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ABSTRACT With the rapid increase of video surveillance points in the market in recent years, video
anomaly detection has gained extensive attention in the security field. At present, the distribution of normal
and anomalous data is unbalanced in unlabeled video data. Variational autoencoder (VAE), as one of the
typical deep generative models, gets increasingly popular in unsupervised anomaly detection. However, this
model is not good at processing time-series data, especially video data. In addition, the strong generalization
ability which is over-reconstructing anomaly behavior of many autoencoder-based works leads to the missed
anomaly detection. To solve these problems, in this paper, we present a double-flow convolutional long
short-term memory variational autoencoder (DF-ConvLSTM-VAE) to model the probabilistic distribution
of the normal video in an unsupervised learning scheme, and to reconstruct videos without anomaly
objects for anomaly video detection. Experiments verify the effectiveness and competitiveness of our
DF-ConvLSTM-VAE on multiple public benchmark datasets. In particular, our model achieves the state-
of-the-art performance on anomalous event count.

INDEX TERMS Autoencoder, variational autoencoder, LSTM, ConvLSTM, anomaly detection.

I. INTRODUCTION
Anomaly detection has a wide range of practical applications
in campus monitoring, intelligent transportation, banking
transactions. Nowadays, in an era of data explosion, unla-
beled data, especially unlabeled surveillance video data per-
vades every aspect of life. Compared to other algorithms [1],
[2], unsupervised learning algorithms are becoming the future
trend and are of great interest to scientists [3]–[6]. As an
essential area of anomaly detection, anomaly video detec-
tion provides us with various pattern classification of nor-
mal and anomalous behaviors in respective domains [7]–[9].
In fact, anomaly video detection task suffers from several
challenges. For the existing large amounts of video data, there
is bound to be a large number of normal videos without
event occurrence. Finding out the time period of major event
occurrence is of great significance for storage and review of
videos. Therefore, it is of great research value and practical
significance to detect anomalous videos using unsupervised
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learning methods. In many cases, whether real-life events are
normal or anomalous depends on their surrounding circum-
stances. For example, a person running in a sports field is
perfectly normal, but in a court of law, it is clearly abnormal.
Another example is the presence of a speeding truck on a
campus sidewalk, which is clearly unusual and potentially
dangerous. These cases show that identifying whether an
event is an anomalous event is difficult. In addition, it is
well known that video presentation learning is the most basic
problem in video processing technology. Compared with the
static images, video involves richer dynamic information
about events. In addition, due to the diversity and variability
of video, it becomes an urgent problem to study the algorithm
which can find the internal spatio-temporal correlation and
discriminating features of video.

Researchers usually extract handcrafted video features to
detect anomalies over the past few years. Traditional methods
are based on low-level features, such as histograms of opti-
cal flow(HOF) [10], spatio-temporal gradient [11], and mix-
ture of dynamic textures(MDTs) [12], to complete anomaly
classification tasks. These models based on manual feature
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classification are inefficient, and their accuracy cannot meet
actual requirements. With the development of the deep learn-
ing, many neural networks are proposed by researchers and
used for detecting anomalies. More discriminating features
of videos are learned by these networks through unsupervised
learning. Hasan et al. [13] employ the Convolutional Autoen-
coder (ConvAE) to construct an anomalous event detection
model. Although the network input is continuous multiple
frames, 2D convolution is adopted, failing to fully utilize the
temporal information between video frames. Considering the
motion characteristics, Yiru et al. [14] use an autoencoder
with 3D convolution for anomaly video detection.Although
the model has the ability of reconstruction and prediction, it is
not good at modeling long video. Xu et al. [15] leverage a
stacked denoising autoencoders to learn both appearance and
motion features, and based on the learned features, multiple
one-class SVMmodels are used to predict the anomaly scores
of each input. However, this method is time-consuming by
dividing spatio-temporal features of video into optical flow
and appearance features. Long Short-Term Memory(LSTM)
network, a typical type of recurrent neural networks(RNN)
architecture, is proposed by Hochreiter et al. [16] and widely
used in many research tasks. Take video for example, this
network has been applied in action recognition [17]–[19],
video retrieval [20], [21], video segmentation [22], [23] and
Video Captioning [24], [25], etc. LSTM-Autoencoder, a typ-
ical sequence-to-sequence [26] framework, is proposed by
Srivastava et al. [17] and applied for learning video action
recognition. LSTM also performs well in video anomaly
detection task [27]. Medel and Savakis et al. [28] com-
plete video anomaly detection by combining LSTM net-
work and ConvLSTM unit. Base on ConvAE structure,
Yong and Yong [29] add three ConvLSTM layers to learn the
spatio-temporal information of video event and detect video
anomalies. Lin et al. [30] explore a hybrid autoencoder archi-
tecture, composed of ConvAE and LSTM-Autoencoder with
ConvLSTM unit, to improve the extrapolate capability of
the corresponding decoder through the shortcut connection.
The prediction branch of the hybrid autoencoder is used for
anomalies detection. These models are designed by autoen-
coder structure and use the reconstruction error to detect
anomalies. This reconstruction-based algorithm, as one of
the common techniques for anomaly detection, calculates the
maximum reconstruction error of test samples to determine
whether it is anomalous or not. In fact, the anomalous object is
generated in the reconstructed image by these methods and it
is relatively fuzzy or low in pixels compared with the original
image. It would be a better choice for detecting anomalous
data if the reconstructed image contains only normal instead
of any abnormal objects during the test phase.

In recent years, variational autoencoder (VAE) [31] has
become increasingly popular. In particular, VAE cannot only
generate the characteristic output close to the original input
and reflect the similar information of similar data, but also
learn the potential characteristic vector. An and Cho [32] pro-
pose an anomaly detection method using the reconstruction

probability from the variational autoencoder. The reconstruc-
tion probability is a probabilistic measure that takes into
account the variability of the distribution of variables. Exper-
imental results of this paper show that this method outper-
forms autoencoder-based methods on MNIST dataset [33].
Compared with the reconstruction error used by the autoen-
coder and the principal component-based anomaly detec-
tion method, the reconstruction probability with a theoretical
background is more principled and objective. However, VAE
limits its applicability to time series, especially to video, for
it does not take the temporal characters of video into account.
For processing the time-series data, Sölc et al. [34] utilize
RNNs and the variational inference to learn time-series data
for anomaly detection. Park et al. [35] use a long short-
term memory-based variational autoencoder(LSTM-VAE)
for multimodal anomaly detection. These two papers demon-
strate that the VAE-based models are better than the other
approaches, and inspire us to apply a recurrent VAE for
anomaly detection in video.

In this work, in order to solve above problems, our two
models choose ConvLSTM units instead of LSTM units
to learn the internal spatio-temporal relations of video.
These two asymmetric models blend ConvLSTM with VAE
architecture to reconstruct videos without anomaly objects
for anomaly detection (see Figures 10 – 12). One is
called ConvLSTM-VAE(Asymmetric); The other is named
DF-ConvLSTM-VAE. More information about the struc-
tures of these two models is described in Section III.
We use reconstruction error probability which is different
from reconstruction probability to detect anomalies. Exper-
iments verify the effectiveness and competitiveness of our
DF-ConvLSTM-VAE onmultiple public benchmark datasets.
In particular, our model achieves the state-of-the-art perfor-
mance on anomalous event count. The key contributions of
our work can be summarized as follows:
• For the disadvantage of strong generalization ability
of many autoencoder-based models, and the VAE does
not take the temporal dependence in data into account,
which limits its applicability to time series, especially
video sequence. We present two models-ConvLSTM-
VAE(Asymmetric) and DF-ConvLSTM-VAE to solve
this disadvantage. These two models are consisting of
ConvLSTM and VAE, to model the probability distribu-
tion of video sequence by capturing the crowd spatial-
temporal features. The experimental results verify the
validity of these two asymmetric models.

• Based on the analysis and verification of the
ConvLSTM-VAE(Asymmetric) model, we propose an
improved network, namely DF-ConvLSTM-VAE to
detect anomalies. The DF-ConvLSTM-VAE model
adopts the idea of asymmetric structure and increase
the width of network structure to achieve high training
efficiency and short test time.

• The DF-ConvLSTM-VAE model is successfully uti-
lized for anomaly detection in videos. The experimental
results demonstrate that theDF-ConvLSTM-VAEmodel
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has a certain competitiveness compared with current
leading methods on benchmark datasets.

The remainder of this paper is organized as follows.
In Section II, we briefly review many related works.
Section III, describes the proposed approach. Experiments
are conducted for analysis in Section IV. We discuss the limi-
tation of our work in Section V. Finally, we draw conclusions
and present future research directions in Section VI.

II. RELATED WORKS
A. CONVOLUTIONAL LSTM UNIT
Convolutional Long Short-termMemory (Conv-LSTM) unit,
as a variant of the LSTM unit, is firstly proposed by
Shi et al. [36]. Compared to the usual fully connected
LSTM (FC-LSTM) [17], spatial information is encoded by
ConvLSTMwhen dealing with spatio-temporal data in input-
to-state and state-to-state transition. With respect to predict-
ing future video sequences for a synthetic Moving-MNIST
Dataset [37], ConvLSTM exhibits superior performance than
FC-LSTM.

The formulation of the ConvLSTM unit can be summa-
rized with Equation (1), where the symbol ‘∗’denotes a
convolution operation, and ‘◦’denotes the Hadamard prod-
uct. The input, forget, cell, output and hidden state of each
timestep are denoted by i, f , C, o and H respectively, the
activation is denoted by σ , and the weighted connection
between states by a set of weights, W. The input is fed in
as images, while the set of weights for every connection is
replaced by convolutional filters.

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct−1 + bo)

Ht = ot ◦ tanh(Ct ) (1)

This operation prompts ConvLSTM to work better with
images than the FC-LSTM, for the model has the ability
to propagate spatial characteristics temporally through each
ConvLSTM state. Inspired by this, our two models apply the
Conv-LSTM as a basic block for recurrent connections inside
the VAE model.

B. AUTOENCODER
An autoencoder (AE), composed of an encoder and a decoder,
aims to reconstruct input data x from a learned hidden repre-
sentation z. The objective function of an AE is represented
in Equation (2) below, where φ and θ denote the hidden
parameters of the encoder E and the decoder G, and LAE
denotes the loss of AE. We use the reconstruction error of
each test data to calculate the anomaly score, and we consider
that the data with high anomaly score is anomalies. The AE
can behave well in reconstructing normal data, while failing
to do so with anomaly data that the autoencoder has not

encountered.

z = Eφ(x)

LAE (x, φ, θ ) = ‖x − Gθ (z)‖2 (2)

C. VARIATIONAL AUTOENCODER
The Variational Autoencoder (VAE) is proposed by [31]. The
structure of VAE is similar to that of AE. But essentially,
a difference between them is that the encoder of VAE forces
the representation z to obey some kind of prior probability
distribution p(z) (e.g. N (0, I )). Then the decoder generates
new realistic data with code z sampled from p(z). pθ (z) is the
prior distribution of the latent variable z. By inheriting the
architecture of an AE, a VAE consists of the following three
parts.

(1) Recognition network (encoder network): a probabilistic
encoder Eφ , which map input x to the latent representation
z to approximate the true posterior distribution p(z|x). This
recognition network can be represented as the approximate
posterior qφ(z|x).

µ, log(σ ) = Eφ(x) (3)

(2) Sampling process: ε ∼ N (µ, σ )

z = µ+ σ � ε (4)

(3) Generative network (decoder network): a generative
decoder Gθ , which reconstructs the latent representation z to
the input value x̃, does not rely on any particular input x. This
generative network can be represented as pθ (x|z).

x̃ = Gθ (z) (5)

where φ, θ denote the parameters of recognition and genera-
tive network, respectively.

The data distribution pθ (x) is intractable by analytic meth-
ods, so variational inference methods are introduced to solve
the maximum likelihood log pθ (x). The loss of the VAE is
represented as Equation (6).

LVAE (x, φ, θ )
= log pθ (x)− KL[qφ(z|x) ‖ pθ (z|x)]

= Eqφ (z|x)[log pθ (x)+ log pθ (z|x)− log qφ(z|x)]

= Ez∼qφ (z|x) − DKL(qφ(z|x) ‖ pθ (z)) (6)

In order to estimate this maximum likelihood, a VAE needs
to maximize the evidence lower bound (ELBO) LVAE . KL is
a similarity measure between two distributions. To optimize
theKLD between qφ(z|x) and pθ (z), the encoder estimates the
parameter vectors of Gaussian distribution qφ(z|x), mean µ
and standard deviation σ . There is an analytical expression
for their KL divergence, because both qφ(z|x) and pθ (z) are
Gaussian. For optimizing the second term of Equation(6), the
VAE minimizes the reconstruction errors between the inputs
and the outputs. The objective function of the VAE can be
rewritten as:

LVAE = LMSE (̃x, x)+ LKLD(µ, σ )
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FIGURE 1. Illustration of our unrolled asymmetric convolutional
LSTM-VAE model (ConvLSTM-VAE(Asymmetric)).

LMSE (̃x, x) = ‖ x̃ − x ‖2

LKLD(µ, σ ) = KL(N (µ, σ 2) ‖ N (0, I ))

=
1
2
(1+ log(σ 2)− µ2

− σ 2) (7)

where the first term LMSE is the reconstruction error (MSE,
the mean squared error) between the inputs and their recon-
structions. The second term LKLD is the Kullback-Leibler
divergence between the inference model qφ(z|x) and pθ (z) .
And regularize the encoder by encouraging the approximate
posterior qφ(z|x) to match the prior pθ (z) . Use the ‘‘repa-
rameterization trick’’, φ and θ can be obtained by optimizing
Equation(7) via stochastic gradient variational bases.

AE uses the reconstruction error as the anomaly score in
the test phase, while VAE defines reconstruction probability
for anomaly detection. To estimate the probabilistic anomaly
score, a VAE samples z according to the prior pθ (z) for L
times and calculates the average reconstruction as reconstruc-
tion probability. That is why the VAE works more robustly
than the traditional AE in the anomaly detection domain.

Algorithm 1 Training Algorithm for the
ConvLSTM-VAE(Asymmetric) Network
Input: Normal training dataset X for every frame xt , t = 1, . . . ,T .
Output: probabilistic encoder Eφ , probabilistic decoder Gθ .
(Eφ = Conv+ ConvLSTM , Gθ = Deconv)
φ, θ ,C0,h0← Initialize parameters
repeat
for t = 1 to T do
Ft = Conv(xt )
µ, σ,Ct , ht = ConvLSTM (Ft ,Ct−1, ht−1)
z← samples from N (µ, σ 2)
x̃t = Deconv(z)
calculate Lt = LMSE (̃xt , xt )+ LKLD(µ, σ )

end for
φ,θ← update parameters using gradients of L =

∑T
t=1 Lt

until convergence of parameters

III. PROPOSED METHODS
A. THE CONVLSTM-VAE(ASYMMETRIC) MODEL
In this work, we combine ConvLSTM units with the VAE
to model the video sequences for anomaly detection. Due
to the traditional network based on the VAE structure, it is
easy to train the VAE into the AE model in the training

FIGURE 2. Illustration of two consecutive video blocks of our unrolled
double-flow convolutional LSTM-VAE model (DF-ConvLSTM-VAE). The blue
arrows and black arrows represent two different flows of the
DF-ConvLSTM-VAE model.

process. We artificially weaken the decoder from the struc-
ture, to design an asymmetric model. Figure 1 provides the
structure of the ConvLSTM-VAE(Asymmetric) model which
is composed of the following three parts: encoder, sample,
and decoder. The encoder consists of two modules: Conv and
ConvLSTM , where Conv represents a set of convolutional
layers for extracting spatial features from each frame, and
ConvLSTM denotes convolutional long short-term memory
units for learning temporal patterns of video sequences from
spatial features. In the sampling process, z is sampled from
the encoder of the ConvLSTM-VAE(Asymmetric) model.
The sampled data z has temporal and spatial properties. The
decoder is made up of only one module: Deconv, which
represents a set of deconvolutional layers, corresponding to
the Conv module of encoder to generate new realistic input.
The objective function of the ConvLSTM-VAE

(Asymmetric) model can be expressed in Equation(8).

L = LMSE (̃x, x)+ LKLD(µ, σ ) (8)

More details and configuration about our ConvLSTM-
VAE(Asymmetric) model is presented in Table 1 of
Section IV, and the algorithm for training the
ConvLSTM-VAE(Asymmetric) is shown in algorithm 1.

B. THE DF-CONVLSTM-VAE MODEL
We believe that the decoder of the ConvLSTM-VAE
(Asymmetric) model consisting only of deconvolutional lay-
ers cannot adequately decode the sampled spatio-temporal
information. Meanwhile, inspired by traditional symmet-
ric structures of many VAE-based networks, we propose
an improved model, namely DF-ConvLSTM-VAE model to
improve performance of networks. The DF-ConvLSTM-VAE
model is a non-traditional symmetric structure variational
autoencoder for processing time series data.

Figure 2 displays the structure of the DF-ConvLSTM-VAE
model consisting of the following two flows: the left flow and
the right flow. In Figure 2, the blue arrows represent the left
flow, and the black arrows denote the right flow. Note that
the structure of the right flow is the same as the ConvLSTM-
VAE(Asymmetric) model. The left flow is different from the
right flow. The left flow is a model which is composed of
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Algorithm 2 Training Algorithm for the DF-ConvLSTM-
VAE Network
Input: Normal training dataset X for every frame xt , t = 1, . . . ,T .
Output: probabilistic encoderEφ , E ′φ′ . probabilistic decoderGθ ,G

′

θ ′
.

(Eφ = Conv+ ConvLSTM , Gθ = Deconv, E ′
φ′
= Conv,

G′
θ ′
= Deconv)

φ,θ , φ′, θ ′,C0,h0,C ′0,h
′

0← Initialize parameters
repeat
for t = 1 to T do
µ′, σ ′,Ft = Conv(xt )
µ, σ,Ct , ht = ConvLSTM (Ft ,Ct−1, ht−1)
z← samples from N (µ, σ 2)
z′← samples from N (µ′, σ ′2)
x̃t = Deconv(z′, z)
calculate Lt = LMSE (̃xt , xt )+ LKLD(µ, σ )+ L′KLD(µ′, σ ′)

end for
φ, θ , φ′,θ ′← update parameters using gradients of L =

∑T
t=1 Lt

until convergence of parameters

the following three parts: encoder Conv, sample, and decoder
Deconv. In particular, the left flow skips the ConvLSTM
model directly.

Many networks often improve the network performance by
increasing the depth and width of the spatial view. At the
same depth of the network, we increase the network width
from spatial and temporal views to improve the utilization
of features, and thus improve the performance of the model.
We offer a new option to learn the temporal pattern of video
sequences. The DF-ConvLSTM-VAE model is composed of
the following three parts: encoder, sample, and decoder. Dif-
ferent from the three parts of ConvLSTM-VAE(Asymmetric)
model, the encoder of DF-ConvLSTM-VAEmodel comprises
two modules: Conv, and ConvLSTM of the right flow, the
sampling process consists of two sample processes: the data
z of the right flow sampled from N (µ, σ 2) and the data z′ of
the left flow sampled from N (µ′, σ ′2), and the decoder is a
module: Deconv.
The objective function of DF-ConvLSTM-VAE model can

be represented in Equation(9).

L = LMSE (̃x, x)+ LKLD(µ, σ )+ L′KLD(µ′, σ ′) (9)

where the second term LKLD and the third term L′KLD
represent the Kullback-Leibler divergence of the right
and left flow, respectively. The algorithm for training the
DF-ConvLSTM-VAE is shown in algorithm 2. More details
and configurations about our DF-ConvLSTM-VAEmodel are
provided in Table 1 and Table 2 of Section IV.

C. ANOMALY DETECTION
In this paper, we propose video anomaly detection models
to calculate the anomaly score from the reconstruction error
probability(REP). Given a frame xt of the test video clip as the
input, the encoder estimates the parameters of latent gaussian
variables µ and σ as the output. Then the reparameteriza-
tion trick is used to sample z for L times according to the
latent distribution N (µ, σ 2), i.e. z(l) = µ + σ � ε(l), where
ε ∼ N (0, I ) and l = 1, . . . ,L. The generative network

receives z(l) as input data and outputs the reconstructed frame
x̃(l)t . We compute the reconstruction error probability of a
pixel’s intensity value I at location(u, v) in frame xt of a given
video sequence by the Equation(10).

REP(u,v,t) =
1
L

L∑
l=1

‖̃I (l)(u,v,t) − I(u,v,t)‖2 (10)

where Ĩ (l)(u,v,t) denotes a pixel’s intensity value I at

location(u, v) in reconstructed frame x̃(l)t .
From each frame, we compute the REP of a frame xt by

summing up all the pixel-wise errors probabilities: REP(t) =∑
(u,v) REP(u,v,t). We compute the regularity scores s(t) of a

video sequence through the Equation(11):

s(t) = 1−
REP(t)− mintREP(t)

maxtREP(t)
(11)

In addition, in order to know the number of abnormal
events in a given video, we explore local minima that are very
noisy and not all meaningful in the time-series of regularity
score to detect abnormal events. Distinct local minima indi-
cate that video frames are most likely to contain anomalies.
We use the Persistence1D [39] algorithm to identify mean-
ingful local minima. In this step, if the distance of two local
minima is less than 50 frames, they are identified as a part of
the same abnormal event.

IV. EXPERIMENTS
A. DATASETS
To test our two methods, we conduct experiments on several
challenging datasets, namely USCD Ped1 and Ped2, Avenue
datasets.

1) USCD DATASET
UCSD ped dataset [12] consists of two sub-datasets,namely
UCSD ped1 and UCSD ped2. In UCSD ped1 dataset, there
are 34 training video clips for training and 36 video clips
for testing. The resolution of each frame is 238 × 158 pix-
els. UCSD ped2 dataset consists of 16 training and 12 test-
ing video clips, each with 360 × 240 resolution. Anomaly
events mainly contain two categories in UCSD ped dataset,
the movement of non-pedestrian entities and anomalous
pedestrian motions. Anomalous events of UCSD ped dataset
include bikers, skaters, carts, wheelchairs and people walking
off the walkway.

2) AVENUE DATASET
There are 16 training and 21 testing video clips in AVENUE
dataset [40]. The resolution of each frame is 640 × 360 pix-
els. Each video clip is around 2 minutes long. The training
video clips contain mostly normal activities, but do include a
few anomalous events. There are several typical anomalous
events, including running, throwing objects and walking in
the wrong direction in testing video clips. In addition, it is
worth noting that the camera in this dataset has jitter prob-
lems, while the other datasets are from stationary cameras.
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FIGURE 3. Left:Illustration of single frame structure of VAE;
Right:Illustration of single frame structure of ConvLSTM-VAE(Symmetric).

B. IMPLEMENTATION DETAILS
In order to verify the performance of our asymmetric structure
models, two symmetric structure models are designed for
comparison. These two models are VAE and ConvLSTM-
VAE(symmetric), respectively. As shown in Figure 3, the
left model is VAE model consisting only of symmetric
Conv and Deconv modules. The right model is ConvLSTM-
VAE(Symmetric) model which symmetrically adds one
ConvLSTM layer compared with VAE model. In detail, the
corresponding modules parameters of the two symmetric
models are the same as our model.

1) EVALUATION METRIC
In the field of video anomaly detection, two commonly
used anomaly detection evaluation criteria are Equal Error
Rate (EER) and Area Under Receiver Operating Characteris-
tic Curve(AUC). These two criteria are derived fromReceiver
Operating Characteristic Curve(ROC), which is well suited
for comparison of algorithm performance. ROC curve evalu-
ates the detection effect of abnormal events. The ROC curve
takes False positive rate(FPR) as abscissa and True posi-
tive rate(TPR) as ordinate. Here, TP(True Positive) indicates
true positives, FN(False Negative) indicates false negatives,
FP(False Positive) indicates False negatives, TN(True Neg-
ative) indicates true negatives. We compute FPR and TPR
through the Equation(12):

TPR =
TP

TP+ FN

FPR =
FP

FP+ TN
(12)

We select different threshold and calculate the TPR and
FPR respectively to make ROC curve. EER is the point
where the TPR and FPR are equal on the ROC curve,
namely, the intersection of the ROC curve and the diagonal
(line [0,1]-[1,0]) in the ROC space. If the EER in the ROC
curve of an algorithm is smaller and the AUC is larger,
it indicates that the performance of this method is better.

2) CONFIGURATIONS OF OUR MODELS
The input images are resized to 224 × 224 pixels and con-
verted to gray-scale. The input length of two networks is ten

(T = 10). Figure 4 gives comparison of average LMSE of
sequence of the ConvLSTM-VAE(Asymmetric) model with
respect to different learning rate (Figure 4(a)), mini-batch
(Figure 4(b)) and optimizer (Figure 4(c)) on USCD ped1
dataset. The three blue curves show that our asymmetric
model performs best with its corresponding hyperparameters.
From the Figure 4, we use an Adam optimizer with a learning
rate of 10−4 to train our two networks from a Xavier uniform
random weights initialization. Our two networks are L2 regu-
larized with a weight decay of 5× 10−4. On USCD ped1 and
Avenue, the batch size is set to 4, and on USCD ped2, it is
set to 8. Figure 5 shows that comparison of AUC and EER
of different dimension of the learned hidden representation
z on USCD ped1 dataset. As can be seen from Figure 5, the
performance of the ConvLSTM-VAE(Asymmetric) model is
the best when the dimension of the hidden representation z is
set to 256.

Figure 6 and Table 1 provide the structure and correspond-
ing parameters of the ConvLSTM-VAE(Asymmetric) model,
respectively. The ConvLSTM-VAE(Asymmetric) model con-
catenates the outputs of three recurrent ConvLSTM layers
and sends it to next two fully connected layers to calcu-
late the mean and the variance (ConvLSTM4, ConvLSTM5,
ConvLSTM6→ FC7, FC8).

Table 2 presents the structure of the DF-ConvLSTM-VAE
model. It should be noted that the output data of C3 are sent
to the left flow (C3 → L-FC7) and the right flow (C3 →
R-ConvLSTM4). The DF-ConvLSTM-VAE model concate-
nates the outputs of three recurrent ConvLSTM layers of the
right flow, and sends them to next layer (L-ConvLSTM4,
L-ConvLSTM5, L-ConvLSTM6 → R-FC7, R-FC8). The
corresponding parameters of the DF-ConvLSTM-VAEmodel
are the same as those of the ConvLSTM-VAE(Asymmetric)
model.

C. EXPERIMENTAL RESULTS
1) DF-CONVLSTM-VAE VS. OTHER MODELS
Figures 7–9 describe the comparison of average LMSE and
KL divergence of sequence with different models on three
datasets. In detail, the Figure 8(b) is a partial magnifica-
tion of the Figure 8(c). The Figure 9(b) also is a partial
magnification of the right Figure 9(c). From Figures 7–9,
it is easy to see that the average LMSE of sequence curve
and the average KL divergence of sequence curve of the
ConvLSTM-VAE(Symmetric) model are obviously different
from the other three models.

From three Figures 7(a), 8(a) and 9(a), in the early train-
ing process, we find that the Convlstm-VAE(Symmetric)
model tends to fall into local optima or saddle point, and
lingers for a long time before jumping out and continuing
to optimize. The other three models do not present this phe-
nomenon. Obviously, the convergence rate of ConvLSTM-
VAE(Symmetric) model is slower than that of the other
threemodels. In addition, non-convergence sometimes occurs
when the ConvLSTM-VAE(Symmetric) model is trained on
the AVENUE dataset.
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FIGURE 4. Comparison of average LMSE of sequence of the ConvLSTM-VAE(Asymmetric) model with respect to different
learning rate(a), mini-batch(b) and optimizer(c) on USCD ped1 dataset.

TABLE 1. Specifications of the ConvLSTM-VAE(Asymmetric) model. I=input layer, C=convolutional layer, ConvLSTM= convolutional long short-term
memory, FC=fully connected layer, S=sampling layer, D=deconvolutional layer, O=output layer.

TABLE 2. The table provides corresponding structure of the DF-ConvLSTM-VAE model. R-=right flow, L-=left flow, I=input layer, C=convolutional layer,
ConvLSTM= convolutional long short-term memory, FC=fully connected layer, S=sampling layer, D=deconvolutional layer, O=output layer.

As can be seen from three Figures 7(a), 8(a) and 9(a), the
averageLMSE of sequence curve of the DF-ConvLSTM-VAE
model is at the bottom compared to the other curves.
From Figures 7(b), 8(b) and 9(b), it is obvious that
the average KL divergence of sequence curve of the
DF-ConvLSTM-VAE model lies between VAE and the
ConvLSTM-VAE(Asymmetric). Therefore, the structural
design of the DF-ConvLSTM-VAE model composed of
the VAE and the ConvLSTM-VAE(Asymmetric) model
is effective. Obviously, compared with the ConvLSTM-
VAE(Asymmetric) model, which can avoid falling into the
saddle point for a long time, the training time of the
DF-ConvLSTM-VAE model is relatively less.

In Table 3, these four models are experimented on
three test datasets. Overall, the experimental results show
that the result of ConvLSTM-VAE(Symmetric) model

FIGURE 5. Comparison of area under ROC curve(AUC) and Equal Error
Rate(EER) of different dimension of the learned hidden representation z
on USCD ped1 dataset.

is better than the other three models. The perfor-
mance of the DF-ConvLSTM-VAE model is better than
ConvLSTM-VAE(Asymmetric) and VAE models. Although
the performance of the DF-ConvLSTM-VAEmodel is not the
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FIGURE 6. The architecture of the ConvLSTM-VAE(Asymmetric) model. I=input layer, C=convolutional layer, CL=convolutional long short-term memory,
FC=fully connected layer, S=sampling layer, D=deconvolutional layer.

TABLE 3. Comparison of area under ROC curve(AUC) and Equal Error
Rate(EER) of different models.

TABLE 4. The time consumed by different models.

best, the performance of the DF-ConvLSTM-VAE model for
anomaly detection is worth considering and selecting in terms
of training and time consumption.

We implement our four models using the Tensorflow
Framework. All the test experiments are conducted on a
GPU GeForce RTX 2080 Ti. We test the time(in seconds)
consumed per frame by these four models on USCD ped1
dataset, and the results are shown in Table 4. The running
time taken by the ConvLSTM-VAE(Symmetric) model is the
longest, due to its two Symmetric ConvLSTM layers. Our
DF-ConvLSTM-VAE model has two sampling processes in
the data stream of each frame and thus, takes longer time
than that of the ConvLSTM-VAE (Asymmetric) model, but
it is less time-consuming than that of the ConvLSTM-VAE
(Symmetric) model with one sampling process.

2) QUANTITATIVE ANALYSIS: ROC AND ANOMALOUS EVENT
COUNT
Table 5 compares the anomaly detection accuracy of our
DF-Convlstm-VAEmodel against other state-of-the-art meth-
ods on three datasets. In Table 5, Adam, SF, MPPCA,
MPPCA+SF, and HOFME are traditional methods. It is easy
to see that our DF-Convlstm-VAE method is significantly
better than these traditional methods in terms of AUC and
EER on USCD dataset.

TABLE 5. Comparison of area under ROC curve(AUC) and Equal Error
Rate(EER) of different methods.“−”denotes the value is not published in
their corresponding articles.

FIGURE 7. Comparison of average LMSE (a) and KL divergence(c) of
sequence with different models on UCSD Ped1 datasets. (b) is a partial
magnification of (c).

In Table 5, ConvAE, ST-AE, two-stage, and ISTL are unsu-
pervised deep learning methods, where ConvAE, ST-AE,
ISTL and our DF-Convlstm-VAE algorithm belong to a class
of one stage models. Comparing these four models, our
algorithm ranked second on USCD ped1 dataset and first on
AVENUE dataset in terms of AUC and EER. The two-stage,
Ada-net, and ST-CaAE models are more complex networks,
where Ada-net and ST-CaAE networks have a high com-
plexity because they are designed with GAN model. In par-
ticular, ST-CaAE uses extra optical flow information, and
employs 2D/3D convolution methods to extract short-time
temporal-spatial features, and integrates classical dual-flow
model for video anomaly detection. Our algorithm uses Con-
vsltm units to extract long-time temporal-spatial features of
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TABLE 6. Anomalous event and false alarm count detected by different methods.

FIGURE 8. Comparison of average LMSE (a) and KL divergence(c) of sequence with different models on UCSD ped2 dataset. (b) is a partial
magnification of (c).

FIGURE 9. Comparison of average LMSE (a) and KL divergence(c) of sequence with different models on Avenue dataset. (b) is a partial
magnification of (c).

video sequences without using additional optical flow infor-
mation which increases the computation. Compared with the
ST-CaAE model, our DF-Convlstm-VAE algorithm performs
well on EER. Compared to these state-of-the-art deep learn-
ing methods, our algorithm ranks third in terms of EER
on USCD datasets and second in terms of AUC and EER
on AVENUE dataset. In summary, our DF-Convlstm-VAE
model is competitive in EER compared with other advanced
deep learning models.

The comparions of anomalous events and false alarm
counts are provided in Table 6.We employ our DF-Convlstm-
VAE model to calculate true positive and false alarm by Per-
sistence1D [39] algorithm. Observing Table 6, it is obvious
that our algorithm performs verywell in three datesets aspects
of True Positive. As for False Alarm, our algorithm performs
well on Ped2 and Avenue, except in Ped1 dataset. In sum-
mary, the performance of our DF-Convlstm-VAE model is
comparable to the state-of-the-art anomalous event detection
methods.

As seen in Table 5 and Table 6, compared with other
state-of-the art methods, our DF-ConvLSTM-VAEmodel has
competitive advantages.

3) QUALITATIVE ANALYSIS
a: VISUALIZING THE RECONSTRUCTED IMAGES
Figures 10–12 show three examples of generated videos by
our DF-ConvLSTM-VAE network, and there are anomalous
objects on these ground truth video sequences.

In Figure 10, the first and the third rows are the ground
truth video sequences of frames 70 − 80 from UCSD Ped1
testing clip #20, while the second and the fourth rows show
the corresponding reconstructed images. We can observe
that the pedestrians in the generated images are different
from the ground truth images, because the data generated by
the network is different from the original dataset but with
the same distribution. The network can pay attention to the
spatio-temporal characteristics of learning videos and gen-
erates continuous foreground information. By observing this
figure, the ground truth images show a person in a wheelchair,
and at same position, a walking person is generated by our
DF-ConvLSTM-VAE model in reconstructed images.

In Figure 11, The first and the third rows are the ground
truth video sequences of frames 70 − 80 from UCSD Ped2
testing clip #4, while the second and the fourth rows show
the corresponding reconstructed images. We can see that
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FIGURE 10. The first and third rows are the ground truth video sequences
of frames 70-80 from USCDped1 testing clip #20, while the second and
fourth rows are corresponding reconstructed images.

FIGURE 11. The first and the third rows are the ground truth video
sequences of frames 50-60 from USCDped2 testing clip #4, while the
second and the fourth rows are corresponding reconstructed images.

the ground truth image shows a moving truck while our
DF-ConvlSTM-VAE model does not produce any results in
the reconstructed images at the same place.

In Figure 12, the first and the third rows are the ground
truth video sequences of frames 20−30 from Avenue testing
clip #20, while the second and the fourth rows show the
corresponding reconstructed images.We can see that a person
walking in the wrong direction(walking toward the camera)
in the ground truth video. This behavior does not occur
in the training set, and therefore, in the generated images,
nothing is generated in the corresponding position by our
DF-ConvlSTM-VAE model. In addition, observe the ground
truth video, we can see that the pillar is obscured by the
abnormal object, but it is generated well in our generated
images by our DF-ConvlSTM-VAE model. This is because
the essence of VAE-based model is a probabilistic graphical
model.

FIGURE 12. The first and third rows are the ground truth video sequences
of frames 20-30 from Avenue testing clip #19, while the second and
fourth rows are corresponding reconstructed images.

FIGURE 13. Regularity score of video #24 from UCSD ped1 dataset.

FIGURE 14. Regularity score of video #4 from UCSD ped1 dataset.

Since the distribution of the generated samples with the
DF-ConvLSTM-VAE model is the same as and similar to
the training datasets, there is no anomalous object in our
reconstructed images.

b: VISUALIZING TEMPORAL REGULARITY
In Figures 13–15, we compare our two asymmetric models in
terms of the regularity scores on different datasets clips. The
anomalous ground truth regions are highlighted in red, and
distinct local minima is represented by a blue dot. The lower
the regularity score value under the anomalous conditions, the
higher the curve value in normal circumstances, indicating
that the performance of model is better.

Figure 14 shows that the capability of the
DF-ConvLSTM-VAE model is stronger than that of the
ConvLSTM-VAE(Asysmetric) model. There are two anoma-
lous objects(a moving truck and a person with bike) in video
#4. When two anomalies occur at the same time, the curve
only shows that the video frame is anomalous, but cannot
indicate that there exist two anomalous objects on this video
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FIGURE 15. Regularity score of video #20 from Avenue dataset.

frame. In Figure 15, the curves show that both of our two
asymmetric models can detect the anomalous behavior of a
person throwing papers into sky.

From these figures, it is easy to see that when there
are irregular motions, the regular score curve drops sig-
nificantly and forms a nail shape, and the performance of
our DF-ConvlSTM-VAE model is slightly better than the
ConvlSTM-VAE(Asymmetric) model.

V. DISCUSSION
Although this method takes the whole video frame as the
input, it is very advantageous for extracting global features,
but when extracting features, we find that the size of the fore-
ground target is relatively small, which brings challenges to
extracting the detail features of targets. Therefore, in the sub-
sequent study, we suggest to fully consider removing back-
ground information unrelated to the foreground and extract
relevant features in the form of patch.

VI. CONCLUSION AND FUTURE WORK
In this paper, both the ConvLSTM-VAE(Asymmtric) model
and the DF-ConvLSTM-VAE model consist of ConvLSTM
and VAE, and are proposed to learn training data dis-
tribution for video anomaly detection. The ConvLSTM-
VAE(Asymmetric) model is designed by weakening the
decoder. Compared with the ConvLSTM-VAE(Symmetric)
model, the ConvLSTM-VAE(Asymmetric) model has some
advantages in terms of training time and difficulty. Experi-
ments show that the DF-ConvLSTM-VAE model is superior
to the ConvLSTM-VAE(Asymmtric) model. Compared with
other typical methods, the experiments verify the validity
and competitiveness of our DF-ConvlSTM-VAE on multiple
public benchmark data sets. Since the simple gaussian model
cannot meet the complexity of real data, in the future, we will
try to construct a new probability graph model to accomplish
this task by forcing the representation z to obey a more
complex model.
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