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ABSTRACT The lens distortion process is essential for displaying VR contents on a head-mounted
display (HMD) with a distorted display surface. This paper proposes a novel lens distortion algorithm
to achieve real-time performance on edge devices with an embedded GPU. We employ unified memory
space to reduce the data transfer overhead based on an architectural characteristic: an integrated CPU and
GPU memory system. The lens distortion kernel is based on the lookup table-based mapping algorithm
whose performance is bounded by memory operations rather than computations. To improve the kernel’s
performance, we propose a compressed lookup table approach that reduces the memory transactions on the
kernel while slightly increasing computation. We tested our method on three different edge devices and a
desktop system while varying the image resolution from 720p (1,280 720) to 8K (7,680x4.320). Compared
with prior GPU-based lookup table algorithms, our method achieved up to 1.72-times higher performance
while consuming up to 28.93% less power. Also, our method demonstrates real-time performance for up
to a 4K image with a low-end edge device (e.g., 56 FPS on Jetson Nano) and up to an 8K image with a
mid-range device (e.g., 94 FPS on Jetson NX). These results demonstrate the benefits of our approach from

the perspectives of both performance and energy.

INDEX TERMS Head mounted display, stereoscopic, distortion, GPU, edge device.

I. INTRODUCTION
Virtual reality (VR) is a technique that provides a simulated
experience to users, which is widely being used in various
applications, including training, education, prototyping, and
entertainment [1]. One of the simplest ways to make VR
content is converting an existing 2D image (or video) to
3D. Stereoscopy is a technique for creating the illusion of
depth in a flat (2D) image using binocular disparity [2].
A stereoscopic image consists of two images for the left and
right eyes, and displaying them to each eye is the easiest way
to enhance depth perception in the viewer’s brain. A head-
mounted display (HMD) is the most widely employed device
to achieve this effect.

Since the screens in HMDs are placed only a few inches
from the user’s eyes, an optical lens is placed between them.
The optical lens system locates the images at a comfortable
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distance for the user [3], [4]. It also magnifies the image
to provide a reasonable filed-of-view (FOV) [5]. Although
the optical lens system has such benefits, it also causes
non-linear distortion (e.g., radial distortion) on the image.
To correct such distortion, a pre-distortion process on the
image is required based on an optical model for HMDs [6],
[7]. Since stereoscopic rendering with the pre-distortion pro-
cess requires a large amount of computation, a separation
strategy is needed in most current VR systems; it performs
most computations on a PC (or laptop), and the HDM just
gets the resulting images while displaying them. This is one
of the obstacles in the popularization of VR and HMDs [5].
Edge devices have recently improved their processing
power significantly while embedding multi-core CPUs and a
GPU (Graphics Processing Unit). Current commodity edge
devices have up to six CPU cores and a powerful GPU
(e.g., 384 CUDA cores) within a credit card size [8]. With
the edge devices’ computing power expected to grow con-
tinually, designing an algorithm that can efficiently use the
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heterogeneous architecture of edge devices will be critical to
improving the convenience of using HMDs. It will also be a
key to accelerating the popularization of VR systems.

In this work, we propose a novel lens distortion algo-
rithm for edge devices with an embedded GPU. To reduce
the data (i.e., input and output images) transfer overhead,
we designed our system to employ unified memory space
while taking advantage of the integrated CPU and GPU
memory architecture of edge devices (Sec. IV-A). Our dis-
tortion kernel is based on a lookup table algorithm that
significantly reduces the computation on a naive lens dis-
tortion method by using pre-computed (i.e., lookup table)
values (Sec. IV-B). Since the main idea of the lookup table
approach is using a pre-computed value instead of computing
the value on the fly, the distortion kernel’s performance is
bounded by the memory operations while wasting the com-
putational capability of the GPU. We propose a compressed
lookup table method that decreases the memory transac-
tion and improves the efficiency of the distortion kernel
(Sec. IV-C).

To demonstrate the benefits of our method, we tested
its performance on three different edge devices having an
embedded GPU and a desktop system having an external
GPU for various resolutions of images. We also implemented
four alternative methods, including prior lookup table algo-
rithms on the CPU and GPU, and compared their performance
with our method (Sec. V). Overall, our method shows the
best performance on all the devices independent of the image
resolution. It achieved up to 1.72 times (1.35 times on aver-
age) higher performance than a prior lookup table algorithm
on a GPU. Especially on edge devices, our method shows
a meaningful performance improvement over prior lookup
table methods on a GPU: about 43.24% on average. As a
result, with our method, we can achieve real-time lens dis-
tortion performance on up to a 4K (3840 x 2160) image with
alow-end edge device (e.g., 56 FPS with Jetson Nano) and up
to an 8K (7680 x 4320) image with mid-range edge devices
(e.g., 94 FPS with Jetson NX). We also compared the power
consumption of our method with the prior GPU algorithm
and found that ours consumes up to 24.86% less energy.
These results demonstrate the efficiency and usefulness of
our approach in both computational performance and energy
cost.

Il. RELATED WORK

Robinett and Rolland [7] pointed out the optical distortion
problem and described an optical model for HMDs. Based on
their model, they proposed a method of correcting the optical
distortion in the HMD by applying an inverse function of
the lens distortion to the image on the screen. The lens then
restores the predistorted image, and the users see the correct
image.

To accelerate the predistortion process, various paral-
lel computing hardware has been employed. Some of the
approaches utilize multi-core CPUs [9], but they do not meet
real-time performance. Others employ specialized hardware
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(i.e., FPGA) and achieve real-time performance for VGA
output resolution (640 x 480) [10], [11]. However, the most
widely employed approach is using a GPU. Watson and
Hodges [12] suggested using graphics hardware for predis-
torting images. They found that predistortion can be rep-
resented as a simple texture mapping onto a 3D polygon
reflecting the distorted shape if the undistorted image is a
texture. As a result, they achieved up to 10 frames/second
(FPS) at a 640 x 480 resolution with high-end graphics hard-
ware at that time: Silicon Graphics Onyx Reality Engine II.
This texture mapping approach has been widely employed
for correcting lens distortion in various fields using wide-
angle lenses, such as HMDs, the medical domain, and surveil-
lance [13], [14]. Traditionally, texture mapping is realized
by shader languages like GLSL (OpenGL shader language),
and there are two methods: pixel-based and mesh-based [15].
Pixel-based implementation generates a high-quality result
since it computes the distortion coordinates of every pixel in
the image. On the other hand, the mesh-based method trans-
forms vertices on a plane mesh according to the distortion
equation and fills the other region by interpolating the values
for the vertices. Therefore, it can accelerate the distortion
process by using a low-resolution mesh; however, its quality
also decreases. Shuhua et al. [14] employed the pixel-based
method and achieved up to 190 times higher performance
than the CPU algorithm. We compared the performance of
both pixel- and mesh-based texture mapping algorithms with
our method in the supplementary report.

Since a lens and the distortion model in a system
(e.g., HMD) are fixed, the distortion parameters for each
pixel can be reused. Therefore, the texture mapping con-
cept can be extended to build a lookup table (or map)
and be used to improve distortion performance [16], [17].
Shehrzad Qureshi [18] introduced lookup table-based lens
correction implementation with OpenCL. The introduced
method pre-computes two tables for each x- and y-coordinate
and generates distortion results by looking at the table.
Although the two-table approach is simple to implement,
it requires memory transactions twice for processing each
pixel. We found that frequent memory access causes perfor-
mance degradation of GPU algorithms, especially for embed-
ded GPUs on edge devices. To solve this issue, we propose a
compressed lookup table approach (Sec. IV).

Lee et al. [13] implemented a distortion correction algo-
rithm in a General Purpose GPU (GPGPU) platform with
CUDA. They exploited the GPU’s hardware-accelerated
interpolation ability and achieved a near-real-time per-
formance for HD resolution images (e.g., 48 FPS for
1920 x 1080 on Nvidia GT555M). However, this method
requires additional RGB splitting and mering steps to utilize
hardware-accelerated interpolation. Van der Jeught et al. [19]
also implemented a distortion correction algorithm using a
GPU, and their method shows a near-real-time performance
(e.g., 30 FPS) for 1024 x 768 images. Our method also
exploits the parallel computing power of a GPU. However,
we propose a real-time lens distortion algorithm running on
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an edge device with a GPU, not on an external GPU equipped
on a desktop or laptop.

lIl. PRELIMINARIES

This section provides the preliminaries for understanding the
proposed approach, including the lookup table-based distor-
tion method and the characteristics of edge devices with an
embedded GPU.

A. LOOKUP TABLE-BASED LENS DISTORTION ALGORITHM

Xd| _ | Xc Xu — X¢ 2 4
[yd} - [y] n [yu _yc} [t 4oty O

Eq. 1 is the radial distortion model for pre-distorting the
input image, where (x4, y4) and (x,, y,) are the pixel coor-
dinates in the distorted and undistorted images, (x., yc) is
the center coordinate of the image, and r is the distance
between (x4, y4) and (xc, yc). k1 and kp are the distortion
coefficients, which depend on the target lens. This equation
is used to find the matched pixel on the input image (x, y;)
for the pixel on the distorted image (x4, yqz). Since pixels
in an image have discrete coordinates, we can pre-compute
the (x4, y4) — (xu, yu) pairs for every pixel of the distorted
image. A lookup table is the set of all the pairs. Once we
have the lookup table for the target lens, we can simplify the
distortion process by reading the lookup table and copying the
pixel value on the input image to the target position on the dis-
torted image. Therefore, it becomes I0-bounded work, which
means the memory operations bounded the performance of
the work. Our distortion algorithm is designed based on this
lookup table approach. However, the memory access pattern
is optimized for the lookup table to improve the distortion
performance on the embedded GPU.

B. UNIFIED MEMORY ACCESS IN EDGE DEVICE

In this work, we target edge systems with an embedded GPU.
Compared with a general computing system (e.g., PC and
workstation) with an external GPU connected over a system
bus (e.g., PCle), an edge system usually integrates a CPU and
GPU into a chip while sharing the DRAM [20]. Although
each processing unit (i.e., CPU and GPU) in an edge device
has its own dedicated memory space on the shared DRAM,
it can communicate more efficiently than using physically
separated memories, such as an external GPU system. This
is realized by specialized memory mapping methods like
Nvidia’s unified memory [21] and AMD’s heterogeneous
memory access (WUMA) [22]. The common ground of those
methods is mapping the memory region of multiple process-
ing units into unified memory space. Then, every processing
unit can access the unified memory space without any explicit
memory copy operation. The unified memory space is cached
on each processing unit’s memory region; therefore, we can
avoid the expansive overhead for data copy between the host
memory (i.e., system memory) and the device memory (i.e.,
GPU’s DRAM). In our method, we employ unified memory
to share input and output images between the CPU and GPU.
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IV. LENS DISTORTION ALGORITHM ON AN EDGE DEVICE
WITH GPU

A. SYSTEM OVERVIEW

Fig. 1 shows the overview of our lens distortion correction
system. The system includes three components: CPU, GPU,
and unified memory space. In the preprocessing step, the
GPU gets the lens distortion parameters, including the image
resolution and distortion coefficients (Eq. 1), from the CPU.
Then, the GPU computes the lookup table and stores the
result in its device memory. We represent the lookup table
as a compressed form to optimize the memory access pattern
while considering the characteristics of the distortion algo-
rithm (Sec. IV-C). At runtime, the CPU acts as a manager that
obtains input images from an external device (e.g., camera,
disk) and orders distortion computation for the images to the
GPU. The CPU puts an input image into the unified memory
space and calls the GPU kernel (Sec. IV-B). Then, the GPU
computes the distorted image of the input image based on the
lookup table, and it returns the resulting image into the unified
memory space. Finally, the CPU takes the distorted image
and outputs it to the target display device (e.g., an HMD or
a monitor). We repeat this runtime process until all the input
images are processed.

Preprocessing step

Parameters
(image resolution,
distortion coefficients)

Input Image

Distortion
kernel

Result image

CPU

Distorted image

./

GPU

Unified memory

FIGURE 1. Overview of the proposed system.

B. DISTORTION KERNEL ON GPU
The work of the GPU kernel using the lookup table is simply
reading the lookup table and copying a pixel from the input
image to the output image. Since all pixels are independent of
each other, the GPU kernel’s simple but efficient thread layout
is allocating a thread per pixel. The lookup table can be used
for forward and backward mapping, which determines the
thread layout of the GPU kernel. Forward mapping gets the
target pixel index on a distorted image from the input (undis-
torted) pixel index (i.e., (xy, y,) — (x4, yq))- In this case,
each GPU thread handles a pixel on the input image. In the
reverse direction, backward mapping obtains the pixel index
on an input image from the pixel index of an output image
(i.e., (xq,y4) — (x4, yu)). For this backward direction, the
GPU kernel allocates a thread per pixel on the output image.
We found that backward mapping achieves about 13.91%
higher performance on average than forward mapping. The
forward mapping kernel requires memory copies equivalent
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to the number of pixels on the input image. On the other
hand, backward mapping requires fewer memory copies (e.g.,
22.21% for 1920 x 1080 resolution) than forward mapping
because some regions on the distorted image are blank. Also,
forward mapping leads to more serialized memory access
than backward mapping because the pixel index is discrete,
and multiple pixels on the input image can be mapped to
the same pixel on the output image. Therefore, we use the
backward mapping approach on the GPU distortion kernel.

C. OPTIMIZING MEMORY ACCESS WITH A COMPRESSED
LOOKUP TABLE

A straightforward form for the lookup table is a
two-dimensional array of a structure consisting of two inte-
ger values for the x- and y-coordinates. However, such
an array of structure (AoS) leads to uncoalesced memory
access, which means threads in a warp read (or write to) a
non-contiguous memory region [21]. Uncoalesced memory
access requires more memory transactions than coalesced
memory access. To improve lookup table access efficiency,
Shehrzad Qureshi [18] employed an SoA (Structure of
Array)-style lookup table that consists of two separate arrays
for the x- and y-coordinates.

To improve memory access efficiency even further than
Shehrzad Qureshi [18]’s approach, we propose a compressed
lookup table that halves memory transactions for reading the
lookup table. Instead of using two separate arrays, we encode
x- and y-coordinates into an integer value. Eq. 2 is our
encoding equation where (x, y) is the input coordinates, ¢y y
is the compressed value, and (width, height) is the image
resolution.

x xwidth+y, if width > height
Cx,y = . . 2)
v * height + x, otherwise

The key to our compression method is the image resolu-
tion. Since the coordinate for the shorter axis cannot exceed
the resolution of the longer axis, we can decode (or decom-
press) the ¢y y into (x, y) coordinates with one division and
one modular operation, as shown in Eq. 3.

(Cx,y/width, cyy mod width),
if width > height (3)
(cx,y mod height, cy y/height),

(x,y) =
otherwise

Our compressed lookup table can obtain the target coordi-
nate with one read operation and threads in a warp access
continuous memory region. As a result, we can halve the
memory transaction while accessing the memory efficiently
by coalesced memory access. Even though it requires addi-
tional computation to decode the value (i.e., cy,y) instead of
memory transaction, it is beneficial to the performance of the
distortion process. GPU cores can handle other threads during
the memory transaction latency of a set of threads (e.g., warp)
without penalty based on the GPU’s zero context-switching
overhead property [23]. Therefore, replacing some memory
operations of the I/O-bounded kernel with computational
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tasks improves the utilization efficiency of resources in the
GPU. With the two separated (uncompressed) lookup tables
for the x- and y-coordinates, the main job of the distortion
kernel is memory access. It is an I/O-bounded kernel, and
the computing units (i.e., GPU cores) are idle most of the
time; therefore, the compressed lookup table improves the
balance between memory transactions and computation tasks,
improving the distortion kernel’s performance. By profiling
the reasons for stalling threads during kernel processing with
Nvidia Nsight Compute [24], we found that the ratio of stalls
by memory latency is reduced up to 31.12% (29.57% on aver-
age) with the compressed lookup table. It also improves the
kernel performance up to 1.72 times (1.35 times on average)
more than using an uncompressed lookup table.

V. RESULTS AND ANALYSIS

We implemented our lens distortion algorithm on four sys-
tems, including three edge devices having different comput-
ing powers and a desktop system having an external GPU
(Table 1). We used CUDA 11.0 for the desktop and 10.2 for
edge devices. We implemented two versions of our method to
discern the effects of the mapping direction (i.e., forward and
backward).

o Oursp is an implementation of our algorithm with back-
ward mapping that uses the compressed lookup table
(Sec. IV-C). The distortion kernel allocates a thread per
pixel on the output image.

e Oursp is the forward mapping version of our algorithm.
In this algorithm, each GPU thread handles a pixel on
the input image.

To analyze the benefits of our approach, we also imple-
mented four alternative algorithms based on prior approaches.
There are two categories of alternative methods. The first
group includes two CPU-based algorithms.

e CPU,,ive is an implementation of the lens distortion
process without pre-computation (i.e., lookup table).
This method computes the target pixel according to the
distortion equation (Eq. 1) for each pixel. We used the
same number of threads as the number of CPU cores
in the system (e.g., four-thread for Jetson Nano and six
threads for Jetson NX).

o CPUryr is a CPU implementation that employs
the lookup table approach. This method uses a
pre-computed lookup table for backward mapping.
At runtime, it finds the target pixel by using the lookup
table instead of calculating it on the fly. This algorithm
also used the same number of CPU threads with the
number of cores in the system.

The second group of alternative algorithms are prior
GPGPU algorithms.

o GPU,uve 1s a CUDA-based version of CPU,,jv.. This
method launches as many threads as the output image
resolution. We tested various thread layouts and found
that the (16 x 16) thread block generally performs better
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TABLE 1. System specification of three edge devices and a desktop PC used in our experiments. The asterisk(*) means the system shared memory. The
bold font in the power row marks the corresponding power mode we used for the experiments.

Jetson Nano Jetson NX Jetson AGX Xavier RTX 2060s
CPU architecture ARM ARM ARM AMD Ryzen 5
# of cores (Clock) 4 (1.43 GHz) 6 (1.4 GHz) 8 (2.26 GHz) 6 (3.6 GHz)
GPU architecture | Nvidia Maxwell = Nvidia Volta Nvidia Volta Nvidia Turing
# of GPU cores 128 384 512 2176
Memory size 4 GB* 8 GB* 32 GB* 8 GB
Memory type LPDDR4 LPDDR4x LPDDR4x GDDR6
Memory bandwidth 25.6 GB/s 51.2 GB/s 137 GB/s 448 GB/s
Power SW/10W 10W / 15W 10W / 15W / 30W 175W
Size 70x45 mm 103x90.5 mm 105x 105 mm 225%128 mm (GPU only)

(a) Input image

(b) CPUna'uie

(¢) Oursp

FIGURE 2. This figure shows the input image and the distortion results by the naive algorithm and ours.

than other layouts. Therefore, we used this thread block
size in our experiments.

e GPUpyr is an implementation of the lookup table dis-
tortion algorithm. Following Shehrzad Qureshi [18],
we built two separate tables of x- and y-coordinates for
backward mapping in the device memory. The thread
layout and the block size are the same as GPU,gjye-

We employed the unified memory approach for imple-
menting all the GPU algorithms, including GPU, e,
GPUryr, Oursg, and Oursg. However, for the external GPU
system (i.e., RTX 2060s in Table 1), we used explicit memory
copy between the host and device memories instead of unified
memory. We found that the explicit version shows about
79.01 times (70.47 times on average) better performance for
the RTX 2060s system.

We used the Lenna (Fig. 2) image and varied the image
resolution from 1280 x 720 (i.e., 720p) to 7680 x 4320
(i.e., 8K) and checked the performance of the six algorithms.
We performed the distortion process 100 times for each res-
olution and reported the average processing time. It should
be noted that the lens distortion performance is affected by
the image resolution, not by the contents (e.g., colors) on the
image.

A. RESULTS

Table 2 shows the processing time of the six different algo-
rithms for lens distortion computation on different devices
and various resolutions. Since GPU algorithms on edge
devices use unified memory space, there is no explicit
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memory copy between the host and device memories. There-
fore, the kernel processing time includes the memory trans-
action time. Unlike edge devices, an external GPU system
requires explicit data copy between the host and device
memories for an external GPU (i.e., RTX 2060s system).
We measured all memory operation times and computation
times. The parentheses for RTX 2060s in Table 2 show the
time only for the kernel.

The lookup table algorithms on both CPU and GPU show
better performance than the naive approach. CPUryr and
GPUpyr achieved up to 8.82 and 67.16 times higher per-
formance than CPU,,y e and GPU,,y e, respectively. Also,
GPUpLyr shows up to 10.51 times (4.60 times on average)
higher performance than CPUpyr. These results validate the
benefit of the lookup table algorithm and that the lookup table
approach is appropriate for GPU architecture.

Both our mapping algorithms with a compressed lookup
table achieved the best performance in all cases. Fig. 3
compares the performance of three lookup table-based GPU
algorithms, including GPULyr, Oursg, and Oursp. Between
our two methods, Oursp generally shows better performance
(e.g., 13.91% on average), as discussed in Sec. IV-B. Oursp
achieved up to 1.10, 1.40, 1.27, and 1.22 times (1.08, 1.37,
1.23, and 1.09 times on average) over GPULyr, and Oursp
improved the lens distortion performance up to 1.26, 1.71,
1.72, and 1.22 times (1.20, 1.53, 1.57, and 1.10 times on
average) over GPUryr. This performance improvement of
Oursp over GPUyr validates the benefits of our compressed
lookup table approach (Sec. V-B). An interesting result is that
our methods achieved better performance on edge devices
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TABLE 2. This table shows the average processing time (milliseconds) of lens distortion per frame. For RTX 2060s, the parentheses show the time only for
the kernel. The bold font marks the best performance among the eight algorithms.

Resolution 720p (1280x720) 1080p (1920x1080)

Device Nano NX AGX RTX 2060s Nano NX AGX RTX 2060s
CPU,give | 23.48 9.13 18.55 12.73 66.56 10.60 24.92 14.65
CPULyr 5.89 5.14 3.61 4.76 8.27 7.59 4.59 6.82
GPU,pive | 71.06 3220  28.81 0.75 (0.32) 159.23 74.43 64.99 1.66 (0.69)
GPUryr 2.55 0.49 0.47 0.6 (0.08) 5.46 1.11 1.09 1.13 (0.16)

Oursp 2.31 0.35 0.37 0.49 (0.05) 5.20 0.82 0.90 1.07 (0.10)

Ourspg 2.15 0.38 0.34 0.49 (0.06) 4.79 0.77 0.70 1.07 (0.10)
Resolution 4K (3840x2160) 8K (7680x4320)

Device Nano NX AGX RTX 2060s Nano NX AGX RTX 2060s
CPU,uive | 19223 2852  26.10 22.26 1034.55 86.15 81.12 377.61
CPULyr 34.45 21.56  21.30 12.08 117.33 57.41 55.79 88.90
GPU,4ive | 636.14 290.18 260.18 591 (2.08) | 2560.14 1147.75 1023.52 23.82(8.57)
GPUryr 21.57 4.59 4.50 4.36 (0.53) 89.36 18.12 17.66 17.44 (2.19)

Oursp 20.30 3.40 3.78 4.18 (0.35) 81.98 13.16 14.22 16.71 (1.47)

Oursp 17.89 2.76 2.73 4.15 (0.33) 71.10 10.60 10.28 16.59 (1.35)

TABLE 3. This table shows the top seven reasons and related operations for stalling a warp. The last four columns show the number of the stalled cycles
by each reason for GPU;yr and Oursg. We used an external GPU system (i.e., RTX 2060s) for this experiment. The reported data is the average value
measured for every resolution. A detailed explanation of the reasons for each stall is available in Chapter 4 of the kernel profiling guide [25].

Reason for stall Related operations GPUryr Ratio | Oursg Ratio
Long Scoreboard | L1TEX(local, global, surface, tex) data access 24.58 0.7381 20.73 0.8820
Short Scoreboard MIO(memory input/output) operation 1.8 0.0551 1.19 0.0504
LG Throttle Local and global memory operation 5.65 0.1697 1.20 0.0509
IMC Miss Immediate constant cache miss 0.13 0.0038 0.12 0.0051
MIO Throttle MIO(memory input/output) operation 0.87 0.0262 0.06 0.0027
Drain All memory operations 0.10 0.0031 0.04 0.0017

Math Pipe Throttle Arithmetic operation 0.14 0.0041 0.17 0.0071
Total 33.30 1.0000 | 23.51  1.0000

(except the low-end one, Jetson Nano) than on the external
GPU (i.e., the RTX 2060s system) with a higher computa-
tional capability. We found that the kernel processing time
is much faster on the external GPU than on edge devices.
However, the data communication between host and device
memories on the external GPU system takes more time than
the kernel processing time on edge devices, which use unified
memory (Sec. V-C). Overall, with our method, we could
achieve real-time lens distortion performance on up to a 4K
image with a low-end edge device (e.g., 56 FPS on Nano)
and up to an 8K image (e.g., 94 FPS on NX) on mid-range
devices.

B. BENEFIT OF COMPRESSED LOOKUP TABLE

To ascertain how our compressed lookup table approach
(Oursp) improves the performance over GPUryr, we pro-
filed the kernels of the two methods by using the Nvidia
Nsight Compute [24]. We investigated the reasons for stalling
a warp on each kernel, and Table 3 summarizes the results.
The math pipe throttle occurs when all the math pipes are
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busy, which means the computational task causes this stall.
On the other hand, the other six reasons are related to memory
operation. As shown in Table 3, memory operations dominate
the performance of both kernels. This result is consistent with
the characteristics of the mapping kernel, on which the main
work is reading the lookup table and copying pixels from an
input image to an output image.

We found that our compressed lookup table approach
(Oursp) reduces the total stalls by about 30% compared
with GPUryr. This is because our method needs just
one read operation to the compressed lookup table, unlike
GPUryr, which requires two memory reads for the x- and
y-coordinates of tables. Although the stall by math pipe throt-
tle is slightly increased (about 1.2 times) due to the decom-
pression process, it still takes less than 1% of total stalls.
Therefore, the benefit of using a compressed lookup table
(i.e., reducing stalls by memory operations) is overwhelming
in the increment of computational overhead. These results
demonstrate the efficiency of our compressed lookup table
approach.
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FIGURE 3. These graphs show the average processing time with a standard deviation of three GPU algorithms that use the lookup

table approach.

TABLE 4. This table shows the processing times for each task on Oursg and OursExpg. Copy(H— D) and Copy(D— H) denote the explicit data copy
between host and device memories. Since Oursg uses unified memory space, there is no explicit data transfer while the kernel time includes all the data

communication time.

Resolution 1080p 4K 8K
Device Nano NX AGX 2060s | Nano NX AGX 2060s Nano NX AGX 2060s
Ourspg Kernel 479 077 070 78.15 | 17.89 276 2.73 274.66 | 71.10 10.60 10.28 1053.69
Copy(H—D) | 0.71 0.30 0.38 0.49 3.03 1.08 1.34 1.91 16.86 4.13 5.25 7.62
OursExps Kernel 473 061 0.68 0.10 | 17.56 223 2.61 0.33 69.63 8.89 10.20 1.35
Copy(D—H) | 0.71 030 0.38 0.49 3.03 1.08 134 1.91 16.86 4.13 5.25 7.62
Total 6.14 122 143 1.07 | 23.62 4.40 5.29 4.15 103.35 17.15 20.70 16.59

C. EFFECT OF UNIFIED MEMORY

To check the effect of using unified memory on edge
devices, we implemented an alternative version of our
method (OursExpp) that explicitly transfers the input and
output images between the host and device memories with
memory copy APIs (e.g., cudaMemcpyAsync()). We opti-
mized the data transfer with pinned-memory (or page-locked
memory) [21] for OursExpp. Table 4 shows the processing
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time of the two versions of our method. The kernel of
OursExpp takes slightly less time than the kernel processing
time for Oursp because all the required data is in the ded-
icated device memory for OursExpp, while Oursp requires
access to the unified memory space. However, OursExpp
requires separate data copy time between the host and device
memories (e.g., Copy(H—D) and Copy(D— H) in Table 4)
while kernel processing time of Oursp already includes all the
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FIGURE 4. These graphs compare the power consumption of three GPU algorithms on each edge devices for various resolution.

data communication time. Overall, Oursg shows up to 1.45,
1.62, and 2.37 times (1.34, 1.60, and 2.09 times on average)
higher performance than OursExpp. This result validates the
advantage of using unified memory instead of explicit data
transfer on edge devices.

Unlike on edge devices having shared memory architec-
ture, for a desktop environment with an external GPU (i.e.,
RTX 2060s system), using unified memory (Oursp) leads to
greatly reduced performance compared to performing explicit
memory copy (OursExpp). Since host memory and device
memory are physically separated on an external GPU system,
it should use a PCI bus for every access to the unified memory
space. The bandwidth of PCI bus (e.g., 16GB/s for PCle
3.0x16) is much slower than the bandwidth of device memory
(e.g., 448GB/s), and it is hard to exploit the peak bandwidth
with frequent small-size data transfers.

We found that the RTX 2060s shows much higher perfor-
mance (e.g., up to 54.22 times) than edge devices only for
kernel processing time. However, the data communication
time is much larger than the kernel processing time and the
processing time of Oursp on edge devices except for the
low-end Jetson Nano device. Therefore, employing unified
memory is not suitable for external GPU systems.

As aresult, we achieved better lens distortion performance
with edge devices (e.g., Jetson NX and AGX Xavier) than
using a powerful external GPU with the Oursp algorithm.
These results demonstrate the efficiency and suitability of our
method for edge devices.

D. POWER CONSUMPTION

For a wireless system like wireless HMD, power consumption
is one of the critical factors since it determines the maxi-
mum usage time. To check the advantage of our approach
in energy efficiency, we measured the power consumption
of three GPU algorithms on each edge device. Jetson boards
include the INA3221 power monitor module(s), and we
can read the monitoring information via Linux sysfs [26].
We implemented a power-consumption-measuring software
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TABLE 5. This table shows the power consumption of each algorithm on
different edge devices. We measured total power consumption for
processing 5,000 times, and the reported values are the average power
consumption per frame. Since Jetson NX does not provide CPU and GPU
power consumption separately, we report a single value for the device.

Device | Res. Algorithm g%%er ccgl;%mptlorjlgértl;i\/)
Oursp 0.65 4.36 5.01
720p Oursp 0.73  4.75 5.48
GPUryr | 090 538 6.28
Oursp 1.21 9.72 10.93
Nano 1080p Oursp 1.43  11.06 12.50
GPUruyr | 296 1197 14.94
Oursp 576  36.83 42.60
4k Oursp 740 45.62 53.05
GPUryr | 622 4594 52.89
Oursp 1.24 2.07
720p Oursp 1.42 2.29
GPUrur 1.61 2.66
Oursp 2.71 4.29
1080p Oursp 3.20 5.01
NX GPULur 3.56 5.74
Oursg 10.35 16.17
4k Oursp 13.24 20.38
GPUrur 14.19 22.58
Oursp 41.83 65.15
8k Oursp 52.72 80.55
GPUrur 57.32 90.88
Oursp 0.43 1.52 4.08
720p Oursp 0.49 1.78 4.59
GPUryr | 0.87 1.95 5.32
Oursp 0.80 3.44 8.23
1080p Oursp 0.81 4.25 9.84
GPUryr | 1.64 459 11.58
AGX Oursg | 158 1371 3001
4k Oursp 1.87 17.89 38.19
GPUrur 2.11 18.41 40.42
Oursp 399 56.36 119.38
8k Oursp 6.29 73.18 152.77
GPUrur 8.10 69.15 158.35

based on the NVIDIA Jetson board support package (BSP)
and read the information on INA3221 every 15 milliseconds.
We ran the power measuring thread concurrently with the
thread handling the distortion process and synchronized at
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every execution. We ran each algorithm 5,000 times to have
sufficient time for measuring power consumption accurately,
and Table 5 reports the average power consumption for han-
dling an image (or frame).

Fig. 4 compares the power consumption of three GPU
algorithms on edge devices. Oursr consumes up to 16.32%
(10.37% on average) less power than GPUryr. Our com-
pressed lookup table approach halves the read operations
for accessing the lookup table than GPUryr (Sec. IV-C),
and it reduces not only the processing time but also power
consumption. Also, Oursp achieved up to 1.28 times better
power efficiency than Oursp. As we inspired in Sec. IV-B,
the backward mapping (Oursp) approach requires fewer (e.g.,
22.21%) memory copies than the forward mapping (Oursr).
Therefore, Oursp achieved much higher power efficiency
than Oursp. Overall, Oursp reduces power usage up to
28.93% (24.86% on average) than GPUyr. These results
demonstrate the advantage of our method over the prior
method on power efficiency.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented an efficient lens distortion
algorithm for edge devices having an embedded GPU.
We employed unified memory space to take advantage of the
edge device’s integrated memory architecture and optimized
data transfer between CPU and GPU. We designed our distor-
tion kernel based on backward mapping with a pre-computed
lookup table. We then discovered that the performance of the
lookup table method is bounded by memory operations while
wasting the computational capability of the GPU. To improve
the efficiency of the distortion kernel, we proposed the com-
pressed lookup table approach. This approach balances the
workload of memory operations and arithmetic computation,
and it improves the kernel’s performance. As a result, our
method shows up to 1.72-times higher performance com-
pared with a prior GPU-based lookup table algorithm (i.e.,
GPUryr). Also, our method demonstrates real-time perfor-
mance for high-resolution images using low-end and mid-
range edge devices. Furthermore, we found that our approach
consumes less power (e.g., up to 28.93%) than GPUpyr.
These results demonstrate the benefits of our method from
the perspective of both processing performance and energy
efficiency, and it validates its suitability for edge devices.
Although our method achieved real-time performance for
up to 4K resolution with low-end edge devices, future HMD
will require a much higher resolution for a more immersive
experience in the virtual world. As future work, we would like
to make our algorithm meet real-time performance for ultra-
high-resolution contents (e.g., 8K) even with low-end edge
devices. To achieve this, we plan to design a heterogeneous
parallel lens distortion algorithm, which fully utilizes both
multi-core CPUs and GPU.
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