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ABSTRACT With the development of science and technology in recent years, many operating machines
have become sources of noise affecting quality of life. Hence, the topic of noise diminution using an active
noise control (ANC) system has attracted many researchers. This paper develops a new adaptive fuzzy
feedback neural network controller (AFFNNC) to improve the performance for narrowband active noise
control (NANC) systems. The proposed controller combines fuzzy inference and adaptive feedback neural
network controllers that are based on the filtered-s least mean square (FSLMS) algorithm. The AFFNNC
comprises five network layers, in which the output layer of the controller uses an adaptive algorithm to
tune directly the parameters of filters without prior training. The computational complexity, convergence
and stability of the AFFNNC are analyzed. Evaluations are performed on both linear and nonlinear NANC
systems with a recorded noise signal that was obtained from a transformer. Numerical simulations confirm
the efficiency of the proposed controller compared with other ANC controllers.

INDEX TERMS Narrowband noise, active noise control, noise cancellation, adaptive fuzzy feedback neural
controller.

I. INTRODUCTION
Noise has affected quality of our daily life, therefore, the way
to reduce noise becomes a hot topic for researchers. Noise
that is emitted by motors, fans, machines and automated
equipment often has significant power at low frequency
(below 500 Hz) [1]. However, conventional passive noise
control (PNC) methods use soundproof materials, which
are only effective at reducing high-frequency noise. In con-
trast, ANC method is effective at cancelling low-frequency
noise [2]–[4]. Hence, ANC systems have attracted much
attention in the last decade.

In terms of physical nature, the ANC method is based
on the principle of superposition. A controller is used to
generate a secondary sound wave, which has the opposite
phase and the same amplitude as the primary sound wave.
These two sound waves interfere with each other, canceling
out the undesired noise. The performance of an ANC system
depends on the properties of the primary and secondary paths,
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the delay time of the controller, and some other factors. In an
ANC system, of which the primary and secondary paths
transfer functions are assumed to be linear, a linear finite
impulse response (FIR) filter based on the filtered-x least
mean square (FXLMS) algorithm is commonly used because
of its simplicity. Several ANC studies have been proposed
to cancel undesired noise with linear primary and secondary
paths [5]–[8]. However, the FIR filter with the FXLMS algo-
rithm performs poorly when the ANC is nonlinear [9], [10].
In order to solve this problem, many algorithms of nonlinear
controllers were proposed. A genetic algorithm-based ANC
system has been proposed [10], and adaptive Volterra con-
trollers have been developed for handling nonlinear ANC
systems [11]–[13]. Adaptive neural network controllers have
also been introduced [14]–[16]. Functional link artificial neu-
ral network (FLANN) structures were developed to cancel
noise by exploiting FSLMS algorithms [17]–[21]. Notably,
the FSLMS algorithm is widely used in FLANN struc-
tures due to its ability to update the controller coefficients
online and to improve noise reduction performance [22].
Haseeb et al. proposed calculating the instantaneous gain of
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auxiliary noise based on fuzzy logic for online feedback path
modeling and neutralization in ANC systems [23]. Le et al.
developed an adaptive filter for ANC systems using a recur-
rent type-2 fuzzy brain emotional learning neural network
[24]. Peng et al. used the Takagi–Sugeon–Kang (TSK) type
fuzzy logic-based feedforward ANC system [25]. Zhang
introduced the recurrent fuzzy neural network controller for
ANC [26]. Devi et al. mentioned an environmental noise
reduction system that uses adaptive fuzzy and fuzzy neural
network algorithms [27]. Markedly, the combination of neu-
ral network and fuzzy logic is appropriate for controlling and
modeling nonlinear systems. A neural network controller can
learn accurately from the training data, but it eclipses with
inferential properties. In contrast, a fuzzy logic controller
can perform its logical reasoning but it lacks self-regulation
and the capacity of learning to adapt to nonlinear systems.
Thus, fuzzy and neural-network controllers can be combined
to solve these problems for cancelling noise, saving time to
search for the optimal solution. However, most studies of
adaptive fuzzy neural controllers are based on conventional
adaptive neural filters [28]–[30], and their performance only
reaches certain limits.

From the above analysis, the adaptive fuzzy neural network
controller can be used for noise cancellation. The FSLMS
algorithm can directly update the adaptive parameters, and
significantly improve the noise cancellation performance.
Thus, this work proposes an adaptive fuzzy feedback neural
network controller (AFFNNC) that is based on the FSLMS
algorithm, which integrates the expert property of the fuzzy
inference controller and learning capacity of the neural net-
work to adapt nonlinear ANC systems. The structure of the
presented AFFNNC consists of five network layers, of which
the output layer has a feedback component that returns to its
input for monitoring, recognizing, and emitting time-varying
patterns and self-adjusting adaptive parameters to perform
noise cancellation [16]. Furthermore, an adjustment parame-
ter of the feedback component helps the ANC system to reach
equilibrium [16].

Contributions of this work consist of the following.
(1) Design an AFFNNC in which the fuzzy network layers

have expert knowledge-based fuzzy inference properties, and
the feedback adaptive neural network layers execute fast
learning algorithm without prior training.

(2) Analyze the proposed algorithm, including the conver-
gence and stability of the controller.

(3) Confirm the effectiveness of the presented controller
by analyzing the computational complexity and performing
simulations through comparison with other ANC controllers.

The rest of this paper is shown as follows. Section II
expresses the proposed work and considers its con-
vergence and stability conditions. Section III analyzes
the computational complexity of the proposed controller
with existing ANC controllers. Section IV compares
the performance of the proposed work with other
ANC controllers by simulation results. Section V draws
conclusions.

II. PROPOSED CONTROLLER AND ANALYSIS
This section introduces the algorithm of the proposed con-
troller, and analyzes its the convergence and stability.

A. PROPOSED ALGORITHM
The proposed controller is built in a parallel structure, shown
in Fig. 1. In which, S(z) and P(z) are the transfer functions of
the secondary and primary paths, respectively. d(m) is the pri-
mary noise signal which consists of k harmonic components
at frequency ωi (i = 1, 2, . . . , k),

d(m) ≡
k∑
i=1

cos(ωim)+ u(m), (1)

where u(m) denotes the disturbance, and m is the number of
the digital time sample. The ith reference sinusoidal signal
is emitted by the signal generator, when it receives the syn-
chronous signal from a non-acoustic sensor,

xi(m) = cos(ωim). (2)

The error signal is defined as

e(m) = d(m)− ys(m), (3)

where ys(m) = s(m) ∗ y(m), s(m) is the impulse response of
S(z). Suppose that e(m) = e1(m) + e2(m) + . . . + ek (m) is
the sum of the error signals from each channel and the ei(m)
is the error signal at the ith channel, which is obtained by
filtering the error signal e(m) using the bandpass filter Bi(z)
with transfer function [31]

Bi(z) =

(
1− a2i
1+ a2i

)(
biz−1 − (1+ a2i )z

−2

1− biz−1 + a2i z
−2

)
, (4)

where bi = (1 + a2i )cosωi is the parameter that controls the
central frequency of the passband at the ith channel, and ai is
area that establishes the bandwidth of the bandpass filter with
0 < ai < 1 and |bi| < 2ai.
Fig. 2 expresses the structure of the AFFNNC, which

includes five network layers. Here, for simplicity, only a sin-
gle input and a single output of fuzzy linguistic variables are
analyzed for the ith channel. The algorithm of the AFFNNC
is described as follows.
Layer 1 (Input Layer): The nodes of network layer 1

receive input signal at the ith channel, and transmit it directly
to layer 2. The output signal of layer 1 (Y(1)

i (m)) is

Y(1)
i (m) = xi(m). (5)

Layer 2 (M Nodes): The ‘‘M’’ nodes replace membership
functions to display the input and output fuzzy linguistic
variables. Fuzzy sets are established for each input and output
fuzzy linguistic variables. The Gaussian membership func-
tions are chosen as

Y(2)
j,i (m) = exp

−
(
Y(1)
i (m)− cj,i

)2
$ 2
j,i

, (6)
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FIGURE 1. Block diagram of proposed AFFNNC.

where the adjustable parameters$j,i and cj,i are the width and
center of the Gaussian membership functions of the jth fuzzy
set of input and output of fuzzy linguistic variables, respec-
tively, with j = 1, 2, . . . , h at the ith channel. These parame-
ters can be determined based on experience. The output signal
of layer 2 (Y(2)

j,i (m)) depends on each corresponding fuzzy set.
Layer 3 (Reasoning Layer): The ‘‘R’’ nodes represent

fuzzy rules, which perform ‘‘If-then’’ rules, inferred by expert
knowledge to compute the firing strength,

Y(3)
i (m) =

h∏
j=1

Y(2)
j,i (m). (7)

The output signal of the layer 3 (Y(3)
i (m)) depends on each

fuzzy law. h fuzzy rules correspond to the input and output
fuzzy linguistic variables at the ith channel.
Layer 4 (N Nodes): The ‘‘N’’ nodes carry out the normal-

ization of the firing strengths from layer 3 to prepare for
defuzzification. The output signal of layer 4 is

Y(4)
i (m) =

Y(3)
i (m)

k∑
i=1

Y(3)
i (m)

. (8)

Layer 5 (Output Layer):This layer is the adaptive feedback
neural network layer which performs adaptive defuzzifica-
tion. The weights of this layer represent the singleton con-
stituents [28]. The output signal of the output layer is gone
through the Tanh activation function and defined by

Y(5)
i (m) = Tanh(vi(m)) =

exp(vi(m))− exp(−vi(m))
exp(vi(m))+ exp(−vi(m))

, (9)

with

vi(m) =
L−1∑
l=0

(
wi,l(m)Y

(4)
i (m− l)

+βwi,l(m)Y
(5)
i (m− l − 1)+ B

)
, (10)

where β is the adjustment parameter for the feedback com-
ponent and B is the bias parameter. The cost function at the
ith channel is determined as ξi(m) = e2i (m). The weights of
layer 5 at the ith channel will be adapted according to the
gradient descent based adaptive law as

wi(m+ 1) = wi(m)−
µi

2
∇ξ i(m), (11)

FIGURE 2. Structure of the AFFNNC.

wi(m) =
[
wi,0(m),wi,1(m), . . . ,wi,L−1(m)

]T and the instan-
taneous gradient estimation vector of layer 5 is

∇ξ i(m) = 2ei(m) [∇ei(m)] , (12)

where ∇ei(m) is the error gradient vector at the ith channel.
Applying the chain rule to ∇ei(m) yields,

∇ei(m) =
∂e(m)
∂ys(m)

∂ys(m)
∂y(m)

∂y(m)

∂Y(5)
i (m)

×
∂Y(5)

i (m)

∂vi(m)

[
∂vi(m)
∂wi,0(m)

, · · ·,
∂vi(m)

∂wi,L−1(m)

]T
= −s(m)

(
1−

[
Y(5)
i (m)

]2)
×

[
∂vi(m)
∂wi,0(m)

, · · ·,
∂vi(m)

∂wi,L−1(m)

]T
, (13)

where ∂e(m)
∂ys(m)

= −1, ∂ys(m)
∂y(m) = s(m), ∂y(m)

∂Y(5)
i (m)

= 1,

∂Y(5)
i (m)

∂vi(m)
=

∂

∂vi(m)

(
exp(vi(m))− exp(−vi(m))
exp(vi(m))+ exp(−vi(m))

)
= 1−

[
Y(5)
i (m)

]2
.

Suppose

v′i,l(m) ≡
∂vi(m)
∂wi,l(m)

= Y(4)
i (m− l), l = 0, 1, . . . ,L − 1, (14)

and substitute (14) into (13), we have

∇ei(m) = −s(m)
(
1−

[
Y(5)
i (m)

]2) [
v′i,0(m), · · · , v

′
i,l(m)

]T
.

(15)

Therefore, (15) can be modified using the FSLMS
algorithm [22]

∇ei(m) = −
(
1−

[
Y(5)
i (m)

]2)
ŝ(m)

×

[
Y(4)
i (m), . . . ,Y(4)

i (m− q)
]T
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= −

(
1−

[
Y(5)
i (m)

]2)
y′(4)i (m), (16)

where ŝ(m) is the impulse response of the filter Ŝ(z),

y′(4)i (m) =
[
y′(4)i (m), . . . , y′(4)i (m− L + 1)

]T
is the filtered

signal vector of layer 4, and the filtered signals are

y′(4)i (m) =
Q−1∑
q=0

ŝq(m)Y
(4)
i (m− q), (17)

where ŝq(m) is the qth coefficient of the filter Ŝ(z).
Substituting (12) and (16) into (11), the weights of layer 5

at the ith channel are updated by

wi(m+ 1) = wi(m)+ µi

(
1−

[
Y(5)
i (m)

]2)
ei(m)y′

(4)
i (m),

(18)

where the µi is the learning rate at the ith channel of
the AFFNNC.

B. CONVERGENCE AND STABILITY OF THE
PROPOSED CONTROLLER
The convergence and stability of proposed controller are
assured when all the channels of the proposed work are
converged and stabilized. Therefore, the boundary condition
of the learning rate µi of the proposed controller must be
considered to achieve convergence and stability at the ith

channel. Taylor expansion of the error functions yields

ei(m+ 1) = ei(m)+∇ei(m)1wi(m)+ h.o.t., (19)

where ‘‘h.o.t.’’ stands for higher-order terms, and 1wi(m) is
given by

1wi(m) = wi(m+ 1)− wi(m)

= µi

(
1−

[
Y(5)
i (m)

]2)
ei(m)y′

(4)
i (m). (20)

From (16) and (20), (19) can be rewritten as

ei(m+ 1) = ei(m)+∇ei(m)1wi(m)+ h.o.t.

= ei(m)−
(
1−

[
Y(5)
i (m)

]2)
y′(4)i (m)

×µi

(
1−

[
Y(5)
i (m)

]2)
ei(m)y′

(4)
i (m)+ h.o.t.

= ei(m)

[
1− µi

(
1−

[
Y(5)
i (m)

]2)2 ∥∥∥y′(4)i (m)
∥∥∥2]

+ h.o.t., (21)

where ‖•‖ is the Euclidean norm.
In order to guarantee convergence, the ith error signal at

the next time step (m + 1) must be less than or equal to the
ith error signal at the current time step m. Accordingly, (21)
must satisfy the following condition

|ei(m+ 1)| ≤

∣∣∣∣∣ei(m)
[
1−µi

(
1−

∣∣∣Y(5)
i (m)

∣∣∣2)2 ∥∥∥y′(4)i (m)
∥∥∥2]∣∣∣∣∣

+ |h.o.t.| . (22)

With a sufficient small step size, the ‘‘h.o.t.’’ can be con-
strained to zero [32]; therefore, the learning rate µi is deter-
mined as

0 < µi <
1(

1−
∣∣∣Y(5)

i (m)
∣∣∣2)2 ∥∥∥y′(4)i (m)

∥∥∥2 . (23)

Since −1 < Y(5)
i (m) < 1 (according to (9)), we have(

1−
∣∣∣Y(5)

i (m)
∣∣∣2)2 ∥∥∥y′(4)i (m)

∥∥∥2 < ∥∥∥y′(4)i (m)
∥∥∥2

≤ max

∥∥∥y′(4)i (m)
∥∥∥2 . (24)

If the learning rate µi is selected to satisfy

0 < µi <
1

max

∥∥∥y′(4)i (m)
∥∥∥2 , (25)

then the ANC system at the ith channel is locally convergent
and stable.

III. COMPUTATIONAL COMPLEXITY
This section compares the computational cost of the proposed
controller with other nonlinear ANCs including Huynh’s
work [16] relating to adaptive feedback neural network
controller based on FXLMS algorithm, Zhang’s work [28]
involving adaptive fuzzy neural network and Das’s work [22]
concerning FLANN based on the FSLMS algorithm. Most
of the calculations depend on the lengths of the estimated
secondary path Q and the adaptive filter L. Table 1 provides
the details.

For the proposed controller, the filtered error signal for
each channel is calculated by (4), which implements five
multiplications and four additions. The output of layer 5 is
calculated using (9), requiring four exponentiations, two
additions, and one division for each channel. Calculating
the output of each channel of layer 5 using (10) requires
L + 2 multiplications and L + 1 additions. The computation
of the filtered signal in (17) involves Q multiplications and
Q − 1 additions. Finally, updating of the weights in (18)
carries out L + 1 additions and L + 3 multiplications for
each channel. Hence, k(2L+Q+10) multiplications, k(2L+
Q+7) additions, 4k exponentiations, and k divisions for k
channels are performed. Besides, Huynh [16] built the ANC
in a parallel structure for each narrowband channel. Two
adaptive filters were used in the controller. The computational
complexity for k channels is k(2L+ 2Q+ 9) multiplications,
k(2L + 2Q + 2) additions, k divisions, and k exponentia-
tions. The computational cost of Zhang’s work [28] includes
Q + L + 2 multiplications and Q + L − 1 additions for
each channel; therefore, the total computational cost includes
k(Q + L + 2) multiplications and k(Q + L − 1) additions
for k channels. At last, the computational cost of Das’s work
[22] includes k(L(2P + 1)(Q + 3) − Q) multiplications and
k(L(2P + 1)(Q + 1) + 1) additions, where P is the order of
trigonometric functional expansion.

VOLUME 10, 2022 41743



M.-C. Huynh, C.-Y. Chang: Novel AFFNNC for Narrowband ANC System

Choosing L = Q = 100, P = 1 and k = 3, the
specific computational costs of the controllers are shown in
the Table 2. Though the computational cost of the proposed
controller is higher than that of the work in [28], but is smaller
than the other cases. The trade-off between performance and
computational cost of the proposed work can thus be con-
sidered. The performance of the proposed controller will be
considered in the section IV.

IV. SIMULATION RESULTS
In this section, the controller performance is compared with
several other ANC controllers to demonstrate the effective-
ness of the proposed controller. Only a single input and a
single output of fuzzy linguistic variables are used at the
layer 2. The parameters of six fuzzy sets (h = 6) using the
Gaussian membership function are chosen as follows.

Parameters of the input fuzzy linguistic variable:

cj,i = {−1,−0.6,−0.2, 0.2, 0.6, 1} , (26)

$j,i = {0.35, 0.2, 0.2, 0.2, 0.2, 0.35} . (27)

Parameters of the output fuzzy linguistic variable:

cj,i = {−1,−0.6,−0.2, 0.2, 0.6, 1} , (28)

$j,i = {0.17, 0.17, 0.17, 0.17, 0.17, 0.17} . (29)

These parameters of the Gaussian membership function are
selected based on experience and trial-and-error method.
Figure 3 illustrates the six fuzzy sets of input and output
variables, where A1-A6 andB1-B6 are Gaussianmembership
functions of the input and the output variables. Table 3 dis-
plays six fuzzy rules corresponding to each fuzzy set of input
and output variables.

For the conventional narrowband active noise con-
trol (NANC) method uses only FIR filters [2], and µi is
the step size at ith channel for the simulation setting. For
Huynh [16], two learning rate parameters (µ1i and µ2i) are
used at ith channel due to the use of two adaptive filters, B is
the bias parameter and α is the adjustment parameter for the
feedback component. For Zhang [28] approach, the learning
rate parameterµi is set at ith channel for updating the weights
of the output layer of the controllers. For Das [22], P is the
order of trigonometric functional expansion, and the learning
rate parameter at ith channel is µi to tune the weights of the
FIR filters. The setting values are shown in the Table 4.

A. CASE 1
In this case, the ANC system is linear. The transfer functions
of the primary and secondary paths are selected as [6], [33].

P(z) = z−5 − 0.3z−6 + 0.2z−7, (30)

S(z) = z−2 + 1.5z−3 − z−4, (31)

where the primary noise consists of three frequencies with
amplitude 0.6 (200Hz, 400Hz and 600Hz) and a zero-mean
white noise signal with amplitude 0.1. Parameters of the
bandpass filters at three channels are a1 = 0.9, b1 = 1.7877,
a2 = 0.9, b2 = 1.7214, a3 = 0.9, and b3 = 1.6127.

TABLE 1. Comparisons of computational cost.

TABLE 2. Total computational cost of controllers.

Using (25), the learning rate is calculated as 0 < µi <

1/max

∥∥∥y′(4)i (n)
∥∥∥2 = 0.00073. Therefore, the learning rate of

the proposed controller is chosen as µi = 8× 10−5 to satisfy
the convergence and stability conditions. The performance
of a controller is determined by a learning curve based on
the mean square error (MSE). The MSE is computed by
1/e2 with a reduction 10log10(1/e

2). Fig. 4 plots the learn-
ing curve of the MSE for the other ANC controllers. The
results indicate that the noise cancellation is effective at all
frequencies for the linear ANC systems. In which, NANC [2]
has slow convergence despite having the same step size as
proposed controller. This proves that satisfying the learning
rate parameters in (25) helps the proposed controller to easily
achieve fast convergence and stability.

B. CASE 2
The ANC system in case 2 is implemented with nonlinear
secondary and primary paths. The secondary acoustic path is
set as a Volterra series [16]

ys(m) = y(m)+ 0.35y(m− 1)+ 0.09y(m− 2)

− 0.5y(m)y(m− 1)+ 0.4y(m)y(m− 2). (32)

The primary acoustic path is defined as

d(m) = g(m− 2)+ 0.08 [g(m− 2)]2 − 0.04 [g(m− 2)]3 ,

(33)
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FIGURE 3. Six fuzzy sets of input and output variables, where A1-A6 and
B1-B6 are Gaussian membership functions of input and output variables.

TABLE 3. Fuzzy rules.

where g(m) is given by

g(m) = 0.8x(m− 2)− 0.9x(m− 3)+ 0.9x(m− 4), (34)

with x(m) contains three frequencies with amplitude 0.6
(300Hz, 450Hz and 600Hz) and a zero-mean white noise
signal with amplitude 0.1. Parameters of the bandpass filters
are set to correspond with three new channels: a1 = 0.9,
b1 = 1.7600, a2 = 0.9, b2 = 1.6981, and a3 = 0.9,
b3 = 1.6127. Fig. 5 shows the performance. The methods
from Das, Zhang and Huynh present similar performance to
restrain the narrowband noise. But the results demonstrate
that the proposed controller performs better than the other
ANC controllers for the nonlinear system.

C. CASE 3
The noisy signal is replaced by an actual narrowband noise
signal recorded from a transformer. In this experiment, the
narrowband noise signals at frequencies below 1kHz are
eliminated. Fig. 6 shows the narrowband noise frequen-
cies, including nine narrowband noise with frequencies:
241Hz, 361Hz, 481Hz, 507Hz, 601Hz, 721Hz, 841Hz, 961Hz
and 994Hz.

All parameters are the same as in the case 2, but the learn-
ing rate is 0.0003 to test the effectiveness in canceling the
recorded transformer noise. The parameters of the bandpass

TABLE 4. Setting parameters for controllers.

FIGURE 4. Learning curve for ANC controllers.

filters are a1 = 0.9, b1 = 1.7777, a2 = 0.9, b2 = 1.7377,
a3 = 0.9, b3 = 1.6824, a4 = 0.9, b4 = 1.6684, a5 = 0.9,
b5 = 1.6121, a6 = 0.9, b6 = 1.5275, a7 = 0.9, b7 = 1.4293,
a8 = 0.9, b8 = 1.3185, a9 = 0.9, and b9 = 1.2859. Fig 7
displays the learning curve. The proposed controller still has
the highest performance.

Based on the above three experimental cases, the proposed
controller has shown outstanding performance compared to
the other ANC methods that have been investigated on non-
linear and linear ANC systems, with noise signal recorded
from a transformer and tonal noises. Therefore, it can be
concluded that the effectiveness of the proposed controller
is a combination of the following five factors. The first factor
involves the parallel structure combinedwith bandpass filters,
it has been verified for improving performance in narrowband
ANC systems [8], [31]. The second factor is the efficient
combination of the feedback neural network layers and the
fuzzy inference layers based on trial-and-error method to
achieve good performance. The third factor has a feedback
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FIGURE 5. Noise reduction performance of ANC controllers.

FIGURE 6. Primary noise signal of transformer in frequency range
below 1kHz.

FIGURE 7. Error signals of ANC controllers.

component from the output of layer 5 that returns to its
input, it is capable of monitoring, recognizing, and emit-
ting time-varying patterns to perform self-adjusting adaptive
parameters for the ANC system [16]. The next factor uses

bias parameter B and the adjustment parameter β, which have
been chosen experimentally on the basis of trial-and-error
method to reach steady equilibrium in experiments. This has
been effectively confirmed by [16]. The last factor achieves
the fast convergence and stabilization of the proposed method
due to satisfying the boundary condition in (25).

V. CONCLUSION
This paper performed the algorithm analysis of the AFFNNC
as well as the conditions to ensure the convergence and stabil-
ity of the proposed controller. The computational complexity
of the AFFNNC has also been compared with other ANC
controllers. The results of simulations proved the superior
performance of the AFFNNC in three experimental cases.
Moreover, the fast convergence and stability were the advan-
tages of the AFFNNC. Despite its high computational cost,
the proposed work achieved better control performance in
each experiment. Hence, proposed controller based on the
FSLMS algorithm can be regarded effective at canceling
noise in linear and nonlinear NANC systems.
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