
Received March 16, 2022, accepted April 7, 2022, date of publication April 14, 2022, date of current version April 22, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3167393

Drone-Enabled Multimodal Platform for
Inspection of Industrial Components
PARHAM NOORALISHAHI 1, (Graduate Student Member, IEEE),
FERNANDO LÓPEZ 2, (Member, IEEE), AND
XAVIER P. V. MALDAGUE 1, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
2TORNGATS Company, Quebec, QC G2E 5V9, Canada

Corresponding author: Parham Nooralishahi (parham.nooralishahi.1@ulaval.ca)

This work was supported in part by the Canada Research Chair in Multi-polar Infrared Vision (MiViM); in part by the Natural Sciences,
and Engineering Research Council (NSERC) of Canada through a Discovery Grant; and in part by the ‘‘oN Duty!’’ NSERC Collaborative
Research and Training Experience (CREATE) Program.

ABSTRACT In the rise of recent advancements in unmanned aerial vehicles, many studies have focused
on using multi-modal platforms for remote inspection of industrial and construction sites. The acquisition
of multiple data modalities assists the inspectors in acquiring comprehensive information about the targeted
components. Despite the benefits of multi-modal platforms, the calibration and fusion of the obtained data
modalities present many challenges that need to be addressed. Using a calibration board with geometrically
known features to estimate intrinsic and extrinsic parameters and accurately align the images in thermal
and visible spectral bands, is one of the main approaches to address the problem of dissimilarity of feature
appearances in different spectrums.This study presents a comprehensive platform for drone-based multi-
modal inspection of industrial and construction components, including three main components: 1) a sensor
setup that can be used as a standalone system or a payload for a drone; 2) a multi-modal embedded system;
and 3) a novel calibration board for multi-modal data fusion. The multi-modal embedded system provides
the required features to record, transmit, and visualize the thermal, visible, and depth data synchronously.
Additionally, the system presents a multi-modal fusion technique to form RGBD&T data containing thermal
and texture information of the obtained 3D view. Moreover, this study introduces a novel self-heating
calibration board that uses Thermoelectric Peltier modules to provide an identifiable and sharp pattern in
thermal and visible images. The calibration board is designed with an aim also to be used as Ground Control
Point (GCP) in drone surveys.

INDEX TERMS Multi-modal sensory platform, unmanned aerial vehicle, calibration board, data fusion,
ground control point, thermography.

I. INTRODUCTION
During past decades, many studies investigated the use of
coupled imagery sensors like visible, thermal, and depth
sensors to monitor and inspect industrial and construction
infrastructures, especially in Non-Destructive Inspec-
tion (NDI) applications. Different modalities represent differ-
ent but often complementary types of information about the
observed scene [1] which can assist companies in providing
more reliable and comprehensive analysis.

The associate editor coordinating the review of this manuscript and

approving it for publication was Abderrahmane Lakas .

Thanks to the recent advancements in sensing technolo-
gies and non-destructive testing methods, they provide more
accurate and reliable measures. However, they also have lim-
itations by nature. For instance, visible cameras can sense
the color and textural information while not presenting any
depth information and are vulnerable to low illumination
conditions. Thermal cameras provide a visual presentation of
thermal measurements related to the inspected scene. How-
ever, they are not capable of sensing colors.

Non-destructive testing methods also have limitations
due to their intended applications. For instance, Computer-
ized Tomography (CT) cannot distinguish between materials
with similar attenuation factors [2]. Thermography is only
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capable of detecting shallow or near-surface defects [2]. Also,
the detection of defect’s size and location is challenging in
Ultrasonic testing (UT) due to the nonhomogeneous nature
of the material [2].

One of the standard solutions to overcome these limitations
is to use coupled sensory systems. Coupled sensors in a
setup can reduce failures and ambiguities caused by sensor
degradation and expand the obtained information from the
environment by integrating multiple sensors. Multi-modal
data acquisition strategies can be categorized into two cat-
egories: (a) collection of data modalities at different times
(b) collection of data modalities with some degrees of sen-
sor coupling and synchronization. The use of multiple data
sessions or acquisition teams can lead to data inconsistency
and difficulty in data management and alignment. However,
multi-modal data acquisition can significantly reduce data
inconsistency and process complexity.

The fusion of imagery data from different spectral bands
can be instrumental in numerous applications such as indus-
trial inspection, surveillance, monitoring, and enhanced
vision. One of the essential steps in a multi-modal data fusion
is an accurate and reliable spatial registration of the acquired
images. Fusion techniques are often categorized based on the
level of fusion of modalities [3]: (a) sub-pixel level, where
the fusion is performed at a sub-pixel level using proper
transformation [4], [5]; (b) pixel level, where corresponding
pixels in the modalities are used for fusion purposes [6];
(c) feature level, involving extraction and selection of features
that are identifiable in the modalities of interest; (d) decision
level, where individual modalities are processed and reach a
decision before optimally combine the decisions to yield a
more robust and informed decision [7].

One of the main challenges in multi-modal registration is
the dissimilarity of feature appearances in different spectral
bands. Another challenge is that the obtained registration
is only valid for the objects located in the two-dimensional
plane covering the extracted feature points, which means that
the obtained calibration configurations of multiple cameras
are only valid for a specific target distance [8]. It becomes
more critical in case of a low rate of discriminative fea-
tures, which are commonly observed in thermal images. The
most common approach to addressing these challenges is to
employ a geometrically known calibration pattern identifi-
able in all sensory data.

One of the commonly used techniques for multi-modal
data fusion is calibration-based registration. In this approach,
a reference board is employed to (a) estimate the intrinsic
and extrinsic parameters of the cameras, which can improve
the accuracy of alignment, especially in case of the exis-
tence of radial and tangential distortions, and (b) calculate
the transformation matrix for aligning images from differ-
ent spectral bands [8]. The main challenge in using a cal-
ibration board is to design a board that can produce an
identifiable pattern with sufficient contrast in all modali-
ties of interest. This challenge can get more complicated
in an outdoor environment where environmental conditions

such as humidity, illumination, ambient temperature, wind,
and other factors can significantly influence the calibration
board. Moreover, specular reflection is one of the practi-
cal challenges within but not limited to passive calibration
boards, especially for thermal cameras. Specular reflection,
also known as mirror-like reflection, is where the reflectance
of a specular surface is zero for all angles except the specular
angle [9].

The processing of obtained images for image stitching or
photogrammetry is a well-studied subject. Various studies
addressed this challenge by employing feature matching,
intensity-based registration, or other methods that predom-
inantly suffer from alignment and registration errors and
incremental drifting. One practical and widely used approach
to address these issues and enhance the results, especially in
drone-based applications, is Ground Control Points (GCPs).
GCPs are essential tools in drone-based photogrammetry,
survey, andGeographic Information System (GIS), especially
when the high accuracy of absolute location is required.
GCPs are ground points with known coordinates and pat-
terns. They can be highly beneficial where the collected
data is not corrected by Real-Time Kinematic (RTK) and
Post-Process Kinematic (PPK) methods. GCPs should be
distributed in a frequent interval all around the targeted area
to ensure a GPS-grade accuracy [10]. Another area that
GCPs are beneficial is when the task is to align existing
terrestrial measurements where no transformation is avail-
able [10]. Also, they are essential where the number of fea-
ture points is limited to have accurate and reliable results,
which are commonly observed in the drone-based thermal or
multi-modal surveys and close-range inspection of industrial
components.

Although Ground Control Points is a well-studied subject
and many commercial solutions are available, the use of
Ground Control Points for drone-based thermal and multi-
modal surveys is still an open problem. In the case of a
thermal survey, providing a GCP that can present a sharp and
recognizable pattern is a challenge that needs to be addressed.
Also, in a multi-modal survey, the employed GCP needs to
generate similar and identifiable patterns in all spectral bands
of interest.

This study introduces a drone-enabled multi-modal plat-
form involving the software and hardware components
for collection, transmission, recording, and fusion of
multi-modal data for inspection of industrial sites. Addition-
ally, the system presents a fusion process pipeline to generate
a 3D view of the observed scene named RGBD&T data con-
taining depth, thermal, and texture information. For camera
calibration and multi-modal data fusion, a novel self-heating
reference board is proposed that can generate similar patterns
in thermal and visible images.

The structure of this paper is presented as follows. A brief
review of related works is described in Section II. The cali-
bration method is explained in Section III. In Section IV, the
introduced multi-modal platform is described. Finally results
are presented in Section V.
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II. RELATED WORKS
A. MULTI-MODAL SYSTEMS FOR MONITORING AND
INSPECTION
In recent years, the interest in using multiple data modal-
ities in the non-destructive testing of industrial compo-
nents has grown significantly. Combining multiple NDT
techniques or sensors can improve inspection accuracy and
enhance the results. Gros et al. investigated the use of a
probe array composed of different sensors and installed on a
Remotely Operated Vehicle (ROV) for inspecting off-shore
platforms [11]. This study concluded that using multiple
sensors provides a better assessment of defect character-
istics than using individual sensors. Also, using different
types of sensors can provide a more comprehensive anal-
ysis. For instance, Ultrasonic Testing (UT) is unsuitable
for detecting shallow cracks, while Eddy Current (EC) can
detect surface and near-surface defects. So the combination
of them can assist in detecting surface and subsurface defects.
Also, the use of Coordinate Measuring Machine (CMM)
along with Computerized Tomography (CT) can provide
the measurement in both the interior and the exterior [2].
Horn and Mayo discussed the benefits of combining UT
and EC techniques for inspecting rail lines [12]. They dis-
cussed that the use of UT and EC together can improve
reliability since EC provides information about the sur-
face while UT can detect defects in the interior of the
rail.

Simmen et al. investigated the use of multi-modal data
acquisition and processing for non-destructive inspection of
weld seams using passive thermography [13]. They used a
visible camera to observe visible contamination like rust,
moisture, and oil fractions, near-infrared, and Long Wave
Infrared (LWIR) cameras to observe thermal patterns and find
abnormalities. Li et al. presented a multi-sensory acquisi-
tion approach for inspecting Printed Circuit Boards (PCBs)
using polarization and thermography techniques [14]. They
stated that the use of polarization along with thermog-
raphy assist in avoiding the false positives caused by
uneven illumination distribution and reflection on the visible
images.

Remote inspection of industrial sites using aerial platforms
is a fast-growing area of interest for different industries. In the
conventional inspection of remote or hard-to-access areas,
transferring the equipment and human resources is sometimes
challenging and impracticable in terms of cost, time, and risk.
However, the lack of direct access can cause data misinter-
pretation during post-processing. One of the solutions is to
use multi-modal data platforms that can observe different
physical properties of the site. For example, in the case of
road inspection, companies spend a considerable amount of
cost and time to collect and evaluate data regarding road
distress [15]. They often perform inspections using digi-
tal cameras installed on a mobile platform [16]. However,
as stated by Cheng et al., the dark areas in visible images
caused by tire marks, oil spills, or shadows, other than dis-
tress, can lead to data misinterpretation, which can be solved

by using multi-modal data [17]. Also, poor illumination and
shadow can adversely affect the usability of visible images.
Javidi et al. presented a multi-modal system to address this
issue [18]. They used a 3D sensor along with a visible camera
to inspect road pavement. Although they reported that the
system had high sensitivity to vibrations caused by passing
vehicles, they could significantly improve the results com-
pared to conventional methods.

In the case of inspection in the electric power industry,
multi-modal platforms are actively used by companies and
various studies. Alsafasfeh et al. presented a drone-based
multi-sensory system containing visible and thermal cam-
eras for detecting potential faults in photovoltaic plants [19].
Lee et al. coupled thermal and visible cameras for inspection
of solar panels [20]. They used visible images to identify
solar panel arrays and thermal images to detect faulty panels
by locating highlighted or darkened spots. Hydro-Québec
introduced a drone-based multi-modal platform named Line-
Drone for inspecting power transmission lines [21]. They
used a coupled LiDAR sensor and visible camera to esti-
mate the drone location relative to the power line. Also,
Wang et al. presented a multi-modal system containing ther-
mal and visible cameras installed on an unmanned helicopter
for inspecting power lines [22]. They employed RGB images
to detect visible defects, while thermal images were used to
identify thermal faults.

One of the most studied fields of interest in multi-modal
systems is the use of thermal and visible cameras as com-
plementary sensors for industrial inspections. Liu et al.
introduced a fast and reliable drone-enabled method to
register aerial thermal and visible images obtained by an
electro-optical pod [23]. They used a geometric transforma-
tion model to adjust the scale of obtained image frames.
Later, they adopted a global feature extraction to extract scale
and contrast invariant features uniformly. Additionally, they
used an adaptive feature matching method with a kernelized
correlation filter to enhance the result. Khattak et al. used
the combination of infrared and visible cameras to present a
method to provide odometry in GPS-denied degraded visual
environments for drone-based monitoring, and inspection
applications [24]. They employed both spectrums to extract
features from regions of interest selected based on spatial
entropy. Also, they used inertial sensors as a corrective mea-
sure to improve the results. Zhang & Maldague presented a
thermal-visible fusion technique based on Non-Subsampled
Contourlet Transform (NSCT), and compressed sensing [25].
Their experiment on NSCT-based fusion demonstrated that
the employed Compressed Sensing (CS) technology could
decrease the required calculations and speed up the conver-
gence in the processing.

The use of different sensors for measuring spatial infor-
mation are addressed in various studies: (a) laser range
finder [26], [27], (b) visible camera [28], [29], and (c) depth
sensors [30], [31]. Also, many studies specifically focused
on the use of multi-modal platforms containing thermal and
visible imagery sensors to generate comprehensive spatial
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information for various applications like modeling build-
ings [30], [32], [33]. Campo et al. presented amethod for gen-
erating sparse depth maps by usingmultispectral images [34].
The proposedmulti-modal acquisition system contains a ther-
mal and a visible camera with parallel fields of view. They
discussed that besides the traditional approach to use thermal
and visible cameras in a complementary way, it is also possi-
ble to extract 3D information. Akhloufi and Verney [35] pro-
posed a multi-modal platform for three-dimensional thermal
NDT applications. Also, they aimed to produce an augmented
visualization of non-visible defects on a 3D reconstructed
surface. They also presented a registration and fusion tech-
nique for multi-modal data [36]. Later, Akhloufi et al. [37]
presented a multi-modal framework containing visible, ther-
mal, and depth sensors. The obtained multi-modal data is
aligned using the extracted features from the three modal-
ities. Later, the thermal and visible images are added to
the 3D model as texture information. Also, Daffara et al.
employed a drone-enabled cost-effective setup containing
coupled thermal-visible cameras for thermographic inspec-
tion of buildings [38]. The system provides a 3D model of a
building inspected using a drone. They used a Structure from
Motion (SfM) technique to reconstruct the building and then
added the thermal values associated with obtained 3D points.
Rangel et al. introduced a method for the automatic genera-
tion of 3D thermal models [39]. They explained that thermal
images alone would not be sufficient for the inspections
involving a large and complex environment, especially where
thermal differences are minor. Furthermore, they described
that using visible images in combination with thermal images
can provide information about texture and enhance the accu-
racy of any segmentation techniques. Liu et al. [40] pre-
sented a registration process for multi-modal data. Also, they
explained that themain issue in usingmulti-sensory platforms
is the data fusion process because the two images may not
have a linear mapping in two-dimensional space.

B. CALIBRATION BOARDS
Calibration boards for thermal cameras can be categorized
into passive and active boards. Active calibration boards use
a heating source to generate the required thermal contrast.
On the other hand, passive boards do not require any heating
source to provide a recognizable pattern. Active calibration
boards can be further categorized based on the location of
the heater into self-heating and external heating boards. Self-
heating boards use an internal excitation source to provide
the thermal contrast, such as silicon heaters, lamps, electrical
current, or resistors; however, external heating boards need an
external excitation source to operate. Calibration boards can
also be categorized based on their shapes: squares, checkers,
wire nets, circles, and spots. Figure 1 demonstrate the design
samples of calibration boards.

1) PASSIVE CALIBRATION BOARDS
One of the motivations to use passive calibration boards is
the need for power supply, low manufacturing cost, and the

FIGURE 1. Different types of patterns used in calibration targets
according to the reviewed studies.

complexity of active targets despite their high performance
and effectiveness [41]. Figure 2 demonstrates the used mate-
rials, patterns, and approaches for making calibration targets
reviewed in this study.

FIGURE 2. Figure shows the used materials, patterns, and approaches
employed for passive calibration boards in the reviewed literature.

The most common approach in passive calibration boards
is the use of two materials with different emissivities.
Ursine et al. proposed a checkerboardmade of copper squares
with low emissivity installed on a background painted with a
high emissivity black paint [42]. They used the board for cal-
ibration of their Thermal-Visible imaging system. Although
they designed the target board for an outdoor environment,
they did not address the specular reflection effect for copper
plates. Liu et al. employed circular patterns for aligning ther-
mal and visible cameras [43]. The pattern has made of CNC
machined foam sheet and aluminum disks for the background
and the pattern, respectively. The cooled disks are placed
on the slots on the foam to generate the thermal contrast.
Daffara et al. used white cardboard (emissivity is around 0.9)
as the base and black painted squares made of aluminum
paper (emissivity is about 0.3) for the squares, for aerial
3D thermographic inspection of buildings [38]. Also, they
applied finishing (micro-roughness) to the aluminum papers
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to address specular reflection. Shivakumar et al. designed a
calibration target for their multi-modal platform by taking
advantage of thermal reflectivity [44]. They used sandblasted
aluminum checkers installed on a black acrylic board. Their
preliminary experiment determined not to polish the surface
to avoid the disturbance on RGB images. Also, they did not
use any heating source because of (a) the required effort
to impart sufficient heat to obtain a sharp thermal pattern,
(b) the problem with the fast cooling-down time of the heated
elements, and (c) the difficulty of transferring heat source
during the operation.

Some studies have used printing technologies to make cal-
ibration patterns on a base panel. St-Laurent et al. presented
a calibration rig for spatial alignment of images acquired
indoor and outdoor in visible, Near-Infrared, SWIR, and
LWIR wavebands from 400nm to 12µm [41]. Their experi-
ment concluded that using black paint with high emissivity
on a surface with low emissivity can generate a high contrast
pattern in the spectral bands of interest. Thus they have
printed a checkerboard pattern on a base aluminum panel.
Harguess and Strange have employed a calibration board
manufactured by 858 Graphics Inc. using a white Dibond alu-
minum board on which three by five asymmetric black circles
are printed [45]. Their experiments have demonstrated that
the acquired thermal images of the calibration target contain
blurry edges caused by heat diffusion from printed squares to
the aluminum panel. Campo et al. used a laser printer to print
a checkerboard pattern on a thin aluminum paper [34]. They
explained that the board suffered from specular reflection
during the experiments. Also, the pattern was not sufficiently
detectable due to heat diffusion, so they had to use a software
solution to enhance the feature points.

Another approach to make passive calibration boards is
to use a board with holes to create the pattern by taking
advantage of the background scene. In this approach, the
distance and the thermal difference between the base and
background can effectively make the thermal contrast; how-
ever, using these boards in an uncontrolled environment can
be challenging since it needs a background with low thermal
texture. Vidas et al. created the calibration rig by cutting
checker squares out of a thin opaque cardboard [46]. They
placed the board in front of a backdrop with different colors
and thermal profiles to generate the pattern in thermal and
visible cameras.

2) ACTIVE CALIBRATION BOARDS
Passive calibration boards often provide a low-contrast pat-
tern. Also, the automatic detection of the calibration pat-
tern can be very challenging in scenarios where the thermal
image is noisy, or the surrounding objects have intensive
thermal contrast. Active calibration boards aremainly catego-
rized into self-heating and externally-heated boards. Figure 3
demonstrates different types of active calibration boards and
the common heating sources based on the reviewed literature.

The primary motivation to use the self-heating approach
is to generate high contrast patterns that can be used

FIGURE 3. Figure shows the categorization of active calibration boards
and the used heating sources based on reviewed literature.

in outdoor environments despite environmental conditions.
Different studies have focused on using various heating
sources in their design, such as lamps, silicon heaters, liquid
crystal or LED displays, thermostatic heaters, resistors, and
passing electrical current.

Lamps are commonly used in calibration boards since they
appear in thermal and visible cameras. Rankin et al. presented
a boardmade of a blackmetal framewithwhite plastic inserts.
They taped miniature light lamps to the back of installed
inserts [47]. Also, Yang et al. presented a calibration board
made of a black plastic board with 25 holes for aligning
thermal and visible cameras [29]. They installed twenty-five
miniature lamps on the back of the holes in the board. The
heat and light emitted by installed bulbs created a pattern
recognizable in thermal and visible cameras. Lagüela et al.
have designed a target board for calibrating thermal cameras,
made of awooden plankwith 64mounted burning lamps [48].
Ellmauthaler et al. proposed a new technique for thermal
camera calibration using a 9 × 9 target board consisting of
81 miniature light bulbs [49].

Some studies use silicon heaters as a heating source for
the calibration board. St-Laurent et al. designed a calibration
board for geometric calibration of visible and MWIR/LWIR
thermal cameras [8]. The board is made of a plastic plate
with a grid of holes, installed on a thin silicon rubber heater.
A high-emissivity black paint was applied on the silicon
heater while the board was painted white. The heater gen-
erates heat while the plastic plate remains at room tempera-
ture. Acampora et al. presented a method for 3D texturing
of thermal images on CAD models [50]. They designed a
board made of an aluminum sheet and the checkerboard
pattern created by vinyl film cuts for calibration purposes.
Their experiment concluded that an unheated board could not
generate a sharp, high contrast pattern. Thus, they attached a
flexible silicone heater to heat the board temporarily before
each experiment.

Some studies passed an electrical current through the board
to generate the required thermal contrast. Rasmussen et al.
have studied the fusion of thermal and visible image streams
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for search & rescue purposes [51]. This study presented a
calibration target containing a board and a grid net of wires
placed on the board to create the pattern. A small electrical
current is passed through the wires to warm them up, which
successfully generates the patterns. The wire joints were later
used as feature points to measure calibration parameters.
Also, Liu et al. used nickel-chromium heat-resisting wires
placed on an acrylic board and connected the wires to a
30V/5A power source to heat them [43].

Besides the mentioned techniques, other studies have cho-
sen different innovative methods to make self-heating boards.
Starr and Lattimer used a cold metal grid placed in front of
an LCD computer monitor as the target board for mapping
indoor environment with low visibility using a stereo thermal
camera system [52]. In another study, a small thermostatic
heater was installed on the setup as a heat source [53]. Also,
Gschwandtner et al. investigated using small resistors at the
center of black squares on a black & white checkerboard
instead of LED lamps [54].

External-heating calibration board needs an external heat
source to provide the required thermal contrast. Peric et al.
investigated using two types of boards as an initial step for
the fusion of thermal and visible images [55]. They used
polished aluminum as a base and black opaque insulating
tape for the first board. Since the pattern was not fully
detectable, they used an external heater to provide sharp
corners. The second board is built from cardboard for the
base and aluminum foil for checkers. This board is placed
on a LED display to achieve the required thermal contrast.
They have concluded that the second board is suitable for
indoor use since the slight radiation received by the LED
display provides needed thermal contrast. The heater used
in the first board generates solid thermal contrast, which lets
the board be used in uncontrolled environments. Kong et al.
presented a novel calibration board to calibrate stereo thermal
cameras for their autonomous landing system [56]. They
placed black squares on a mirror heated with a heater. The
unreflectivity of mirrors in the thermal spectrum combined
with the pasted squares generates a sharp pattern in thermal
images.

Some studies used hot airflow as the external heating
source for their calibration boards. Ng et al. presented a
plastic board with a metal grid of wires installed on it as
the calibration target [57]. They used a heat gun to heat the
wires and generate a pattern recognizable in thermal images.
Another study has created the board by miling the checker-
board patterns on a circuit board with high-emissivity for
registration of thermal stereo imaging system used for surface
reconstruction of water waves [58]. They used a hairdryer
before data acquisition to heat the board.

Lamps also are used as an external heat source in
some studies. Saponaro et al. presented a calibration board
designed for thermal stereo camera systems [59]. They
printed the checkerboard pattern on a sheet placed on a glazed
finish ceramic tile to retain the heat. Also, they used a 250W
flood lamp to heat the board. Based on the presented results in

FIGURE 4. The top photo is a view of the first calibration board, and the
bottom photo is the thermal view of the same board. FLIR A700 uncooled
thermal camera is used for data collection.

this study, the board could not provide strong enough thermal
contrast. Therefore, they had to employ contrast enhancement
and non-uniformity correction techniques to get a reliable
result from the corner detection algorithm. Liu et al. also used
lamps for heating the target board in one of their investigated
methods [43]. They used a simple checkerboard heated using
a lamp to generate the thermal contrast. The thermal contrast
is generated due to white and black squares’ different heat
absorption rates.

III. CALIBRATION OF MULTI-MODAL PLATFORM
One of the common issues in the calibration of multi-modal
imaging systems containing thermal and visible images is
to provide a sharp pattern identifiable in both thermal and
visible footage. This study presents two reference boards with
a checkerboard pattern for calibrating and aligning thermal
and visible cameras.

A. FIRST CALIBRATION BOARD
The first reference board is made of a stainless steel
plate (type 301) with 0.54 emissivity (ε), and the checker-
board patterns are black Vinyl 3M electrical tapes with
around 0.95 emissivity. The board size is 150mm × 125mm
and the size of black squares is 20mm × 15mm making
a 5 × 7 checkerboard pattern. Due to the use of two dif-
ferent materials with different colors, the board provides
a sharp distinguishable pattern in both modalities without
a need for any heating source. This study mainly utilizes
this board for camera calibration and registering thermal
and visible images in an indoor environment. Figure 4
presents the thermal and visible views of the first calibration
board.

41434 VOLUME 10, 2022



P. Nooralishahi et al.: Drone-Enabled Multimodal Platform for Inspection of Industrial Components

B. SECOND CALIBRATION BOARD
The second board is a novel self-heating calibration board
designed with an eye to be also used as GCP in a drone-based
thermographic survey. The board employs Thermoelectric
cooling/heating (TEC) modules, also known as Peltier plate
modules, to generate patterns visible in thermal images. TECs
operate based on the Peltier effect. This effect generates a
thermal difference by transferring heat between two electrical
junctions. The module generates an electrical current when a
voltage is applied across the joined conductors. The heat is
transferred from one junction to the other when the current
flows through both conductors. Using Thermoelectric Cool-
ers has many benefits: (a) low-maintenance cost as it does
not have any moving part; (b) ability to cool/heat below or
above ambient temperature; (c) the module can be employed
as a heating or cooling source; (d) precise temperature con-
trol; (e) high reliability and extensive life-time due to their
solid-state construction; and (f) no electrical or acoustical
noise. Additionally, they are inexpensive, lightweight, and
efficient, making them a suitable choice for the intended
application [60].

Although theminimum recommended size for a calibration
board is 5 × 4, this study uses a prototype 3 × 3 version
of the checkerboard board with a size of 122mm × 121mm
as proof of principle to investigate the feasibility of using
the proposed method and whether the adopted approach can
provide identifiable and sharp patterns in visible and thermal
images. The board is printed using Acrylonitrile Butadiene
Styrene (ABS) material, a thermoplastic polymer with low
production cost. ABS material has an approximate emissivity
of 0.92 [61] and the melting point of 200◦C . The experiment
conducted by Morgan et al. using a thermal camera shows
that the emissivity of this type of material does not change for
observation angles less than 40 degrees. However, it drops off
significantly for angles more than 70 degrees [61]. The setup
includes four slots for placing four TEC1-12706 modules
with the size of 40mm×40mm in fixed positions to make the
checkerboard pattern, as shown in Figure 5. The specification
of the TEC module is listed in Table 1. Since wires generate
heat while electrical current flows through them, they can dis-
turb the pattern in thermal images; therefore, multiple internal
wiring pathways are placed inside the board to hide the
wires properly. Additionally, electrical fans are added under
TEC modules to help the modules during operation. During
the experiment, the board is powered using an adjustable
DC power supply for profiling purposes; however, the
board can be powered with a Li-Po battery for an outdoor
environment.

The introduced board operates in twomodes: coolingmode
and heating mode. These modes are based on the TEC mod-
ule’s capabilities to perform cooling and heating of one side
based on the direction of the flown current. The TECmodules
are set to transfer heat from the front side to the rear side in
the cooling mode. In this case, the module shows a lower
temperature than the board’s base providing the required
thermal contrast. On the other hand, TEC modules are set to

FIGURE 5. The top row photos from left to right are respectively the
bottom and top view of the board’s design. The middle row photos are
photos of the manufactured board. The white squares are TEC modules
installed on the setup, and the black squares are part of the setup made
of ABS material. Also, the bottom row from left to right shows the
acquired thermal and visible images of the board in heating mode.

TABLE 1. The specification of TEC1-12706 module.

transfer heat from the rear side to the front side in the heating
mode. In this mode, the board’s front side gets warmer than
the base causing the needed thermal contrast. In both modes,
the amount of thermal contrast is determined based on the
magnitude of applied voltage.

C. GEOMETRIC CALIBRATION
Accurate knowledge of projection parameters is a preliminary
step for quantitative geometric analysis of imagery data in
a wide range of applications. Calibration algorithms can be
used to recover different camera parameters: (a) intrinsic
camera parameters including focal length, the position of
principal point, and the camera’s scale; (b) the parameters
related to non-linear lens distortion; and (c) extrinsic camera
parameters including camera’s rotation and translation in the
coordinate system. Some calibration methods use multiple
views of a known pattern with unknown position and orien-
tation in space [62].

The first step includes the mechanical alignment of the
sensors and the alignment of both modalities. Since this study
uses convergent optical axes configuration, the alignment of
thermal and visible images is valid for a specific distance.
The registration error (δ) can be estimated as explained in
Equation 1 [8], where f is focal length, lpix is the pixel size,
dc is the distance between sensors principal points. D∗ is the
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optimal distance with no registration error, andD is the target
distance. Based on the equation, if the optical axes are placed
in parallel (D∗ = ∞), any scene suffers registration error.
The perfect registration of involved modalities at a certain
distance can be achieved by aligning the sensors mechani-
cally in a way that the selected feature points from the cali-
bration board can be observed at the principal points of both
sensors.

δ =
f .dc
lpix

(
1
D
−

1
D∗

)
(1)

The next step is to detect the checkerboard patterns in
thermal and visible images to calibrate the cameras and
align both modalities. To do so, the method presented by
Geiger et al. in [63] is employed for detecting the checker-
board pattern. The method detects the corner points of the
pattern with sub-pixel accuracy. Later, Zhang’s calibration
method [64] is employed to estimate the camera parameters
using the first calibration board. This method uses multi-
ple views of the calibration board to estimate the camera
parameters. Next, the thermal and visible images are aligned
by matching the extracted feature points and estimating the
homography matrix. The estimated homography matrix is
recorded in the system to be used during the operation for
fusing the image modalities.

IV. MULTI-MODAL PLATFORM FOR INSPECTION OF
INDUSTRIAL COMPONENTS
This study introduces a multi-modal acquisition and pro-
cessing platform for inspecting industrial components using
Unmanned Aerial Vehicles. The setup is designed to attach
the sensors to the aerial platform and stabilize them against
the drone’s vibrations while operating. The platform includes
thermal, visible, and stereo depth cameras and communicates
directly with the flight controller to obtain the drone’s inertial
and GPS data. Also, embedded software is developed for
calibration, acquisition, transmission, and fusion of multi-
modal data. The data fusion method presented in this study
generates RGBD&T data frames that contain the thermal,
visible, and depth information of the observed scene and the
drone’s telemetry data. Later, the RGBD&T data is projected
to the system coordinate to form a point cloud of the observed
scene.

A. MULTI-MODAL HARDWARE SETUP
The multi-modal system includes a setup designed to hold
all hardware components steady while damping vibrations
caused by the drone’s rotors. Additionally, the system has
an embedded system connected to the drone and attached
sensors. It acquires multi-sensory data from the platform
and GPS & inertial data from the drone. Also, it uses the
drone’s data transmitter to communicate with GroundControl
Station to provide a live view of the observed scene and
assist the operator in executing commands remotely. Table 2
shows the specification of sensors used in this system, and
Table 3 presents the configuration of the employed embedded

FIGURE 6. The left photo is the 3D model of FLIR A700 thermal camera
and the right photo is the 3D model of Intel RealSense D435i. The models
are obtained from STEP models provided by the manufacturers.

FIGURE 7. The figure presents the system’s abstract design. The inertial
data provided by the stereo depth sensor is only used in standalone
mode.

board. In this study, a FLIR A700 thermal camera and an
Intel RealSense D435i stereo depth sensor containing visible
and near-infrared cameras are employed for collecting multi-
modal data, as shown in Figure 6.

The developed system can work in two primary modes:
drone mode and standalone mode. The system can be used
as a handheld setup in standalone mode, letting users move
around and observe the scene using the sensors. Due to the
lack of inertial sensors in the standalone mode, the Inertial
Measurement Unit (IMU) inside the stereo depth sensor is
adopted to obtain inertial data. In drone mode, the system is
installed on an aerial platform. Also, the inertial sensors of
the drone’s flight controller are used for obtaining telemetry
data. Moreover, the system communicates with the user using
the data transmitter embedded in the DJI M600 Pro drone.
Figure 7 demonstrates the view of the system’s abstract
design. In this system, the thermal camera connects to the
embedded system using a PoE Ethernet interface, and the
stereo depth sensor uses USB 3 interface for transmitting
data.

The introduced setup in this study is designed and
3D printed specifically for DJI Matrice 600 Pro. The
setup can carry all the sensors and the embedded sys-
tem while preventing the vibration caused by the drone
from affecting the acquired imagery data. Figure 8 presents
the sensor setup. The setup includes a mounting compo-
nent made of a flexible material that attaches the sen-
sors to the drone’s structure and shields the sensors from
vibrations.
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TABLE 2. The specification of employed sensors in the multi-modal system.

FIGURE 8. The setup design is presented in the first row. The second row
is a view of the printed setup, and the last row is the setup installed on a
DJI Matrice 600 pro.

B. MULTI-MODAL EMBEDDED SOFTWARE SYSTEM
In this study, an embedded system is developed on top of
Robot Operating System (ROS) using C++ and Python pro-
gramming languages that handles the calibration, acquisition,
transmission, storage, and configuration process.1 The sys-
tem’s components take advantage of the ROS communication
graph model for internal communication. A comprehensive
ROS driver node is developed for FLIR thermal cameras
using a PoE Ethernet interface that provides two-way com-
munication between the thermal camera and the computer.2

As presented in Figure 9, the system has three ROS nodes
communicating with the sensors and flight controller. The
data streams received from the sensors are collected by

1The source code for the embedded system is available at
https://github.com/parham/lemanchot-dc

2The source code for FLIR PoE thermal camera’s ROS driver is available
at https://github.com/parham/ros_flir_spinnaker

TABLE 3. Embedded system (DJI Manifold 2-C)’s configuration.

FIGURE 9. The figure presents the abstract design of the ROS-based
embedded software presented in this paper. The system provides three
driver nodes for thermal, depth, and visible cameras as well as the
drone’s flight controller. The system subscribes to the exposed data topics
for multi-modal data acquisition, transmission, and fusion.

a synchronized subscriber, ensuring the collection of data
frames with the same timestamp in a fixed data rate.

Moreover, a user-friendly graphical user interface is devel-
oped to visualize the multi-modal data in standalone and
drone mode. The control options in the user interface are only
available in standalone mode. The system uses the customiz-
able SDK ports existing in the drone’s remote controller for
the drone mode. Figure 10 shows two views of the system in
the presented operating modes.

In addition to the acquisition, transmission, and recording
features, the system also includes two processing steps for
ensuring data reliability and quality: motion blurriness detec-
tion and image normalization. For the detection of motion
blurriness, an algorithm presented in [65] is adopted that flags
the visible images affected by motion blurriness which can
assist inspectors in the post-processing step. This method
calculates a blurriness metric that later can be used to flag
the images as blurry with a customizable threshold defined
before each mission.

For illumination normalization of the consecutive images,
a dense histogram adjustment technique [66] along with a
floating window with a fixed length is adopted that uses
a reference image to match the histogram of the collected
images. In the floating window approach, the first frame is
considered the reference frame for each iteration, and the
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FIGURE 10. The top photo shows a view of the system’s user interface in
drone mode, and the bottom photo is the system’s user interface in
standalone mode.

following frames are normalized based on the determined
reference frame.

C. MULTI-MODAL DATA FUSION
The system introduced in this study provides three types
of image modalities: visible, thermal, and depth images.
It acquires depth and visible images from an Intel RealSense
D435i sensor which features a stereo infrared, an RGB cam-
era, and an infrared laser projector. The sensor assesses the
depth information of the observed scene by taking advantage
of the weak pattern projected on the surrounding objects.
Also, the system uses a FLIR A700 uncooled thermal camera
to obtain thermal images. The system collects these modal-
ities synchronously using independent processes. In addi-
tion to the acquisition, storage, and transmission, the system
presents a data fusion technique to provide RGBD&T data
presenting a 3D view of the observed scene containing texture
and thermal information.

The presented fusion technique uses two independent steps
to fuse the modalities: (a) registration of depth map and
visible image, and (b) registration of visible and thermal
images. Intel RealSense D435i provides a built-in feature
to align the visible and depth images in real-time. So, the
studymainly focuses on the registration of thermal and visible
images involving two main challenges: (a) thermal images
often do not contain enough reliable features using stan-
dard feature extraction techniques; (b) it is essential to find

FIGURE 11. The figure presents the proposed process pipeline for
multi-modal data fusion. The system uses feature points of the reference
board to calculate transformation matrix aligning all modalities during
initialization step. Later, the thermal, depth, and visible images were
fused to form a RGBD&T data which later is used to generate multi-modal
point cloud.

distinguishable and matchable features in both modalities.
Therefore, this study employs a calibration-based registra-
tion method to address these challenges. Figure 11 demon-
strates the proposed process pipeline for fusion of image
modalities.

Since the sensors are relatively in a fixed position close to
each other, thermal and visible images can be fused using a
transformation matrix. The system uses a calibration board
to provide a sharp and identifiable pattern visible in both
modalities. During the calibration step, the feature points of
employed calibration boards are extracted as explained in
Section III-C. In this step, the feature points are used to esti-
mate the transformation matrix for aligning the thermal and
visible images during the operation. After aligning thermal,
depth, and visible images, they are concatenated to provide a
multi-dimensional matrix referred to as RGBD&T data that
represents the pixels’ depth, color, and thermal values.

As explained before, the registration of thermal and vis-
ible images is reliable for the distance for which the cam-
eras were calibrated. Therefore, a post-processing step filters
the pixels with a depth value out of a defined range. The
range of acceptable depth is determined during the calibration
based on the inspection requirements. This step decreases
possible misalignment and removes the noisy data obtained
by the depth sensor. Finally, the RGBD&T data is pro-
jected to provide a point cloud presenting the scene using
Equation 2, where D is the depth map, px and py are the
coordinates of the principal points, fx and fy are the focal
lengths of image.

∀x ∈ {0, . . . ,Dw} , ∀y ∈ {0, . . . ,Dh} ,

dx,y =
D(x, y)
1000

:

P(x, y, z) = dx,y ×
[
x − px
fx

,
y− py
fy

, 1
]−1

(2)
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V. RESULTS & DISCUSSIONS
In this section, the obtained results of the conducted experi-
ment are presented. Firstly, the introducedmulti-modal fusion
technique is assessed. Later, the use of the presented reference
board is evaluated in an indoor environment. Also, the feasi-
bility of using the reference board as GCP for drone surveys
is investigated.

A. ASSESSMENT OF MULTI-MODAL FUSION TECHNIQUE
In this study, the system acquires the three modalities syn-
chronously with a customizable rate. Later, the system uses
the transformation matrix obtained during the calibration to
form the RGBD&T data. For assessing the fusion method,
an experimental piping system used in the oil & gas indus-
try was selected as a use case to demonstrate the system
applicability and performance. During the experiment, the
multi-sensory platform was moved through the pipeline in
a 2.5 meters distance to obtain multi-modal data. Figure 12
presents the sample result of the obtained data during the data
acquisition. As shown in this figure, the thermal view of the
point cloud contains points with no values due to the different
fields of view of the thermal and depth sensors. Also, the
minor distortions in the reconstructed point cloud are caused
by the sensor’s internal depth estimation error.

FIGURE 12. The top left, and right photos are the acquired thermal and
visible images. The bottom left, and right photos are respectively the
3D model presenting thermal and texture values.

An experiment was conducted using the introduced
unheated calibration board in an indoor environment to assess
the registration process. To do so, the board was placed at
three different distances in the scene while the thermal and
visible images were collected using the multi-modal plat-
form. Later, two modalities were aligned, as explained in this
study. The registration process is evaluated using fivemetrics:
(a) Root-Mean-Square Error (RMSE), (b) Peak Signal-to-
Noise Ratio (PSNR), (c) Structural Similarity Index (SSIM),
(d) Feature-based similarity index (FSIM), and (e) Spectral
angle mapper (SAM). In this study, the implementations

of the metrics provided by Müller are employed for data
assessment [67].

RMSE presents the square root of Mean Squared
Error (MSE) as shown in Equation 3, where yV and yT

respectively present visible and thermal images; N is the
number of pixels in the images. PSNR can be defined as the
ratio between the signal’s maximum value and the power of
possible distortion as shown in Equation 4, where MAXy is
the maximum possible value of the signal. SSIM is a percep-
tual metric simply demonstrating the perceptual differences
between images. FSIM is a metric to determine the similarity
of two images based on two criteria: Phase Congruency (PC)
and Gradient Magnitude (GM) [68]. Finally, SAM is a metric
comparing two spectra using a spectral angle error [69].
Table 4 presents the result of thermal and visible registration
in three different distances. The results show that the system
can align the data modalities successfully using the board
placed at different distances.

RMSE =

√√√√ 1
N

N∑
i=1

(yVi − y
T
i )

2 (3)

PSNR = 20 log10

(
MAXy
RMSE

)
(4)

TABLE 4. The result of thermal and visible registration is explained in
this table.

B. EVALUATION OF THE REFERENCE BOARD IN AN
INDOOR ENVIRONMENT
In this experiment, the prototyped reference board is eval-
uated in a controlled environment to assess its functional-
ity. The generated temperature differences and the board’s
power consumption are also investigated. The reference
board was used without cooling fans during the experiment
and connected directly to an adjustable DC power supply.
A FLIR T650sc uncooled thermal camera is placed at a
3 meters distance to acquire thermal data.

In order to investigate the board’s power consumption
and thermal contrast, multiple input voltages were tested.
Figure 13 shows the thermal views of the board with different
voltages and obtained thermal contrast. The input voltage
was set manually in the power supply, and the temperature
differences and drawn current were measured. The feasibility
of using the board as a portable reference board powered
by a Lithium polymer battery was also assessed by applying
relatively low voltage. Table 5 presents the results of this eval-
uation. The results demonstrate that the board can generate a
sharp and matchable pattern in the thermal spectrum using
different voltages. Also, it is determined that the amount of
proper input voltage for the board is based on environmental
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TABLE 5. The table demonstrates the measured power consumption and
estimated temperature differences of the board. * 1T presents the
temperature difference between white and black squares in the
board measured by thermal camera.

FIGURE 13. The figure demonstrates the thermal images collected while
the board uses different voltages. The left photo from the top row is the
board when unplugged.

FIGURE 14. The left photo is the thermal image collected by Teledyne
Calibir GXM640, and the right photo is the thermal image acquired by
FLIR A700. Both cameras were used with default settings without any
improvement or optimization.

conditions like temperature and surrounding objects and the
required thermal contrast. Since thermal cameras have differ-
ent sensitivity, the thermal contrast needed for the board to
make the thermal pattern visible can vary.

To investigate the effect of the camera’s sensitivity on the
visibility of the checkerboard pattern in thermal images, two
uncooled thermal cameras, including FLIR A700 and Tele-
dyne Calibir GXM640, were used to acquire thermal images
of the introduced unheated calibration board. Figure 14 shows
the collected thermal images. The results demonstrate the dif-
ference in the pattern’s visibility with different cameras. Also,
it emphasizes the necessity and applicability of the introduced
self-heating reference board with adjustable thermal contrast.

C. OUTDOOR ASSESSMENT OF THE BOARD AS GCP
This experiment investigated the applicability of using the
reference board as a Ground Control Point for drone survey
applications. To do so, the board was placed on the ground in

TABLE 6. The environment conditions of the outdoor assessment of the
introduced calibration board.

FIGURE 15. A photo of the conducted experiment using the DJI M300
drone is presented while hovering above the board.

FIGURE 16. The figure presents the voltage-current curve of the reference
board. It shows the consumed electrical current in candidate input
voltages. The increase in voltage causes the increase in temperature
differences. The measures can help determining the required electrical
power for specific inspection based on environmental conditions and
inspection’s requirements.

an outdoor environment on a sunny day. The environmental
conditions of the experiment are listed in Table 6. The board
was connected to an adjustable DC power supply for self-
heating purposes. Also, a moving cart was used for trans-
porting the equipment. A DJI M300 drone equipped with a
Zenmuse H20T camera was employed for acquiring thermal
and visible images as shown in Figure 15. To analyze the
board’s power consumption, the power supplywas adjusted in
different input voltages to measure the current drawn by the
board for self-heating. Figure 16 demonstrates the voltage-
current curve.

During the experiment, the drone was hovering above the
board at various altitudes from 5 − 50 meters while collect-
ing thermal and visible images. Samples of collected data
is presented in Figure 17. The experiment intends to deter-
mine the thermal visibility of the board in different altitudes.
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FIGURE 17. The top photo shows a view of the introduced board,
captured by a drone flying in approximately 6 meters. The bottom left,
and right are respectively the board’s thermal and zoomed visible view
with the same experimental parameters.

FIGURE 18. The figure shows the measured pixel width of the board’s
squares at different altitudes. At 45 and 50 meters, the squares were not
recognizable. The number of pixels presenting the board is directly
related to the board size. So by increasing the board size, the number of
pixels would increase. The experiment mainly presents the board’s ability
to provide sharp and recognizable patterns that can be identifiable in
different altitudes in thermal and visible modalities.

The results presented in Figure 18 show that the thermal pat-
tern formed by the board was identifiable till 40 meters alti-
tude. However, based on our experiments, the most suitable
altitudes for the alignment of thermal images were 15 meters
and lower.

The feasibility of using the board in drone surveys was also
investigated in both modes. The drone was set to hover at
5meters for this experiment while the boardwas set to heating
mode. Later, the same experiment was conducted in cooling
mode. Figure 19 shows samples of conducted experiment.
The obtained results demonstrate that the board provides

FIGURE 19. The right photo is the board in heating mode, and the left
photo is the board in cooling mode.

a more distinguishable pattern in heating mode. Based on
the conducted investigation, the board’s mode should be
determined based on the environment’s condition, such as
temperature and surrounding thermal pattern.

VI. CONCLUSION
In this study, a multi-modal platform is presented to inspect
industrial components. The system can acquire the modalities
of interest synchronously. Also, the system includes a cus-
tomizable user interface that assists inspectors in monitoring
the system status and the drone’s internal state. Additionally,
a fusion technique is presented, providing RGBD&T data
containing thermal and texture information for the collected
3D models. Moreover, a novel self-heating reference board
is proposed for system calibration. The board can provide
sharp and identifiable patterns visible in thermal and visible
modalities. In this study, an experiment was conducted to
assess the performance of the proposed multi-modal fusion
method. The results demonstrated that the method could
fuse the modalities with significantly low registration error.
Moreover, the novel reference board is evaluated for indoor
and outdoor applications. Finally, the feasibility of using the
board as GCP is investigated. The results demonstrate its
capabilities for drone surveys.
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