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ABSTRACT Online signature verification is the process of using a dynamic signature verification system
to confirm the writer’s identity. It can be used as a security system to confirm entrance applications and
password substitutes, as well as a forensic tool to assist an expert’s investigation. This study proposes a
novel online signature verification system based on a single-template strategy to improve performance in
real-world scenarios. It employs discriminative mean signature template sets as well as fusion strategies of
multiple local weighting andwarping schemes, for dynamic timewarping (DTW). The first step is to generate
a set of user-specific mean signature templates for each feature using a recent time-series averaging method,
namely, Euclidean barycenter-based DTW barycenter averaging. Then, using multiple and direct matching
points between the mean signature templates and references for dependent and independent DTW, we obtain
a local weighting estimate considering local stability sequences. Furthermore, we develop fusion strategies
for calculating locally weighted DTW sets and concatenating them as a feature vector for each warping,
followed by the construction of a support vector machine (SVM) classifier. Finally, in the verification phase,
we use the single-template technique to compute a discriminative fused score using SVMs between the mean
signature template sets and a query sample. The effectiveness of the proposed method is demonstrated by
extensive experimental results obtained using three public online signature datasets: SVC2004 Task1/Task2
and MCYT-100.

INDEX TERMS Biometrics, forensics, signature verification, time series analysis, fusion strategy, dynamic
time warping, support vector machine.

I. INTRODUCTION
Handwriting is a common means of communication in our
daily lives, and signatures are socially and legally accepted
as a form of individual authentication based on each person’s
behavioral characteristics and unique features. Because of
the widespread adoption of consumer electronics applications
and products (e.g., tablets, phablets, and cell/mobile phones),
online signature verification systems have recently been used
in biometrics [1]–[3] and forensics [4]–[7].

To extract a number of features from dynamic signatures,
both parametric and functional approaches are used. The
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former method depicts signatures as a set of parameters
or vectors (e.g., total signature duration, number of pen
ups/downs, and average/maximum speed), whereas the latter
method represents signatures as time functions (e.g., pen
position trajectory, pressure, and velocity). The functional
technique has consistently outperformed the parametric
approach [1]–[3]. Consequently, the functional approach is
the focus of this study.

The useful method has been adopted for template match-
ing using a distance measure such as dynamic time warp-
ing (DTW). Template matching can be classified into two
types: multiple-template and single-template strategies. The
former compares the distances between a query pattern and
each reference using certain statistical measures (e.g., max,
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median, min, and mean), whereas the latter computes a
single template chosen or generated from a reference set.
The single-template strategy has many advantages, including
speed, security, and tolerance based entirely on one-to-one
matching. However, its accuracy is lower than that of the
multiple-template approach [8].

A novel single-template strategy based on a time-series
averaging method, namely, Euclidean barycenter-based
DTW barycenter averaging (EB-DBA) [8], and locally/
globally weighted DTW (LG-DTW), has recently been pro-
posed [9], [10]. The study [9] used multiple matching points
(MMPs) [11] for the local weighting estimate and the variable
importance obtained using gradient boosting (GB) [12] for
the global weighting estimate, whereas the other study [10]
used direct matching points (DMPs) [13] rather than MMPs
for the local weighting estimate in LG-DTW. Based on the
recent demand for high-speed systems in the Big Data era,
these single-template strategies can reduce calculation com-
plexity while achieving efficient performance, which results
in a higher level of accuracy.

However, there are certain issues with verification perfor-
mance in real-world applications that are listed below:
(1) Using MMPs and DMPs separately diminishes their

complementary effects and may result in the loss of
detailed local stability information that existed between
mean signature templates and reference sets.

(2) The use ofMMPs andDMPs individuallymakes it diffi-
cult for the system to adapt to changes in writing condi-
tions (e.g., device and signal types), template aging, and
skilled forgery attacks, all of which frequently occur in
real-world scenarios.

Consequently, we obtained the following solutions for
these challenges:
(1) We introduced a modified local weighting scheme for

DTW using both MMPs and DMPs (namely, LM-DTW
and LD-DTW) for dependent and independent warping
to incorporate more detailed and flexible local stability
information and effectively minimize intra-class dis-
crepancies.

(2) To enhance inter-user variability, we used the multi-
ple fusion strategies: the representation-level fusion to
concatenate LM-DTW and LD-DTW as a single vector
(namely, F-DTW) for each warping, followed by the
score-level fusion to combine each score from multiple
support vector machine (SVM) classifiers [14] built for
each warping.

Note that this study is an extension of our previous
research [15]. Then, as detailed below, we revised the pre-
vious method and performed additional experiments:
(1) We updated the global weighting scheme using GB in

the score-level fusion with SVM to improve F-DTW
discriminative power and performance.

(2) In addition to the previous experiments using an
SVC2004 Task1 dataset [16], we conducted exten-
sive experiments using two public datasets, SVC2004

Task2 [16] and MCYT-100 [17], to confirm the gener-
alization performance of the proposed method.

The remainder of the paper is organized as follows:
In Section II, we review recent online signature verifica-
tion methods and distance measures relevant to this study.
Throughout Section III, we present the proposed online sig-
nature verification method. In Section IV, we explain the
experimental methods and results. In the penultimate part
(Section V), we discuss the findings and their applicability
in real-world scenarios. Finally, in Section VI, we present the
conclusion.

II. RELATED WORK
A. ONLINE SIGNATURE VERIFICATION
In the past decade, numerous online signature verification
systems have been proposed [1]–[3]. The system can be
divided in two types of matching methods: model-based
and distance-based approaches. Model-based approaches
describe data distribution by employing generative models
(e.g., Gaussian models [18] and hidden Markov models
(HMMs) [19]) and discriminative models (e.g., SVMs [20],
convolutional neural networks (CNNs) [21], and recurrent
neural networks (RNNs) [22]). Distance-based approaches
use distance measures such as DTW [23] to match query
signatures with reference sets. Distance-based approaches are
superior in forensic situations with limited data availability
for enrollment because a model-based approach would suffer
from overfitting issues.

Among multiple distance-based systems, template match-
ing is commonly used for online signature verification [18].
Template matching approaches include single-template and
multiple-template strategies. The single-template strategy has
additional benefits, such as speed, security, and tolerance, all
of which are in high demand in today’s digital era. It does
not, however, outperform as well as the multiple-template
strategy [18].

To address the abovementioned challenges, a recent
study [8] proposed an effective single-template strategy
that uses mean signature templates created using a novel
time-series averaging method known as EB-DBA. The tem-
plate creation method, as described in [9]–[11], [13], and
[24], increased the possibility of template matching in online
signature verification.

Distance measures are extensively used in template match-
ing techniques to calculate the dissimilarity between the tem-
plates and query signatures of varying lengths.

B. DISTANCE MEASURES
Lockstep and elastic distance measures are the two types
of distance measures [25]. Lockstep measures are calcu-
lated by strictly aligning the time-series indices using one-to-
one mappings, such as Euclidean distances. These measures,
however, are susceptible to noise, outliers, and basic shape
variations with irregular lengths. To address these limitations,
elastic measures such as DTW [23] have been proposed for
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optimally aligning time-series indices with a one-to-many
mapping based on dynamic programming.

1) DTW
We can calculate DTW for K -dimensional multivariate time
series using independent and dependent warping [26]. For
each time sequence, a DTW with independent warping
(DTWI) is calculated, assuming that each DTW is a dis-
tance measure with a one-dimensional (1D) trajectory in
1D Euclidean space. The DTW with dependent warping
(DTWD) is derived directly as a single DTW corresponding
to the set of time sequences, assuming the considered K -
dimensional time series as a 1D trajectory in K -dimensional
Euclidean space. Recent online signature verification stud-
ies [8]–[10], [24] demonstrate that DTWI and DTWD have
distinct/complementary discriminative powers. The DTW
calculation is described in detail below.

Assuming A and B are two K -dimensional multivariate
time series of different lengths, I and J , respectively, they are
defined as follows:

A = {Ak}Kk=1 = {a(1), a(2), . . . , a(i), . . . , a(I )},

B = {Bk}Kk=1 = {b(1), b(2), . . . , b(j), . . . , b(J )},

where a(i) = {ak (i)}Kk=1 and b(j) = {bk (j)}
K
k=1, respectively.

Then, DTWI and DTWD can be computed as follows.

a: DTW WITH INDEPENDENT WARPING (DTWI)
First, the I×J cost matrix is developed using the cost function
d(·, ·) between two time points defined as follows:

d(ak (i), bk (j)) = (ak (i)− bk (j))2. (1)

Then, a warping pathW = {wz}Zz=1 with max(I , J ) ≤ Z ≤
(I + J − 1) is derived based on the cost matrix, satisfying the
boundary, continuity, and monotonicity conditions set forth
in [23].

Finally, kth dimensional DTWk
I can be defined as follows:

DTWk
I = DTW (Ak ,Bk ) = min

W

{
Z∑
z=1

d(wz)

}
, (2)

where d(wz) = d(ak (i), bk (j)) corresponds to i and j at
position z in the warping path by recursively calculating the
cumulative distance as follows:

D(i, j) = d(ak (i), bk (j))+min


D(i, j− 1),
D(i− 1, j− 1),
D(i− 1, j).

(3)

b: DTW WITH DEPENDENT WARPING (DTWD)
In a manner similar to DTWI, DTWD can be defined by cal-
culating it with dependent warping to obtain a single distance
from the set of time sequences as follows:

DTWD = DTW (A,B), (4)

where d(·, ·) in Eq. (1) is replaced with

d(a(i), b(j)) =
K∑
k=1

(ak (i)− bk (j))2. (5)

Consequently, DTW can find the best alignment and try
to minimize distances between time sequences of varying
lengths; thus, it has been extensively used in online signature
verification [2], [18].

However, DTW is sensitive to noise and outliers in time
sequences because it needs to pair all elements of a sequence.
Certain weighting methods for DTW have been proposed to
compensate for such limitations.

2) WEIGHTING SCHEMES FOR DTW
There are two types of DTW weighting schemes: local and
global weighting schemes. The specifics are outlined below.

a: LOCAL WEIGHTING SCHEME
The local weighing scheme includes a weighting function
that adds weight to the DTW cost function between matching
points.

A previous study [27] proposed a weighted DTW
(WDTW), which includes a multiplicative weight penalty
based on the distances between the the warping path points.
Using this method, the cost matrix is updated to incorporate
a modified logistic weight function that adds weight to the
DTW cost function between the reference and test points.
A sliding window DTW (SW-DTW) approach has been pro-
posed as a viable option [28]. SW-DTW used the modified
DTW cost function with a window function to account for
context by incorporating a weighted average of the neighbor-
ing distances.

Certain studies used DTW matching with a weighting
scheme to estimate local stability domains in online signature
verification. The study [29] proposed a stability-modulated
DTW (SM-DTW) to incorporate the most similar parts of
two signatures in the DTW distance measure. Other studies
[30], [31] used a weighted DMP to incorporate informa-
tion from the DTW matching to determine the most stable
domains for each signer.

These studies highlight the possibility of using local
weighting methods for DTW. Most of the previous
approaches, however, required a multiple-template strategy
and/or adequate parameter optimization, resulting in high
computational complexity. To address these issues, we pro-
posed the locally weighted DTW [11], [13], in which we
calculate the local stability of the mean signature template
set using MMPs or DMPs and apply weights to the DTW
cost functions.

b: GLOBAL WEIGHTING SCHEME
The global weighting scheme includes feature weigh-
ing/selection and applies to DTW or its variants. Canonical
time warping (CTW) [32] combines DTW with canonical
correlation analysis (CCA) to compute spatial projections
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FIGURE 1. Outline of the proposed online signature verification method.

and identify the linear combinations of variables between
two different multivariate sequences. CTW can incorpo-
rate feature weighting/selection as well as a dimensionality
reduction mechanism to align signals of varying dimensions.
Another study [24] proposed a novel single-template strategy
that employs a global weighting scheme to combine multi-
ple DTWs while weighting them with variable importance
via GB.

These studies bring to light the potential for weighting
methods to be applied to DTW. The separate/independent
use of local or global weighting, however, results in
DTW’s limited discriminative power. Consequently, we pro-
posed a novel single-template strategy to address these
issues.

III. PROPOSED METHOD
A. OUTLINE
The proposed online signature verification method is shown
in Fig. 1.

We used preprocessing after online signature input to
improve quality and extract common function-based features.
During the enrollment phase, we used a single template
strategy, which included mean signature template generation
based on the EB-DBA and DTW fusion strategies based
on multiple local weighting and warping schemes using the
reference set. During the verification phase, we calculated
the fused score between a test sample and a purported user’s
mean signature templates. Finally, the system determines
whether the test sample is genuine or forged based onwhether
the fuss score is less or greater than a user-specified threshold.

B. PREPROCESSING
To address the natural fluctuations in signatures because
of writing conditions, we used the following normaliza-
tion approach for horizontal and vertical pen coordinates
{x(t), y(t)} in [8] and [13]:

x̂(t) =
x(t)− xg
xmax − xmin

, ŷ(t) =
y(t)− yg
ymax − ymin

(6)

where
(
xg, yg

)
is the centroid of a signature; {xmin, ymin}

and {xmax , ymax} are the minimum and maximum values of
{x(t), y(t)} for t = 1, 2, . . . ,T , respectively.

In the following, the pen coordinates {x(t), y(t)} show the
preprocessed functions, {x̂(t), ŷ(t)}.

C. FEATURE EXTRACTION
This study employs seven common function-based fea-
tures [13], [18], [19], which are then normalization using
z-score.
• There are three unique features: horizontal and vertical
pen coordinates x(t), y(t), and pen pressure p(t).

• Path-tangent angle θ (t), path velocity magnitude ν(t),
log curvature radius ρ(t), and total acceleration magni-
tude α(t) are four additional features derived from the
original x(t), y(t) as follows:

θ(t) = arctan(ẏ(t)/ẋ(t)), (7)

ν(t) =
√
ẋ(t)2 + ẏ(t)2, (8)

ρ(t) = log (ν(t)/θ̇ (t)), (9)

α(t) =
√
ν̇(t)2+(ν(t)·θ̇ (t))2, (10)

where the derivatives of discrete-time signals are com-
puted using a second-order regression that removes
small noisy variations using the following formula [33]:

ḟ (t) =

∑2
ε=1 ε(f (t + ε)− f (t − ε))

2
∑2
ε=1 ε

2
. (11)

Note that certain digital devices provide original signals
without the use of pen pressure (e.g., the SVC2004 Task1
used in this study). In that case, we choose six of the above
seven function-based features that do not include p(t).

D. SINGLE-TEMPLATE STRATEGY
The proposed single-template strategy is broken down into
three steps: 1) the mean signature templates, 2) local weight-
ing estimates, and 3) fusion schemes (Fig. 2). The details of
each step are described in the subsections that follow with
references to the definitions in Section II-B1.

1) MEAN SIGNATURE TEMPLATES
The single-template strategy employs user-specific mean sig-
nature templates (i.e., multiple prototypes corresponding to
each user’s feature) via EB-DBA [8] to account for intra-user
variations across all reference samples.

EB-DBA is a time-series averaging method that itera-
tively refines the Euclidean barycenter (EB) sequence to
minimize its DTW to average target sequences using an
expectation–maximization scheme. In particular, we devel-
oped an EB sequence of N references in which the elements
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FIGURE 2. Process of the proposed single-template strategy: (1) mean signature template set creation per feature (pen coordinates ‘‘X’’ and ‘‘Y,’’ pen
pressure ‘‘P,’’ path-tangent angle ‘‘Ang,’’ path velocity magnitude ‘‘Vel,’’ log curvature radius ‘‘Logcr,’’ and total acceleration magnitude ‘‘Tam’’) through
EB-DBA (solid black lines) using the five original reference sequences (dashed lines in various colors); (2) local weighting estimates with MMPs and
DMPs for independent and dependent DTW; (3) fusion schemes in representation-level and score-level fusions through the SVM models. In the
verification phase, we finally obtain the ScoreID.

FIGURE 3. Example of the estimation process for local stability using toy samples: (1) the warping relations between the mean signature template
‘‘MT’’ and five references, ‘‘R1’’ to ‘‘R5,’’ of varying lengths (‘‘0’’ to ‘‘8’’ in each sequence revealing the indices), (2) the MMPs, (3) the DMPs, and
(4) the local stability sequences, which are applied to DTW calculations to obtain LM-DTW/LD-DTW.

are resampled using linear interpolation to reach their average
length I equally. We then peformed the DBA [34] from the
original N references using the EB sequence as the initial
sequence.

We obtained K mean signature templates of lengths I for
each user using EB-DBA from K function-based features
(i.e., K = 6 for the SVC2004 Task1; K = 7 for the SVC2004
Task2 and the MCYT-100 in this study).

2) LOCAL WEIGHTING ESTIMATES
To determine local fluctuations and incorporate intra-user
variations into the distance measure, we estimate local stabil-
ity regions in signatures. MMPs and DMPs were used in this

study to estimate the complementary local stability of mean
signature templates (Fig. 3).

a: MMPs
MMPs [11] detect multiple matching points in DTW trajec-
tories where the mean signature template set and the ref-
erences are distorted significantly. Consequently, the MMP
sequence indicates the mean signature template sequence’s
local instability, and the inverse of the averaged MMP
sequence {mmpi}Ii=1 can be considered as the local stability.

For simplicity, let us assume that mean signature tem-
plate A corresponds to an I -length univariate time sequence
and that the original set of N references B = {Bn}Nn=1
corresponds to a Jn-length univariate time sequence. The
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estimation process of MMP-based local stability can then be
summarized as follows.
(1) We first calculate the standard DTW for each warping

between A and B and obtain a set of N optimal warping
paths as per the following formula:

W(A,B) = {W n(A,Bn)}Nn=1.

(2) Next, we compute N MMP sequences from W(A,B)
and obtain the averaged MMP sequence:

{mmpi}Ii=1 =

{
1
N

N∑
n=1

cni

}I
i=1

(12)

where cni is the cardinality of a set, represented as
card{·}, belonging to the ith point of A defined as
follows:

cni = card{(in, jn) ∈ W n(A,Bn) | in = i},

By following the steps outlined above, we finally obtained
I -length local weight sequences LMI = {LM k

I }
K
k=1 for inde-

pendent warping and LMD for dependent warping, defined as
follows:

LM k
I = {lm

k
I (1), lm

k
I (2), . . . , lm

k
I (i), . . . , lm

k
I (I )}

LMD = {lmD(1), lmD(2), . . . , lmD(i), . . . , lmD(I )}

where lm(i) = 1/mmpi is 0 < lm(i) ≤ 1; lm(i) is 1 when
all matching point pairs are DMPs and approaches 0 with an
increase in the number of MMPs.

b: DMPs
DMPs [13] detect averaged matching points in DTW trajec-
tories where one-to-one matching relations exist between the
mean signature template set and all references.

The following describes the estimation process for
DMP-based local stability.
(1) Similar to the MMPs, we begin by calculating a set of

N optimal warping paths

W(A,B) = {W n(A,Bn)}Nn=1,

whereW n(A,Bn) = {(pnz , q
n
z )}

Zn
z=1 with 1 ≤ p

n
z ≤ I , 1 ≤

qnz ≤ Jn, and max(I , Jn) ≤ Zn ≤ I + Jn − 1 describes a
Zn-length warping path.

(2) Then, using the set of warping paths, we compute the N
DMP sequences. When the multiplicity of the warping
relation for each component is defined as the number
of consecutive occurrences of the component index
in W n(A,Bn), the multiplicities corresponding to the
respective matching components of pnz and qnz are as
follows:

mni = card{(pnz , q
n
z ) ∈ W

n(A,Bn) | pnz = i},

mnj = card{(pnz , q
n
z ) ∈ W

n(A,Bn) | qnz = j}.

The ith point of A, where the multiplicity simultane-
ously satisfies both mni = 1 and mnj = 1, can be defined
as a DMP.

By following the steps outlined above, we finally obtained
I -length local weight sequences LDI = {LDkI }

K
k=1 for inde-

pendent warping and LDD for dependent warping, defined as
follows:

LDkI = {ld
k
I (1), ld

k
I (2), . . . , ld

k
I (i), . . . , ld

k
I (I )},

LDD = {ldD(1), ldD(2), . . . , ldD(i), . . . , ldD(I )},

where

{ld(i)}Ii=1 =

{
1
N

N∑
n=1

cni

}I
i=1

(13)

with

cni =

{
1, if an ith point is a DMP
0, otherwise

and 0 ≤ ld(i) ≤ 1; ld(i) is 0 and 1 when all matching point
pairs are MMPs and DMPs, respectively.

3) FUSION SCHEMES
After calculating LMI and LMD with MMPs and LDI and
LDD with DMPs, we used fusion schemes to obtain a discrim-
inative score while maximizing the inter-user variations. This
study employed two fusion strategies [5]: representation-level
and score-level fusions.

a: REPRESENTATION-LEVEL FUSION
For representation-level fusion, we first obtained a locally
weighted DTW with MMPs and DMPs (i.e., LM-DTW and
LD-DTW, respectively), and then combined them in a single
vector, F-DTW.

To obtain LM-DTW, the cost function d(·, ·) between
the two points of the considered time series, as defined
in Eqs. (1) and (5), can be rewritten by weighting them by
the corresponding local weight sequences, LMI and LMD,
as follows:

d(ak (i), bk (j)) = lmkI (i)× (ak (i)−bk (j))2, (14)

d(a(i), b(j)) = lmD(i)×
K∑
k=1

(ak (i)−bk (j))2. (15)

Similar to LM-DTW, to obtain LD-DTW, the cost function
d(·, ·) in Eqs. (1) and (5) can be rewritten as follows using
LDI and LDD:

d(ak (i), bk (j)) = ldkI (i)× (ak (i)−bk (j))2, (16)

d(a(i), b(j)) = ldD(i)×
K∑
k=1

(ak (i)−bk (j))2. (17)

Consequently, we obtained {LM-DTWk
I }
K
k=1 and

{LD-DTWk
I }
K
k=1 for independent warping, and LM-DTWD

and LD-DTWD for dependent warping.
Finally, we obtained F-DTW with independent and depen-

dent warping (i.e., F-DTW I and F-DTWD, respectively),
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described below:

F-DTW I = {F-DTWu
I }

2K
u=1

= (LM-DTW1
I , . . . ,LM-DTWK

I ,

LD-DTW1
I , . . . ,LD-DTW

K
I ),

F-DTWD = {F-DTWv
D}

2
v=1

= (LM-DTWD,LD-DTWD).

b: SCORE-LEVEL FUSION
To achieve score-level fusion, we built two SVM classifiers
using F-DTW I and F-DTWD, respectively, and obtained the
final score by fusing the classifier scores.

SVM [14] is a well-known machine learning classifier
that is commonly used in writer and signature verification
systems [4], [5], [20]. Geometrically, an SVM constructs a
maximum-margin hyperplane based on the statistical learning
theory principle of structural risk minimization.

When building an SVM model, we used positive instances
(the intra-user variations between the target user’s mean
signature template set and the reference set) and negative
instances (the inter-user variations between the target user’s
mean signature template set and the other users’ mean sig-
nature template sets) for each user. Based on our preliminary
results, we used a linear SVM with the L2-norm penalty and
the squared hinge loss with a cost-sensitive learning method
to deal with imbalanced class distributions. A grid search
is used to fine-tune the SVM parameter (i.e., the penalty
constant C).
During the enrollment phase, we built two SVM clas-

sifiers using F-DTW I and F-DTWD (namely, SVMI and
SVMD, respectively). When we feed the F-DTW I and
F-DTWD of a query sample into SVMI and SVMD, we obtain
the confidence scores, ScoreI and ScoreD, which are pro-
portional to the signed distance of that sample to the
hyperplane.

Finally, we obtained a final score, ScoreID, by combining
the two scores as follows:

ScoreID = ScoreI + ScoreD. (18)

E. OUTPUT
In the verification phase, the system outputs an accept or
reject result based on whether the extent of dissimilarities is
below or above the user-specific threshold after evaluating the
scores between the purported user’s mean signature template
sets and test samples. We defined the threshold in this study
by examining the equal error rate (EER) (Section IV-A2).

IV. EXPERIMENTS
A. METHODS
In real scenarios, skilled forgery detection is a challeng-
ing task, particularly for forensic document examiners
(FDEs) [6], [7].

To overcome such challenges, we conducted experi-
ments using the public online signature datasets: SVC2004
Task1/Task2 [16] and MCYT-100 [17]. These datasets con-
tain various stylized signatures with highly skilled forgeries

obtained from other contributors with enough training time to
produce valid forgeries. Because these scenarios correspond
to the addressed challenge, we used the three datasets in these
experiments.

1) SIGNATURE DATASETS
a: SVC2004 Task1 AND Task2
The SVC2004 Task1 and Task2 datasets contain 1,600 signa-
tures, including Western and Asian signatures from 40 users
(for a total of 3,200 signatures from 80 users). Both datasets
include 20 genuine signatures and 20 skillfully forged sig-
natures for each user. To avoid privacy concerns, the original
writers were advised to provide simple, invented signatures as
genuine after a sufficient amount of practice. SVC2004 Task1
includes horizontal and vertical pen coordinates, in addi-
tion to time stamps and pen up/down status, all of which
are captured with a digitizing tablet at a sampling rate
of 100 Hz. However, the SVC2004 Task2 includes pen pres-
sure, azimuth, and inclination signals. Only six of the seven
function-based features (Section III-C), excluding the pen
pressure feature, are derived from the SVC2004 Task1.

b: MCYT-100
The MCYT-100 dataset comprises 5,000 Western signatures
gathered from 100 users. The data set contains horizontal and
vertical pen coordinates, pressure, azimuth, and inclination
with time stamps, all of which are captured by a digitizing
tablet at a sampling rate of 100 Hz. Each user is represented
by 25 genuine signatures and 25 skillfully forged signatures.

2) EVALUATION
Finally, we assessed the signature verification performance
by examining the EER with a user-dependent threshold in
which the false rejection and false acceptance rates are equal.
We selected N = 5 genuine signatures at random as the
reference set in each experiment based on previous studies
and real-world scenarios. When constructing an SVM model
for score-level fusion, we used 5 positive and 39 negative
instances on the SVC2004 Task1 and Task2; 5 positive and
99 negative instances on the MCYT-100. For the test samples
in the verification phase, the remaining 15 genuine signatures
and 20 skillfully forged signatures were used on the SVC2004
Task1 and Task2; the remaining 20 genuine signatures and
25 skillfully forged signatures were used on the MCYT-100.
To prevent selection bias, we repeated all experiments five
times on these three datasets. Finally, we obtained the average
EERs.

B. RESULTS
1) OVERALL PERFORMANCE
To confirm the effectiveness of the proposed method in
template matching, we compared multiple combinations of
templates and distance measures using three datasets under
the same experimental conditions (Section IV-A).

The sets of templates and distance measures used are listed
below:
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• Template strategies:
(1) ‘‘MT(Mean)’’:

a multiple-template strategy with a mean measure,
which was reported to perform best among statisti-
cal measures [8], after the distances between a test
sample and all references were calculated.

(2) ‘‘ST(Rep)’’: a single-template strategy in which a
representative template set was directly selected
from the reference set using the minimum average
distance measures from other samples.

(3) ‘‘ST(MST)’’: a single-template strategy with a mean
signature template set created using EB-DBA.

• Distance measures:
(1) ‘‘DTW’’:

the traditional DTW [23] with no weighting for the
cost function.

(2) ‘‘G-DTW’’:
the previous DTW [24], applying global weighting
to combine the multiple DTWs through GB.

(3) ‘‘LM-DTW’’:
the recent DTW [11] with the applied MMP-based
local stability sequence as the weights for the cost
function.

(4) ‘‘LD-DTW’’:
the recent DTW [13] with the applied DMP-based
local stability sequence as the weights for the cost
function.

(5) ‘‘LG-DTW’’:
the relevant measure [15], applying local and global
weighting to the DTW.
After obtaining the F-DTW, we calculated the
global weighting factors estimate through GB:
{αu}

2K
u=1 for the {F-DTWu

I }
2K
u=1 and {βv}2v=1 for the

{F-DTWv
D}

2
v=1, each of which satisfies

∑2K
u=1 αu =

1 and
∑2

v=1 βv = 1, followed by computing the
LG-DTW:

LG-DTW =
2K∑
u=1

(
αu × F-DTWu

I
)

+

2∑
v=1

(
βv × F-DTWv

D
)
. (19)

(6) ‘‘ScoreID’’:
the proposed method, applying the single-template
technique to obtain a discriminative fused score
through SVMs constructed using F-DTW.

Figure 4 shows the overall performance of the proposed
method in terms of EER. As shown in Fig. 4, we deduced the
following results:

• Among DTWmeasures, performance using mean signa-
ture templates (‘‘ST(MST)’’) is considerably better than
the conventional ‘‘ST(Rep)’’ and competitive with the
multiple-template strategy (‘‘MT(Mean)’’).

FIGURE 4. Overall performance of the proposed method. Each error bar
represents the standard error (SE) of the average EER.

• In ‘‘ST(MST),’’ the performance is further improved by
applying weighting schemes for DTW.

• Among weighting schemes for DTW, LG-DTW and
ScoreID, both of which use F-DTW, outperform the
independent use of G-DTW, LM-DTW, and LD-DTW.
Note that the independent use of LM-DTW and LD-
DTW reveals data dependency in performance among
datasets; thus, it is rational to use both LM-DTW and
LD-DTW in the proposed method.

• Among methods using F-DTW, performance using the
score-level fusion with SVM (ScoreID) is better than the
global weighting scheme with GB (LG-DTW).

• To summarize, the proposed single-template strategy
(ScoreID with ‘‘ST(MST)’’) achieves the lowest EERs
across all datasets.
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To confirm the statistical significance between the pro-
posed ScoreID and other seven methods, we applied the sta-
tistical hypothesis tests. We used the Matched-Pairs test [35]
along with the Holm method [36] after confirming that the
global hypothesis tests were significant on all datasets (i.e.,
the Friedman test [37] with a significant level of less than
0.001). The Matched-Pairs test determines whether the dif-
ference in errors between two methods tested on the same
dataset for equivalent subjects is statistically significant. The
Holm method is used to adjust the predefined significance
level for multiple comparisons.

Consequently, the ScoreID outperformed four methods
(i.e., all three DTWs and G-DTW) on all datasets at a sig-
nificant level of less than 0.05 (i.e., 1.58×10−8 ≤ p-value ≤
1.37 × 10−3). As a result, we can conclude that there is a
significant difference between the proposed method’s results
and those of other four methods.

However, we were unable to confirm the statistical sig-
nificance of ScoreID and LM-DTW or LD-DTW, which is
dependent on datasets. This result shows that the individual
use of LM-DTW and LD-DTW is susceptible to writing
conditions; therefore, it is reasonable to use both LM-DTW
and LD-DTW in the proposed method. Furthermore, we were
unable to confirm the statistical significance of ScoreID and
LG-DTW, both of which use F-DTW across all datasets. This
result shows that the proposed F-DTW has sufficient discrim-
inative power in all fusion schemes; thus, it is appropriate to
use score-level fusion with linear SVM in ScoreID, which
requires fewer parameters and has a lower computational
complexity than the global weighting scheme with GB in
LG-DTW.

These results confirm that the proposed single-template
strategy provides an effective template-matching approach
for online signature verification.

2) COMPARATIVE ANALYSIS OF WEIGHTED DTW
To confirm the effectiveness of the proposed method in terms
of distance measures, we compared the performance with the
previous weighted DTWmethods [27], [28], [32] by applying
the single-template strategy under the same experimental
conditions.

The baselines of the weighted DTW are shown below:

• ‘‘WDTW’’:
applying the modified logistic weight function as the
weight for the cost function [27].

• ‘‘SW-DTW’’:
modifying the cost function by incorporating a weighted
average of the neighboring distances using a window
function with a width δ ∈ N while weighting with a
constant α ∈ [0, 1] between the cost in amplitude and
first-order derivative [28].

• ‘‘CTW’’:
combining DTW and CCA to allow feature weight-
ing/selection and dimensionality reduction mecha-
nisms [32].

Note that WDTW and SW-DTW were calculated using
dependent warping based on the findings [8], [26] and their
parameters were selected as per previous studies.

Figure 5 compares the EERs of the proposed method
with the previous weighted DTW using the single-template
strategy with the mean signature templates. As a baseline,
we displayed the results of the conventional DTW in Fig. 5,
in which we confirmed the statistically significant differences
with ScoreID (Section IV-B1). As shown in the figure, the
proposed method (ScoreID) provides data independence and
the lowest EERs compared with conventional methods for all
datasets.

FIGURE 5. Comparison between the proposed ScoreID and other
conventional weighted DTWs using the single-template strategy with the
mean signature templates. Each error bar represents the SE of the
average EER.

Following the previous experiments, we used statistical
hypothesis tests to confirm the statistical significance of
the performance between the proposed method and recent
WDTW, SW-DTW, and CTW (Section IV-B1). Conse-
quently, the proposed method outperformed all recent meth-
ods on all datasets at a significant level of less than 0.05,
whereas most of the experiments were outperformed at a

40814 VOLUME 10, 2022



M. Okawa: Online Signature Verification Using Locally Weighted Dynamic Time Warping via Multiple Fusion Strategies

TABLE 1. Comparison between the proposed method and other systems for SVC2004 Task1 dataset.

TABLE 2. Comparison between the proposed method and other systems for the SVC2004 Task2 dataset.

TABLE 3. Comparison between the proposed method and other systems for the MCYT-100 dataset.

significance level of less than 0.001 (i.e., 2.60 × 10−12 ≤
p-value ≤ 1.99 × 10−2). Therefore, we can conclude that
there is a significant difference between the results of the
proposed method and each of the recent WDTW, SW-DTW,
and CTW.

These results confirm that the proposed method provides
an effective measure, particularly for the single-template
strategy in online signature verification.

3) COMPARATIVE ANALYSIS OF STATE-OF-THE-ART
SYSTEMS
To assess the effectiveness of the proposed single-template
strategy in online signature verification, we compared the
results of the proposed method’s EERs with those of state-
of-the-art systems.

Tables 1–3 present the results obtained using the SVC2004
Task1/Task2 and MCYT-100, respectively, where only gen-
uine signatures for the enrollment phase and genuine and
skillfully forged signatures for the verification phase.

As per the previous experimental results, we displayed
the EERs of the proposed method as a representative of the
single-template strategy in these tables (Section IV-B1). Note
that the comparative analysis of the SVC2004 Task1/Task2
datasets was set up as experiments using not only N = 5 but
also N = 10 as the reference signatures for fair comparisons
with the previous studies (Tables 1 and 2).

In all datasets, the proposed single-template strategy out-
performs other recent literature systems as per these tables.
Even while investigating skilled forgery scenarios, the results
confirm the effectiveness of the proposed method for online
signature verification.

V. DISCUSSION
In this study, we proposed a novel single-template strategy
that, when compared to the multiple-template strategy, pro-
vides lower calculation complexity while providing higher
verification performance. The primary contributions of this
study are summarized as follows:
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• We adopted the mean signature template creation
method with EB-DBA to incorporate intra-user vari-
ations within the reference samples.

• It provides locally weighted DTWs using both MMPs
and DMPs (i.e., LM-DTW and LD-DTW, respec-
tively) derived from the intra-user variations between
the mean signature template and reference samples
for independent and dependent warping to incorporate
detailed and flexible local stability information and to
effectively minimize intra-class discrepancies.

• To improve inter-user variability, it employs multiple
fusion strategies: representation-level fusion, which
concatenates LM-DTW and LD-DTW into a single
vector, F-DTW, for each warping; and score-level
fusion, which combines each score via SVMs con-
structed using F-DTW for each warping.

Unlike recent black-box modeling strategies such as deep
learning algorithms that require high computational com-
plexity and many training samples, the proposed approach
is superior, particularly in forensic situations with limited
available data [4]–[7].

The proposed method depends on explainable stepwise
methods that support FDEs to explore their differences and
similarities and explain the rationale behind their assessment
of legal professionals in the decision-making process. For
example, it can provide detailed matching between the mean
signature template and a query signature (Figs. 1 and 2).

Furthermore, the proposed method can provide visual
investigation tools to assist FDEs in forensic analysis in
an explainable manner. For example, we can see F-DTWD
matching between an EB-DBA mean signature template and
query signatures in the spatiotemporal domain (Fig. 6). In this
diagram, the greater the distance with a higher local weight-
ing between the matching points, the greater the likelihood
that the query signature is a forgery.

FIGURE 6. Examples of F-DTWD matching (black lines) between a mean
signature template obtained through EB-DBA (red strokes) and genuine
or forged signatures (blue strokes) in the spatiotemporal domain. The
alignment line between the matching points becomes thicker according
to the fused local weighting estimated with LMD and LDD.

Consequently, it is particularly useful for applications, such
as forensics and security, in which fairness, accountability,
and transparency are important.

VI. CONCLUSION
To increase the performance of online signature verification,
we devised a unique single-template technique for DTW

based on mean signature template sets and fusion strategies
of multiple local weighting and warping schemes.

During the enrollment phase, we used EB-DBA to generate
user-specific mean signature template sets while account-
ing for intra-user heterogeneity across reference samples.
Then, for independent and dependent DTW, we computed
local weighting estimates by analyzing MMPs and DMPs
between mean signature template sets and reference samples,
respectively, to incorporate detailed and flexible local sta-
bility information and effectively minimize intra-class dis-
crepancies. To improve inter-user variability, we used the
representation-level fusion to concatenate LM-DTW and
LD-DTW calculated with MMPs and DMPs in a single vec-
tor, F-DTW, for each warping, followed by the score-level
fusion to combine each score through SVMs constructed
using F-DTW for each warping.

The experimental results on the public online signature
datasets, SVC2004 Task1/Task2 and MCYT-100, proved the
usefulness of the suggested method for online signature ver-
ification.

The proposed explainable stepwise strategy can bridge and
compensate for the biometrics–forensics divide.
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