its k-th farthest neighbor. The mutual reachability
distance defines the density of the areas around each point,
and it is used for spreading apart isolated points. A minimum
spanning tree is constructed from the resulting graph using
Prim’s algorithm, which aims to connect every point in the
graph whilst minimizing the total weight of the edges in the
resulting graph. The next part of the algorithm focuses on
building a hierarchy of clusters. This is achieved by removing
all edges sorted by decreasing weight. This split process is
recursively performed, starting with the edges of the tree
that have the lowest weight. This is defined by a parameter
“minimum cluster size”’. The first step in cluster extraction is
condensing down the large and complicated cluster hierarchy
into a smaller tree. The key point is to consider points that
are split close to a cluster belonging to this single persistent
cluster. To do so, the notion of minimum cluster size is
applied. Again, a different measure than distance is defined
to measure the persistence of clusters: A = m- For a
given cluster, values Apirn and Agean represent the value when
the cluster split off and became its cluster and the lambda
value (if any) when the cluster split into smaller clusters
respectively. In turn, for a given cluster, for each point p
in that cluster, we can define the value A, as the lambda
value at which that point “fell out of the cluster”, which is
a value somewhere between Apirh, and Ageath. This is because
the point either falls out of the cluster at some point in the
cluster’s lifetime or leaves the cluster when the cluster splits
into two smaller clusters. For each cluster we compute the
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Algorithm 4 Third Stage: SELECT-ENTROPY Strategy.
It Uses the Probability Scores Generated by the Supervised
Model. Samples Whose Probability Is Close to 0.5 Have a
High Chance of Being Selected Due to Their High Entropy
and, Hence, Uncertainty

Input: U’, ratiogy, peenter
Output: Ceenter
1: dist; = |s; — 0.5] > Compute the distance of the score
for each aggregation i to the center = 0.5
2: Sort dist; in ascending order
3: Cener =Select ratiog,p X Peenter 1€ast distant aggregations
4: Return Ceeer

stability as D, jusier(Ap — Abirtn). If the sum of the stabilities
of the child clusters is greater than the stability of the cluster,
then we set the cluster stability to be the sum of the child
stabilities. If, on the other hand, the stability of the cluster
is greater than the sum of its children, then we declare the
cluster to be selected and unselect all its descendants. Once
we reach the root node, we call the current set of selected
clusters our flat clustering and return that.

2) SECOND STAGE: RANDOM FOREST SELECTION

The second stage of the selection phase relies on the
probability score generated by the Random Forest classifier.
This process comprises two steps: the first one is the selection
of the most anomalous vectors; the second one is the selection
of the least anomalous aggregated transactions. The purpose
of this stage is to take advantage of the higher accuracy of
the Random Forest classifier to reinforce the information
contained in the labeled dataset by automatically scoring all
transactions in the dataset.

3) THIRD STAGE: UNCERTAIN DATAPOINTS SELECTION

In the third and last stage of the selection phase, the
system selects the high-level vectors for which the two
models show the most uncertainty. To assess the level
of uncertainty, two active learning strategies can be fol-
lowed: the SELECT-ENTROPY and SELECT-CONFLICT
strategies. The SELECT-ENTROPY uses the probability
scores generated by the supervised model. Those samples
whose probability is close to 0.5 have a high chance of
being selected due to their high entropy and hence the
uncertainty. In Algorithm 4 we present the pseudocode of the
SELECT-ENTROPY strategy.

The SELECT-CONFLICT strategy takes into account the
difference between the scores generated by the supervised
and unsupervised model. A discrepancy in the score for
each set of high-level vectors indicates that the outputs
of the two models disagree. For this reason, the samples
with a score discrepancy close to 1.0 are selected (i.e.,
the models disagree on whether the vectors are anomalous
or not). In Algorithm 5 we present the pseudocode of the
SELECT-CONFLICT strategy.

VOLUME 10, 2022

Algorithm 5 Third Stage: SELECT-CONFLICT Strategy.
It Takes Into Account the Difference Between the Scores
Generated by the Supervised and Unsupervised Model.
A Discrepancy in the Score for Each Set of High-Level
Vectors Indicates That the Outputs of the Two Models
Disagree and, Therefore, They Are Selected

Input: ', r atiOsup, Pcenter
Output: Ceenter
1: unc; = Compute the difference between the supervised
score and the unsupervised score for each aggregation i
2: Sort unc; in descending order
3: Cer =Select ratiogu X Peenter MOSt Uncertain aggrega-
tions.
4: Return Cee”

Standardization and Ensembling: Amaretto exploits the
power of Random Forest, which outputs class probabil-
ities € [0, 1], and Isolation Forest, which outputs an
anomaly score € [—1,+41). Even if the models yield
outputs in the same range (e.g., probabilities in [0, 1]),
their prediction distribution could be significantly different,
so the sum of the predictions could be misleading. For
this reason, we combine the supervised and unsupervised
anomaly scores using an ensemble technique based on the
Weibull distribution (see Figure 3). We selected the Weibull
probability distribution because of its shape and flexibility,
which fits the anomaly score distribution and allows us
to better discern between normal and anomalous instances
(i.e., it amplifies the distance between these two classes).
By doing this, we transform the anomaly scores produced
by each model into probabilities in the interval [0, 1]. The
following procedure is carried out to perform the ensembling:
we fit a Weibull probability distribution function to the
anomaly scores produced by each model (see Figure 3a).
Then, we compute the corresponding cumulative distribution
function through integration (see Figure 3b). Finally, for each
new prediction sz, we redefine the anomaly scores as F(s3) =
P(X < s3). This is performed by plugging the old anomaly
scores into the Weibull cumulative distribution function
(see Figure 3c).

VI. EXPERIMENTAL EVALUATION

In this section, we describe the experiments conducted
to assess the performance and effectiveness of Amaretto.
First, we compare the Isolation Forest used in Amaretto
with state-of-the-art unsupervised solutions to confirm that
our choice is the best for money laundering detection
(Section VI-B). Then, we test the unsupervised techniques
to assess their prediction ability with different daily budgets
(Section VI-C). Afterward, we evaluate Random Forest
against other supervised solutions to prove that they perform
the best in our domain (Section VI-D). Furthermore, we prove
the importance of an unsupervised model in combination
with a supervised one in detecting new anomalous patterns
(Section VI-E). Then, we compare the different selection
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FIGURE 3. Anomaly score standardization and ensemble. In Figure 3a a
Weibull probability distribution function is fit to the anomaly scores of
each model. Then, in Figure 3b the corresponding cumulative distribution
function through integration is computed. Finally, in Figure 3c the old
anomaly scores are plug into the Weibull cumulative distribution function
to obtain the standardized score.

strategies of Amaretto (Section VI-F). Finally, we compare
Amaretto with AI2, a state of the art active learning
framework, in an AML scenario (Section VI-G).
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FIGURE 4. Graphical representation of the walk-forward approach used
for evaluating Amaretto and its active learning functionality. Each day,

K samples from the unsupervised ranking are provided to the analyst for
labeling; based on the labeled received, both supervised and
unsupervised systems are trained (represented in blue). The trained
model are used for scoring the following day (represented in red).

A. EVALUATION APPROACH AND METRICS

The data contained in our dataset can be considered as
time-series data. We split the dataset into two sets. The
first one, which is used for training the models and for
hyper-parameter optimization, contains the first 7 weeks of
data, corresponding to 17,327,387 transactions. The second
one, which is used to evaluate the model performance by
running tests, includes the subsequent 5 weeks of data,
corresponding to 12,376,703 transactions. It is important to
highlight that we perform the entire experimental evaluation
on the same dataset to provide a meaningful comparison
between Amaretto and the other approaches under analysis.

Given the temporal link of the data, for the experiments
in which Amaretto was evaluated in a realistic setting
(Section VI-C and VI-G), we used a walk-forward testing
approach [48], as shown in Figure 4. This allows us to fully
test the system on a daily working routine, like the real-world
scenario in which a subject matter expert has to investigate
a set of anomalous cases each day. We split the testing data
on a daily basis: Each ’simulated” day, K samples from
the unsupervised ranking are provided to the analyst for
investigation (i.e., labeling). Based on the assigned labels,
Amaretto will train both the supervised and unsupervised
learning models and will use them for ranking the samples of
the subsequent day. In Section VI-C we provide an analysis
of daily budget K that allows the system to achieve a suitable
detection rate whilst minimizing the effort of the subject
matter expert in reviewing the samples.

For the hyper-parameter optimization, we used Bayesian
Optimization [49] due to its ability to achieve accurate param-
eter selection within a reasonable amount of time. Bayesian
Optimization is a probabilistic model-based approach for
finding an input value or a set of values to an objective
function that yields the lowest loss.

1) METRICS

To evaluate Amaretto, we adapt common evaluation metrics
to our context. A True Positive (TP) is an anomalous high
level vector correctly classified as anomalous, False Positive
(FP) is a legitimate high level vector wrongly ranked as
anomalous, a False Negative (FN) is an anomalous vector
wrongly ranked as legitimate, and a True Negative (TN) is a
legitimate vector correctly ranked as non-anomalous. On the
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basis of these definitions, we assess the system performance
by computing:
Accuracy: Percentage of high-level vectors correctly
classified:
N + TP
TN +~ FP+FN + TP

Precision: Proportion of TP over the vectors considered as
anomalies:

Accuracy =

TP
TP + FP

True Positive Rate or Recall: Percentage of correctly
identified anomalous vectors:

Precision =

TP
TP+ FN

False Positive Rate: Percentage of legitimate vectors that
are wrongly identified as anomalous:

_FP
" TN + FP

F-Score: Harmonic mean between the Recall and the
Precision:

TPR

FPR

Precision - Recall

FScore =2 - —
Precision + Recall

Matthews Correlation Coefficient: Quality of the detection
rate in terms of the correlation coefficient between the
observed and predicted classifications; a coefficient of
+1 represents a perfect ranking, 0 no better than a random
prediction, and —1 indicates total disagreement between
prediction and observation:

TP .TN — FP - FN
J(TP + FP)(TP + FEN)(IN + FP)(IN + FN)

Area Under the Receiver Operating Characteristic (ROC)
Curve: This is the area under the ROC curve, obtained by
plotting the TPR against the corresponding FPR at various
threshold settings. The AUROC gives a measure of the
solution performance, where a perfect model has an AUROC
of 1.

The test data is very imbalanced (0.27% of anomalous
transactions), so metrics like accuracy are not very meaning-
ful. However, to make a fair comparison with the state-of-the-
art solution, all metrics are included as a reference.

The AUROC is a useful indicator for benchmarking
algorithms; if the ROC curve of a model is consistently higher
than the curve of other estimators, this indicates the former
achieves better performance. For these reasons, we use the
AUROC and the ROC curve to assess the performance
of various unsupervised models and the metrics described
above for assessing the performance of the supervised
models.

We also considered additional metrics to account for class
imbalance and different classification costs: the Precision-
Recall Curve and the Cost Metric. The Precision-Recall
Curve shows the tradeoff between Precision and Recall for

MCC =
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different thresholds. A high area under the curve represents
both high Recall and high Precision, where high Recall
relates to a low false negative rate, and high Precision
relates to a low false positive rate. High scores for both
reflect that the classifier is returning accurate results (high
Precision), as well as returning a majority of all positive
results (high Recall). The Cost Metric is described in [50]
as:

Cost =FP+ C_R x FN

A normalization process can be applied to obtain a value
that is independent of the number of transactions:

FP+C_R X FN
TN +~FP+ C_R x (TP + FN)

Norm_Cost =

As suggested in [50], 100 is a reasonable estimation of
C_R, that is the cost ratio between FN and FP. 100 was
the value used to assess the optimal operating condition of
our system. However, it could be set to reflect the real costs
of anomalous transactions based on different scenarios. This
metric takes into account the cost of false positives for an
institution. A unit cost is applied to a FP, whilst a higher
cost is applied for a FN since the cost of allowing a money
launderer in the system is hundreds of times higher than
the cost of false positives and may result in fines for the
institution.

B. EXPERIMENT 1: UNSUPERVISED ALGORITHM
COMPARISON

In this experiment we compare state-of-the-art unsupervised
solutions with the Isolation Forest used in Amaretto. In par-
ticular, we take into consideration Autoencoders [25], Vari-
ational Autoencoders [51], Extended Isolation Forests [52].
In addition, we also test the unsupervised techniques
described in [37], which exploits a Matrix-decomposition
model, a Density-based model, and an Autoencoder, using
PCA as a Matrix decomposition model [53] and using a
Copula distribution as a Density-based model. We also tested
a threshold-based model [15] that uses mean and standard
deviation computed for each feature of the high-level vector.
Given these descriptive statistics, we compute a one-sided
threshold as the sum of the mean and standard deviation.
In order to score new samples, all features that exceed their
respective threshold add the surplus to the risk score, while
features below the threshold yield a risk score of 0. For
this experiment, we train and tune all the models on the
training dataset composed of 7 weeks of data (17,327,387
transactions) and evaluate the performance on the subsequent
five weeks of data (12,376,703 transactions). As shown in
Figure 5, Isolation Forest exhibits the best performance with
an AUROC of 0.9. Surprisingly, the threshold-based model
and the matrix decomposition-based model outperformed the
Auto Encoder, which is considered one of the best models for
outlier detection.
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FIGURE 5. Experiment 1—-Comparison of the ROCs of the unsupervised algorithms. Isolation Forest exhibits
the best performance with an AUROC of 0.904, while variational autoencoders perform worst.

C. EXPERIMENT 2: DAILY BUDGET K ESTIMATION FOR
UNSUPERVISED RANKING

For this experiment, we benchmark the performances of the
unsupervised models analyzed in the previous experiments
when varying the number of samples reviewed each day
by the analyst. For every day existing in the test set, each
model computes the anomaly score for the high-level vectors,
which is then used to rank the vectors. Then the K top
anomalous vectors are considered anomalous, e.g., for K =
10, the first 10 vectors with the highest score are selected
for the review. The purpose of this experiment is to assess
the best daily budget that allows the system to achieve a
suitable detection rate whilst minimizing the effort of the
subject matter expert in reviewing the high-level vectors.
The metrics presented in Table 3 are the average metrics
computed for each technique and budget. As shown in
Table 3, the Isolation Forest is the model that achieves the best
results for every budget K, achieving an average Precision
of 0.904 and an average FPR of less than 0.01 (for K =
10). This means that the Isolation Forest allows the subject
matter expert to focus only on the most anomalous vectors.
The matrix decomposition-based model achieves comparable
performance only with a higher budget K, whilst for lower
values, the Isolation Forest is better. The daily budget values
considered in this experiment represent a small percentage
of the daily vectors that are generated. For this reason, the
FNR is high for a small daily budget, and it reduces as
the budget increases. It is important to highlight that the
financial company with which we collaborated considers a
percentage around the 1% and the 2% of the data received
daily as a reasonable number of transactions that they can
manually inspect with its specialized analysts. In our dataset,
this percentage corresponds to K = 5 (approximately
6,000 transactions) and K = 10 (approximately 12,000
transactions).
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D. EXPERIMENT 3: SUPERVISED ALGORITHMS
COMPARISON

With this test, we compare the Random Forest model
of Amaretto with state-of-the-art supervised models based
on Gradient and Category Boosting techniques. Gradient
Boosting [54] is considered one of the best algorithms for
classification tasks. Category Boosting [55] is an alternative
boosting algorithm based on decision trees. It offers compu-
tational and efficiency improvements compared to Gradient
Boosting-based models. For this experiment, we train and
tune all the models on the training dataset composed of
7 weeks of data (17,327,387 transactions) and evaluate
the performance on the subsequent five weeks of data
(12,376,703 transactions), running predictions on a daily
basis.

Table 4 presents the average metrics for each technique.
In line with the results obtained by state-of-the-art works [30]
and as shown in Table 4, the metrics are quite similar
between Random Forest, Category Boosting (CatBoost), and
Gradient Boosting (LGBM) models, whilst other supervised
methods do not perform as well. The CatBoost model exhibits
the highest Precision, although Random Forest achieves the
highest TPR and the lowest FNR. Furthermore, if we take into
account cost-related metrics, we can conclude that Random
Forest is better suited in this context compared to the other
models.

E. EXPERIMENT 4: DETECTING NOVEL ANOMALOUS
PATTERNS

The goal of this experiment is to assess the performance
of the supervised and unsupervised techniques employed
in Amaretto to detect new anomalous patterns. We execute
several runs of this experiment in order to test each com-
bination of the classes of anomalies existing in the dataset.
For every run, a class of anomalies is withheld from the
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TABLE 3. Experiment 2 - Daily budget K estimation. Performance metrics of the unsupervised models are shown varying the number of samples reviewed
by the analyst each day (K). Isolation Forest is the model that achieves the best performance for every budget K, achieving an average Precision of

0.904 and an average FPR of less than 0.01.

K Performance Metric | Autoencoder | Copula | Isolation Forest | Matrix Decomposition | Threshold-based
TPR 0.003 0.032 0.142 0.021 0.028
FPR 0.001 0.001 0.0 0.001 0.001
FNR 0.997 0.968 0.858 0.979 0.972
AUC 0.612 0.558 0.897 0.676 0.898
10 | Accuracy 0.991 0.991 0.993 0.991 0.991
Precision 0.015 0.208 0.904 0.131 0.181
FScore 0.005 0.055 0.246 0.037 0.049
MCC 0.003 0.078 0.357 0.05 0.068
Norm. Cost 0.448 0.435 0.385 0.44 0.437
TPR 0.015 0.063 0.279 0.051 0.205
FPR 0.006 0.006 0.004 0.006 0.005
FNR 0.985 0.937 0.721 0.949 0.795
AUC 0.612 0.558 0.897 0.676 0.898
50 | Accuracy 0.986 0.987 0.99 0.986 0.989
Precision 0.018 0.081 0.355 0.065 0.261
FScore 0.017 0.07 0.312 0.057 0.229
MCC 0.01 0.064 0.309 0.05 0.225
Norm. Cost 0.446 0.424 0.326 0.429 0.36
TPR 0.021 0.086 0.366 0.065 0.304
FPR 0.013 0.012 0.01 0.012 0.01
FNR 0.979 0.914 0.634 0.935 0.696
Accuracy 0.98 0.981 0.985 0.98 0.984
100 | Precision 0.013 0.055 0.233 0.041 0.195
AUC 0.612 0.558 0.897 0.676 0.898
FScore 0.016 0.067 0.284 0.05 0.237
MCC 0.007 0.059 0.284 0.042 0.236
Norm. Cost 0.446 0.417 0.29 0.427 0.318
TPR 0.032 0.112 0.463 0.092 0.407
FPR 0.025 0.025 0.022 0.025 0.022
FNR 0.968 0.888 0.537 0.908 0.593
Accuracy 0.967 0.968 0.974 0.968 0.973
200 | Precision 0.01 0.036 0.147 0.029 0.13
AUC 0.612 0.558 0.897 0.676 0.898
FScore 0.015 0.055 0.223 0.044 0.197
MCC 0.004 0.05 0.251 0.038 0.219
Norm. Cost 0.449 0.412 0.253 0.421 0.278

TABLE 4. Experiment 3—Supervised algorithms comparison. All algorithms show similar performances from the point of view of all metrics under

analysis, with the exception of the cost, where Random Forest performs best.

Random Forest | Cat Boost | Decision Tree | LGBM | SVM | Naive Bayes
TPR 0.793 0.781 0.771 0.752 0.3 0.135
FPR 0.001 0.001 0.002 0.001 0 0.03
FNR 0.207 0.219 0.229 0.248 0.7 0.865
Accuracy 0.998 0.998 0.996 0.997 0.994 0.963
Precision 0.899 0.907 0.77 0.879 0.855 0.036
FScore 0.842 0.838 0.77 0.809 0.44 0.056
MCC 0.843 0.84 0.768 0.811 0.501 0.054
Norm. Cost 0.094 0.099 0.104 0.112 0.314 0.405

training set and only introduced in the test set for evaluation
purposes. During the run, the models are trained using the
high-level vectors obtained from the training set that contains
the remaining class of anomalies, excluding the withheld
anomalies. After several iterations of the system (precisely
after the 15th day of the experiment), the withheld pattern is
introduced in the test data to assess the behaviors of the two
models. The results of each run are then averaged on a daily
basis and shown in Figure 6a and Figure 6b. As expected,
the Isolation Forest model performance is consistent, while
Random Forest exhibits a decay in performance when
new anomalies are introduced. The TPR of the Random
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Forests model halved, while the False Negative Rate (FNR)
tripled. This proves that Random Forest performs poorly
at detecting the new anomalous patterns introduced in the
dataset. On the other hand, the performance of the Isolation
Forest is not negatively affected by the new anomalies,
showing its capability of detecting the new anomalous pattern
introduced.

F. EXPERIMENT 5: AMARETTO CONFIGURATIONS

The purpose of this experiment is to test which of the
strategies is the most suitable for our dataset. The experiment
works as follows: on the first day, the labeled dataset is empty.
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FIGURE 6. Experiment 4—Performance of the supervised and unsupervised models in detecting novel anomalous patterns (i.e., not present in the training
set) averaged on a daily basis. The Isolation Forest model (in blue) performance is consistent, while Random Forest (in orange) exhibits a decay in
performance when new anomalies are introduced. The red line represent the moment in which new fraudulent patterns are introduced.
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FIGURE 7. Experiment 5—Performance comparison, varying K, of the four different Amaretto configurations (i.e., with different selection strategies.
Overall, the performance are similar. Amaretto_3 (red bar) provides the best trade-off in performance and costs, especially for lower K, since it achieves a
comparable detection performance but a lower amount of transactions to investigate.

Therefore the supervised model is not used. After the first and risk for a financial institution of not detecting illicit
day, the labeled dataset contains the samples selected by activities. In fact, with these two strategies selected, even with
the Isolation Forest, which have been reviewed by a subject a daily budget of K=10, the average Precision is higher than
matter expert. From this point onwards, the entire selection the one obtained with K=20 and comparable with the one
strategy can be employed (first stage, second stage, and obtained with K=50.

third stage). The mapping between the approaches adopted

in the first and third stages, as well as the names of the

configurations, are outlined in Table 5. Figure 7a and 7b G. EXPERIMENT 6: COMPARISON WITH THE STATE OF
show the average Precision and the average AUROC of the THE ART

score generated by Random Forest. The performance of the ~ In this final experiment, we compare Amaretto with A/ 2[37]
4 configurations is similar. We decided to focus on the system ~ Since it represents, to the best of our knowledge, the state-
that employs SELECT-DIVERSE and SELECT-ENTROPY of-the-art active-learning framework for anomaly detection.
(Amaretto _3, red bar in the experiment 5 Figure 7b) because Al comprises an ensemble of three unsupervised techniques,
it provides the best overall average Precision and AUC, including a density-based model, using a Copula-based
reducing the cost of manually reviewing multiple transactions multivariate distribution, a matrix decomposition-based
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TABLE 5. Experiment 5—Mapping between the selection strategies and
Amaretto configurations. 15t and 3" represents the stages in which such
strategies are deployed.

Amaretto SELECT
TOP ENTROPY DIVERSE CONFLICT
0 18t 3rd
1 1st 3rd
2 15t 3rd
3 3rd 1st

model, using a PCA-based model, and an Autoencoder. The
combination of the anomaly scores computed by the three
models is used to rank the most anomalous high-level vectors
for review by a subject matter expert. The feedback collected
is then used to train a Random Forest that additionally
analyzes the high-level vectors.

The experiment is divided into three parts: I - Static
Scenario, Il - Real-world Scenario, and IIl - Real-world
Scenario with Risk Profiles. In the first part, we compare the
frameworks in a static scenario, i.e., we collect 10 samples
per day over a period of 10 days from each framework
and then use this labeled data to train the Random Forest
and predict all remaining high-level vectors. In the second
part, we compare the frameworks in a real-world scenario,
studying the effective support to the daily routine of a subject
matter expert and the performances of the frameworks. In the
third part, we compare the frameworks’ performance in a
real-world scenario by taking into account different risk
profiles for a financial institution.

1) STATIC SCENARIO

The purpose of the first part of this experiment is to
verify the framework’s performance with a minimum amount
of training data. During this part, we also assess the
active learning inner modules, i.e., the components of the
framework in charge of computing the anomaly score and
selecting the samples to be shown to the subject matter
expert. For the first 10 days of the test set, only the inner
module is employed with a minimum daily budget (K =
10), collecting 100 samples. This labeled dataset is then
used to train a Random Forest. Subsequently, the trained
Random Forest model computes the probability score and the
prediction for all the remaining high-level vectors. Figure 8a
and Figure 8b show the comparison of our system against
AI? using the probability score. As exhibited by the ROC
curve plotted in Figure 8a, Amaretto achieves an AUROC of
0.93, whereas AI? obtained 0.89. Furthermore, as shown in
the Precision/Recall curve in Figure 8b, Amaretto reaches an
average precision of 0.61, which is 31% better than AI”.

2) REAL-WORLD SCENARIO

In the second part of the experiment we assess how applying
this framework can decrease the workload of the subject
matter expert in a real-world scenario. Initially, only the unsu-
pervised machine learning techniques could be employed
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since no feedback was collected. After the first day, the
Random Forest works alongside the unsupervised models in
the active learning loop and the prediction phase. For this test,
we consider the worst-case scenario with a minimum daily
budget of (K = 10). Figure 8c shows the average precision
computed using the probability score. Amaretto doubled its
Precision in approximately ten days, i.e., with a dataset of
100 high-level vectors, constantly increasing its performance.
During the tests, Amaretto reaches a maximum average
precision of 0.78, while Al 2.0.57. As shown in Figure 8d,
Amaretto achieves better performances also considering the
AUROC. As in the previous test, the maximum AUROC is
0.94, and the average AUROC is 0.847, improving AI> by
circa 14%.

3) REAL-WORLD SCENARIO WITH RISK PROFILES

In the last part of the experiment, we test the frameworks
considering different risk profiles that a financial institution
can adopt. This is done considering different threshold values
for the probability score corresponding to different use
cases. For example, a lower threshold (corresponding to a
lower anomaly probability score) could be used where high
financial risk is estimated. By doing this, more transactions
will be considered as candidates for review, hence reducing
the false negatives but increasing false positives. As shown
in Figure 8e, Figure 8f, Figure 8g, and Figure 8h, Amaretto
outperforms AI* across all thresholds. In the low-risk
use case, Amaretto achieves a TPR of 0.428%, while in
the high-risk use case, a TPR of 0.596% represents an
improvement of circa 50% w.r.t AI*. Only in a low-risk case
does AI2 achieve a better FPR than Amaretto. On the other
hand, Amaretto achieves a higher TPR, a lower FNR, and
cost, balancing the overall performance. In addition, in every
scenario, the cost of Amaretto is always lower than A7°.

VII. LIMITATIONS AND FUTURE WORKS

The main limitation of this research work is the lack of
an intuitive explanation for the anomaly score returned by
Amaretto that is used to rank the high-level vectors. The
two composing algorithms (i.e., Random Forest and Isolation
Forest) are used in a black box fashion and function as
rule-based trees whose prediction can be explained following
the path that led to the given classification. However, since
we are considering a “forest,” we are averaging the output
of several trees. Therefore, the resulting probability does not
provide helpful insight and cannot help the human analyst
better understand the result. Future work may focus on
integrating into Amaretto a library and implementing the
explainability processes. For example, SHAP [56] is one of
the most interesting approaches for explaining the model
output.

The available dataset represents another limitation. Even
though it was synthetically forged from a real-world dataset,
it is very limited in timespan, containing 60 days of
transactions. A broader dataset would have allowed us to
analyze the system’s evolution over time deeply. For example,
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FIGURE 8. Experiment 6—Comparison of Amaretto (blue) versus A/2 (orange) with K = 10 for the three experimental settings: Scenario I-Static,
Scenario lI-Real-world, and Scenario Ill-Real-world with risk profile. Amaretto outperforms A/2 in almost all the metrics and scenarios under
analysis at the cost of a slightly higher average FPR but lower overall cost.

seasonal models and models based on specific anomalous
patterns could be developed.
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It could be interesting to see how Amaretto works on more
complex scenarios and further analyze the anomalies—for
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example, investigating the relationships among these anoma-
lies or which anomalies occur more frequently. We assumed
that the subject matter expert always provided correct
labels when reviewing the data; further research should be
conducted to assess the impact of incorrect labeling on the
system and ensure that the models accommodate such errors.
Another avenue for future research includes automatically
tuning Amaretto parameters to improve performance and
reduce the number of samples required to achieve satisfactory
results. Furthermore, alternative unsupervised and supervised
models should be tested.

In this work, we did not consider graph-based or deep
learning models since they usually require higher computa-
tional requirements with respect to standard machine learning
approaches. In fact, we aimed to build the simplest and
lightest active learning system to outperform state-of-the-art
solutions. In addition, even if the available dataset seems to
offer enough data for applying such categories of algorithms,
the experimental evaluation performed in this work seems to
suggest the opposite. In fact, the deep learning model tested
in this work (i.e., Autoencoder and Variational Autoencoders)
does not perform well when evaluated in a real-world
scenario in which an analyst can review only a limited
number of samples. Future works may explore applying
deep learning algorithms (e.g., models that overcome the
shortcomings of random forests)to complement Amaretto
on larger datasets that span over a greater period. For
example, LSTM-based neural networks could be employed
due to the temporal correlations in money laundering
patterns.

Finally, it would be interesting to evaluate Amaretto on
detecting other kinds of financial crime, like credit card fraud
detection, to investigate its flexibility.

VIIl. CONCLUSION

In this paper, we presented Amaretto, an active learning
system for anomaly detection applied to transaction mon-
itoring for money laundering detection in capital markets.
Amaretto comprises an unsupervised model for detecting
known and unknown anomalous patterns, including four
strategies to optimally sample the data for a subject matter
expert to review. This data is fed into a supervised learning
model to continuously improve the system’s performance.
Amaretto was able to process over 29 million transactions,
extracting aggregated features and highlighting customer
behavioral patterns over time to detect unusual correlations.
We then presented the experimental results conducted on
a synthetic dataset generated to resemble genuine, as well
as potential money laundering patterns. We compared unsu-
pervised techniques, commonly used in anomaly detection
tasks and state-of-the-art solutions. We demonstrated that
Isolation Forest is the best algorithm in the AML domain.
we also compared supervised techniques, and we determined
that Random Forest outperforms the others. Subsequently,
we proved how important it is for the unsupervised com-
ponent of the system to detect novel patterns, since the
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supervised models could not accurately detect these. Finally,
we conducted experiments to confirm the robustness of our
design in a real-world scenario. We demonstrated the best
selection strategies amongst the ones proposed and proved
that Amaretto achieved state-of-the-art performance within
a short time frame and with minimal manual input from a
subject matter expert.
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