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ABSTRACT Efficient utilisation of adaptive modulation and coding ensures the quality transmission of
information bits through the significant reduction in bit error rate (BER). Channel prediction using parametric
estimation is not efficient for massive machine-type communication (mMTC) devices under the 5G New
Radio (NR). In this paper, we have proposed a channel prediction scheme based on a deep learning (DL)
algorithm possessed by parametric analysis. In deep learning, the pipelinemethodology is used alongwith the
image processing technique to predict the channel condition for optimal selection of the adaptive modulation
and coding (AMC) profile. The deep learning-based pipelining approach utilises image restoration (IR) and
image super-resolution (SR). The super-resolution method is used to de-noise the low-pixel 2-D image that is
obtained from the parametric value of the beacon to predict the channel condition. The estimation results are
compared with the conventional minimum mean square error (MMSE) and an approximation to the linear
MMSE (ALMMSE) method, which is obtained through channel state information (CSI). The comparison
results show that the parametric-enabled deep learning approach is superior, especially in poorer channel
conditions. The performance of BER through parametric estimation along with the DL approach is ∼ 66%
more efficient as compared to the conventional MMSE method for BPSK mapping.

INDEX TERMS mMTC, 5G (NR), AMC, BER, deep learning, SNR.

I. INTRODUCTION
The vision of fifth-generation (5G) wireless mobile commu-
nication is to fulfil QoS (Quality of Services) under robust
transmission, end-to-end error-free transmission, with ultra-
reliable low-latency communication (URLLC). The optimum
utilisation of available spectrum to achieve an efficient trans-
mission rate under the cognitive concept is another key
feature of 5G (NR) through the spectral efficient approach.
The random fluctuation of noise under the multipath fading
channel is an important constraint to achieving spectral effi-
ciency. The joint channel estimation, activity detection and
data decoding scheme for massive machine-type communica-
tions is explored [1]. Deep learning-based active user detec-
tion (AUD) and channel estimation have been investigated
in grant-free non-orthogonal multiple access (GF-NOMA)
systems. The DL optimised the received NOMA signal and
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estimated the active devices [2]. Multipath fading channels
have a significant impact on wireless broadband in terms of
higher bit error rates (BER) and lower throughput. The goal
of prior prediction of channel conditions through link adapta-
tion (LA) schemes is to deliver improved spectral efficiency
for a quantified target BER by utilising the adaptive modula-
tion and coding scheme based on channel estimation [3].

The multicarrier modulation technique, Orthogonal
frequency-division multiplexing (OFDM), is prominently
used in communication systems to mitigate the fading effect
in wireless channels. The received RF signal is typically
distorted due to the random fluctuation of the channel.
To retain the original message symbol, appropriate channel
encoding is required that must compensate for the errors at
the receiver end. An appropriate selection of AMC by the
transmitter, generally a pilot carrier, is used to estimate the
channel noise. The location and value of the pilot symbol in
the carrier signal are known to the transmitter and receiver
as well. These pilot symbols could be arranged in a carrier
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FIGURE 1. Block diagram for parametric estimation.

in different ways, like in a block, comb, or a lattice-type
structure [4]. In OFDM subcarriers, these pilot symbols are
arranged prior to each subcarrier in a block-type manner,
while in the comb type, the pilot is associated with multiple
subcarriers instead of each subcarrier with an OFDM sym-
bol. The pilots are mapped under the lattice-type structure,
along with the I-Q axis, in a rhombus-shaped constellation.
In contrast to [2], [5] proposes active user detection for
mMTC devices using centralised prior-based sparse Bayesian
learning (cCP-SBL) and decentralised CP-SBL (dCP-SBL)
algorithms.

In the conventional least square (LS) and minimum mean
square error (MMSE) methods of channel estimation, the
pilot carrier to note the channel response is utilized. Our
proposed approach to estimating the channel under the deep
learning algorithm is highly optimised as the algorithm is
applied to the parametric value of the downlink packet.
In the least square method, the prediction of statistics about
channel information is not covered, while in the minimum
mean square error method, it covers the parametric statis-
tics and the noise figure, which produce greater perfor-
mance as compared to LS. In a fast fading scenario, the
actual result of the minimum mean square error method
shows poor performance due to correlation and matrix size,
so an approximation of the linear version of MMSE is
adopted, which reduces the complexity and improves the
performance [6].

Deep Learning (DL) has acquired a lot of considera-
tion in the wireless communication system. Deep Learning
algorithms are used to improve the performance of exist-
ing communication algorithms such as channel encoding
algorithms, I-Q mapping [4], sensing information [7], noise
mitigation [8], channel state feedback [9], and channel con-
dition prediction [10] for robust communication. In [10], the
model of wireless communication is measured as a black-box
and applies deep learning architecture, which is utilised
for transferring information. The deep learning blocks for

communication employ all the essential operations such as
encoding, I-Q mapping, and any OFDM subcarrier mapping.
The deep learning algorithms are not capable of drawing
the channel response in terms of the time-frequency domain,
so it is good for those applications where entire responses
are required. The channel response is noted as a 2D image
array and then applied to a denoising network using a pipeline
approach for channel prediction [11]. This work quite differs
from [11] as the approach is focused on deep learning over
the parametric value, which provides the optimum prediction
about the channel. Based on the result, the most significant
AMC is triggered.

To perform a parametric calculation of SNR conveyance,
there are two conditions which are as follows: (1) estimate
the boundaries at the receiver end fγ (γ ) through an unquan-
tized SNR example, and (2) estimate the boundaries at the
transmitter end fγ (γ ) through channel state indicator. The
first approach is utilised when the mobile station (MS) is
handled with large amounts of equipped data, while the sec-
ond approach is appropriate where the MS deals with low
processing data, which generally requires a base station (BS)
to process the data. In the second approach, the complexity
of transferring the data is moved from transmitter to receiver.
Then, we continue to introduce a literature overview on the
assessment of the boundaries of fγ (γ ).
In order to evaluate the parametric value, the SNR esti-

mator is to be considered, which is classified as (1) Data-
aided (DA) and non-data-aided (NDA). In Data aided based
estimation, the receiver is synchronised with the transmitter
in prior through a pilot carrier for equalization. In [12],
the data-aided estimation of SNR is elaborated under the
time domain. The major issue in the data-aided approach
to estimating the SNR is the requirement for pilot carriers,
which reduces the channel capacity and throughput. A pilot
carrier is not required in a non-data-aided approach because
it uses the blocks rather than the message-bearing piece for
SNR assessment [13]. These assessors are appropriate when
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unremitting SNR estimation is required. The performance
of the non-data aided approach is dependent upon the block
length of the message, samples per symbol, and types of I-Q
mapping scheme [14]. In [15]–[17], the instantaneous SNR
is obtained from the received radio signal through maximum
likelihood estimation method (MLE). In all the previously
mentioned works, the authors are trying to prompt SNR based
evaluation, but no one has applied the DL based approach
to the parametric assessment estimation. Figure-1 shows the
block diagram of the parametric calculation based on SNR
distribution.

In [18], the parametric evaluation of SNR using MLE
strategies has been explored. These parametric calculations
are further processed by a DL based algorithm for efficient
prediction of the channel. The SNR distribution using an
unquantised sample of message blocks is performed under
the receiver oriented approach. While in transmitter approach
channel state, feedback is utilised for SNR distribution to pre-
dict the channel. Unlike the traditional prediction approach,
where BER is limited to SNR updation, the LA employs
the outer loop link adaptation (OLLA) [19], [20]. In Long
Term Evolution (LTE), to minimise the BER and enhance
the throughput of the system, the AMC and hybrid automatic
repeat request (HARQ) employed block error rate (BLER)
are analytically examined [21]. The combined effect of AMC
and HARQ is explored in the context of P2P communication
under the fading channel [22]. The performance of adaptive
modulation and coding effects in various fading channels is
evaluated for a predefined SNR level [23]. In [24], using
the power control parameters, the SNR switching level is
explored to obtain the optimum data rate. Be that as it may, the
authors have expected the boundaries of SNR dispersion to be
known and deduced. In [25], the defective CSI is considered
under the Rayleigh fading channel (m = 1, for non-LOS
condition) to predict channel. [26] does not tend to m > 1
for the LOS condition. The primary targets of this work are
(I) to evaluate parametric using SNR dissemination and (ii) to
apply a deep learning enabled pipelining approach to the
parametric value to efficient switching of AMC.

A. CONTRIBUTIONS OF THE PAPER
‘‘The parametric estimating technique, combined with deep
learning, makes a considerable contribution to predicting the
real channel state.’’ The approach’s primary highlights are as
follows:
• Step-1: Hello packet is transmitter over the noisy
channel.

• Step-2: The impact of noise is being estimated by
parameter evaluation such as power, doppler shift, delay,
inter symbol interference.

• Step-3: The parameter based calculation is share with
transmitter through the channel state information (CSI).

• Step-4: At the transmitting end, the parametric calcula-
tion is further processed by the Deep learning algorithm.

• Step-5: Based on deep learning algorithm, an efficient
AMC profile is selected.

FIGURE 2. Flow chart for proposed methodology.

In our approach the most precise AMC profile is selected
as the process of channel prediction is more regress. The
result of appropriate selection of AMC is reflected on BER
performance. The performance analysis of BER due to deep
learning, parametric estimation, conventional AL-MMSE
and MMSE is obtained and compared. The results confirm
that the DL enabled algorithm is more efficient specially in a
poor channel environment.

The paper is organized as follows: The parametric esti-
mation is described in Section-II. Section III discusses the
Deep Learning algorithms that use super-resolution and
image restoration. The result and discussion are elaborated
on Section-IV; conclusions are given in Section-V.

II. PARAMETRIC ESTIMATION
Generally, the packet data unit (PDU) from the data link
layer are transmitted over a deafening radio link, and have
coherent detection to known receivers. The AMC scheme
is capable of effectively responding to these types of chan-
nel variations. Figure-3 shows the model scenario of the
AMC system based on Frequency Division Duplex (FDD),
where the extraction of pilot symbols is utilised to obtain
the parametric values. During the transmission process, AMC
conducts investigations without varying the bandwidth and
transmission power [27]. A Deep Learning based algorithm
is utilised for optimum adaption of AMC to lessen the
random variation of noise and improve the transmission
efficiency.

According to the considerations in Table-1, the anal-
ysis and simulation methods are processed accordingly
using the AMC code-modulation profile. Two arrange-
ments are used for diversity and the allocation of adjacent
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FIGURE 3. Physical layer AMC scenario.

TABLE 1. AMC parameter.

subcarriers. The first arrangement uses pseudo-random allo-
cation of sub-carriers to allocate frequency diversity, while
the second arrangement uses a sub-channel mechanism to
achieve multi-user diversity with the optimum frequency
response.

It was observed in [26] that the system throughput is
affected by themultipath diversity gain; tomitigate this effect,
the AMC is utilized. The joint arrangement of the FEC and
modulation system provides a bit-interleaved coded modula-
tion profile.

The optimum selection of AMC through the parametric
values utilized the forward error code-modulation combina-
tion. The code-modulation profile as per Table-1 could be
expressed as:-

ϒ =
{
ϒx
: 1 ≤ 5

}
(1)

where, x indicates the profile of code-modulation index
and AMC code-modulation factor is denoted as ϒ as per
Table-1. For a given channel condition, Channel state infor-
mation ζ responsible to feed a current channel noise level
to the transmitter. The probability of retrieving the original
codeword dcwx(η), dcw(x|ζ ) could be obtain by utilizing the

AMC profile ϒx as:-

dcw (x | ζ ) =
R (x | ζ ) .Nt [x]

r [x] .Nb
(2)

where r [x] is code-modulation combination rate, let Nb [x]
symbolize for binary coded symbol andNt [x] is the required
time for packet transmission R (x | ζ ) is conditional proba-
bility of distinct channel state for average throughput. The
calculation of Nt [x] is based on the AMC code modula-
tion profile ϒx . The values of Nb [x] are Nb, Nb/2, Nb/4,
Nb/8 andNb/16 for BPSK, 4-QAM, 16-QAM, 64-QAM and
256-QAM respectively. The average carrier to interference
noise ratio (CINR) could be attained using the finite length
input along present CINR over multiplicity of sole packet
under the 5G (NR) OFDM PHY. The ratio of instantaneous
signal power to average noise power is described as CINR,
ωCINR [k], which is expressed in (3) and (4)

ωCINR [k]

=


CINR [0] , k = 0(
1− αavg

)
.ωCINR [k− 1]+ αavgCINR [k] ,
k > 0

(3)

ωCINR,dB [k]

= 10 log (ωCINR [k]) (4)

where %avg is an averaging factor under the fading channels
fed by the receiver and CINR[k] is a CINR of k packet [2].
AMC profile x would be selected for successive next packet
through conditional probability Î(x|γ,ϒ), deliberated with
CSI accompanied by %avg. In Î (x | γ,ϒ), Î(x|γ ) is proba-
bility for a specified channel state under Rayleigh channel
model ϒ and The conditional probability for that modu-
lation scheme under the AMC profile Mv, is represented
byW (v|γ )

Î (x|γ ) =
5∑

x=1

Î (x | γ,ϒ) .W (v|γ ) .%avg (5)

Let ι and γ is the channel parametric for a bit couple,
p (ι |ϒ) = q (ϒ |γ ) .π (ι)/π (γ ). Conditional probability
W (v|γ ) can be expressed below

W (v|γ ) =
∑
β∈ϒ

p (ι|γ )

+

∑
x∈ϒ

p (x|γ )+
∑
x∈ϒ

p (x | ι) (6)

The channel state indicator ψ , is obtained using the prior
channel state information γ feedback through which an
appropriate AMC profile will trigged that utilizing modu-
lation index Mv. For each consecutive packet d , a specified
AMC profile is adopted for subsequent consecutive packet if
ψ ∈ ıϑ (x).

Î (x | γ,ϒ) = P (ψ ∈ ıϑ (x) | γ,ϒ) (7)

In every set of interval ıϑ (x) consist of the parametric of
channel state information [28], [29]. Where ıϑ (x) shows the
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previous packet parametric. Put the values of equation (6) &
(7) into (5)

Î (x|γ ) =
8∑

n=1

P (ψ ∈ ıϑ (x) | γ,ϒ) .%avg
∑
ι∈γ

p (ι|γ )

+

∑
x∈γ

p (x | γ )+
∑
x∈γ

p (x | ι) (8)

For every ϒ ∈ γ

5∑
x=1

Î (x|γ ) = 1 (9)

Now for modulation scheme, the BPSK modulation
arrangement is to considered. If computational error is
ignored, BPSK can be expressed to transmit the single
bit as-

m (t) = Abcos (ωct+ ∅) (10)

Let {+1,−1} is the data set of variable b. T is a sym-
bol duration for t time interval. The phase error calcula-
tion θ = ∅ − ∅ is analyzed by receiver with phase ∅. A
is the amplitude of modulated carrier and the calculation
for modulated carrier σ = A.T/2 is obtained on receiver
end. Let, µ = 9 is a special assumption for ideal chan-
nel condition. For a BPSK, parametric could be expressed
as-

K = min {|ξ +9| , |ξ −9|} (11)

Let f (χ) is a function, which expressed as

f (χ) = min {|χ +9| , |χ −9|}, −∞ < χ <∞ (12)

T independent uniformly distributed codes are appending
with each transmitted message bit in BPSK. In BPSK I-Q
mapping, `th symbol is mapped as Z th at the receiver
constellation point so parametric K` = f (Z`). Let
µK = E{K`} is the mean, mk = E

{
K2
`

}
represents the

2nd moment and ζ 2K = mK − µ2
K shows the variance

of the I-Q mapping order K`(1 ≤ l ≤ T ), which con-
sist of identical, independent random variables. From the
observedmentioned scenario, this is noticeable that the all the
statistic is definite and measurable. The parametric could be
modified as-

0J =
%

Tρ

T∑
`=1

K` (13)

For a given BPSK modulation Mv, constellation arrange-
ments, Mv = 2v where ‘v’ is an even number. The value
v = 2; 4; 8 and 16 for 4-QAM;16-QAM; 64-QAM and
256-QAM respectively, parametric for generalize packet can
be expressed as

0J =
%

Tv9

T∑
`=1

K` (14)

The channel prediction using (8) over the received packet
(14) by considering the Rayleigh fading channel for CINR.

Under the swift fluctuating channel, the AMC profile index
ϒ1, ϒ2, ϒ3, ϒ4&ϒ5 is adapted accordingly.

A. ALGORITHM (PARAMETRIC EVALUATION)

Algorithm 1 Transmitter Oriented Approach

1. Analysis of CINR,BER, {γTH }
//CINR = Carrier to interference and noise ratio,
BER = Targeted BER

2. While BER > BER do
3. CSI Formation: Generate ζ
4. Compute at receiver: Nt [x] and Nb [x]
//Nt [x] and Nb [x] are the Parametric Distribution

5. Obtain: Î (x | γ,ϒ) and Î (x|γ ) to form m’ and γ ’
6. Evaluate: Î (x | γ,ϒ) and Î (x|γ )
7. Calculate: g (χ) using K = min {|ξ + σ | , |ξ − σ |}
8. Code word Adaptation: Using dcw (x | ζ ) =

R(x | ζ ).Nt [x]
r[x].Nb

9. Feedback to receiver: 0J =
%
Tρ

T∑̀
=1

K`

10. Updation at receiver: 0J =
%

Tv9

∑T
`=1K` using K` =

f(ZL)
11. end while
12. Execute steps-9 and 10.

III. DEEP LEARNING ESTIMATION
We are considering deep learning employing a pipelining
approach to be applied to noisy image models. An image
restoration algorithm is used to mitigate the impact of noise
over a 2-D image model. Numerous de-noising algorithms
are available considering low resolution. A denoising convo-
lutional neural network (DnCNN) algorithm has explored the
normalisation of noise impact using residual learning [30].
The Image Super Resolution (SR) algorithm is used to
enhance the performance of the low resolution image. The
end-to-end transformation of a low-resolution image to a
high-resolution image is explored in a super-resolution con-
volutional neural network (SRCNN) technique [9].

A. PARAMETRIC VALUATION IMAGE
The physical layer scenario for the mMTC node consists of
a MIMO configuration with an OFDM PHY communication
link. The channel response in terms of parametric between
the TX and RX radio links has a complex value that is fur-
ther explained in terms of a 2-dimensional image as shown
in figure-4. The channel response matrix of the H channel
is 72× 14.

B. NETWORK STRUCTURE
The Deep learning-based pipeline approach is applied to esti-
mate the channel using IR and SR over a noisy 2-dimensional
image, called the Channel Network, as shown in figure-4.
The predicted rate over the channel at the pilot symbol loca-
tion hBPp is measured as the low resolution image shows
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FIGURE 4. Low resolution image to super resolution image.

FIGURE 5. Channel estimation performance with code-modulation
profile γ 1.

FIGURE 6. Channel estimation performance with code-modulation
profile γ 2.

the poor channel state. The de-noising process of the whole
channel 2-D image is elaborated in two steps:

FIGURE 7. Channel estimation performance with code-modulation
profile γ 3.

FIGURE 8. Channel estimation performance with code-modulation
profile γ 4.

â A Super Resolution network is implemented on the pilot
carrier location, which takes hBPp as LR vector and then
assesses the unknown channel values of response H.
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FIGURE 9. Channel estimation performance with code-modulation
profile γ 5.

â The de-noising process is applied using the image
restoration method after successfully distinguishing the
complex response of the channel in step 1.

Image restoration is utilised as DnCNN [30] while image
super resolution is utilised as SRCNN [31]. The SRCNN
is a DL-based convolutional neural network algorithm that
utilises end-to-end transformation of the LR image into the
SR image. As a result, it recovers the image quality of poor
resolution or noisy images. The DnCNN uses a DL-based
convolution neural network efficient algorithm to normalise
a residual image from an LR image. The noiseless image
can be estimated by taking the difference between the noisy
and residue image. In DnCNN and SRCNN, the image is
normalised by the Rectified Linear Unit (ReLU).

IV. SIMULATION RESULT
The overall impact of channel estimation is associated with
QoS, which provides the guarantee to the end consumer.
To show the robustness of the transmission, the BER results
are compared with the widely used baseline algorithms. In the
DL-based estimation of channel, the taring rate is fixed at
0.001 and the batch size is 256 under the SR and IR networks.
The pilot is tuned with 127 subcarriers with 8 time slots
in each frame. To observe the random fluctuation over the
channel, the Rayleigh channel model is considered under the
fading channel. The delay is observed as ideal.

To observe the performance of channel prediction, the
BER of the proposed method is compared with three widely
used algorithms, i.e., MMSE [6], AL-MMSE [6], and the
parametric based estimation. The 32 pilot symbols are used
for synchronisation along with each frame. The perfor-
mance metric of the proposed method is obtained as the
MSE between the predicted and the actual channel. The
MMSE method provides superior performance and a lower
bound of the attainable MSE under the data-aided chan-
nel correlation matrix, which is no longer valid under the
random fluctuation channel. The AL-MMSE is a close

approximation to the MMSE, which contains all channel
statistics. Figure 5-9 shows that for lower SNR values (below
10 dB), the proposed algorithm performed well compared
with MMSE, AL-MMSE, and parametric based estimation
and has better performance. When the channel is poor, the
pipeline algorithm estimates the condition by using a deep
low-SNR network.

It can be evidently observed that for SNR inferior to 10 dB,
the performance of deep low-SNR is superior compared with
another conventional algorithm, though as long as the SNR
is superior to 10 dB, the conventional channel estimation
method is sufficient.

V. CONCLUSION
The deep learning pipeline algorithm is utilised to estimate
the channel condition. The important consideration in this
work is that the response of the channel is obtained using the
parametric value based on SNR distribution. A 2-dimensional
image is obtained based on the channel response of a para-
metric value under the fading channel model. The Super
Resolution and Image Restoration methods are applied to
2-D noisy images to estimate the channel environment. The
optimum code modulation profile under the AMC is initi-
ated to mitigate the noise effect on the transmitted bit and,
as a result, the most robust transmission is achieved using
DL-based estimation compared to the conventional MMSE,
AL-MMSE, and the parametric alone. The results show that
the DL-based performed well even after the poor channel
conditions, i.e., below 10 dB.
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