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ABSTRACT This paper introduces an automated search algorithm (QES, pronounced as ‘‘quest’’), which
derives optimal design of entangling layout for supervised quantum machine learning. First, we establish
the connection between the structures of entanglement using CNOT gates and the representations of
directed multi-graphs, enabling a well-defined search space. The proposed encoding scheme of quantum
entanglement as genotype vectors bridges the ansatz optimization and classical machine learning, allowing
efficient search on any well-defined search space. Second, we instigate the entanglement level to reduce
the cardinality of the search space to a feasible size for practical implementations. Finally, we mitigate the
cost of evaluating the true loss function by using surrogate models via sequential model-based optimization.
We demonstrate the feasibility of our proposed approach on simulated and bench-marking datasets, including
Iris, Wine and Breast Cancer datasets, which empirically shows that found quantum embedding architecture
by QES outperforms manual designs in term of the predictive performance.

INDEX TERMS Ansatz optimization, quantum embeddings, quantum machine learning, quantum logic
gates, quantum neural network, quantum computing.

I. INTRODUCTION
Quantum machine learning is a potential advancement of
quantum computing in the Noisy Intermediate-Scale Quan-
tum (NISQ) era. As the validity of near-term quantum
devices, quantum machine learning poses exciting advan-
tages over classical counterparts. The potential quantum
advantage can be addressed based on the geometric test over
the input data space, followed by the complexity test for
specific functions [1]. Although quantum machine learning
models are often referred to as quantum neural networks,
the terminology might be misleading to some extent. The
classical neural networks can transform the original data
space into higher or lower dimensional space based on the
design of neural architectures. For example, state-of-the-
art neural architectures tend to transform high-dimensional
inputs such as images into lower-dimensional representa-
tions of latent vectors. In contrast, quantum neural networks
possess a similar mathematical structure to kernel methods,
where input data is embedded into high-dimensional quantum
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Hilbert space [2]–[4]. The quantum representations of input
data are the outcome of quantum embedding, which plays a
crucial role in the performance of quantum classifiers [5].
Such quantum embeddings are quantum model functions,
referred to as parameterized quantum circuits [6], quantum
neural networks [7], [8], or variational circuits [9]–[12].
The quantum embeddings are often manually designed for
specific use-cases, which requires extensive expert knowl-
edge and computational resource. For example, recent work
has leveraged the successful parameter-sharing mechanism
in DNN for quantum ansatz, which enables translational
hybrid quantum-classical machine learning algorithm for
tumor burden modeling [13]. From the perspective of deep
learning, the classical embeddings aim to transform the
inputs into deep representations in the latent space, which
commonly has lower dimensionality. For example, convo-
lutional neural networks (CNNs) embed the input images
(considered high-dimensional input) into deep brief fea-
tures (lower-dimensional representations in the latent space),
which enables performing machine learning tasks such as
classification or object detection. On the other hand, vari-
ational quantum embeddings also transform the inputs into
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FIGURE 1. (Top) Quantum embeddings for supervised quantum machine learning. Similar to kernel
methods, quantum embedding transforms observations in classical data space into quantum Hilbert
space of quantum states, which the inner product of quantum representations can represent.
(Bottom) Architecture of a quantum machine learning model formed by selected set of quantum
circuits. The ansatz circuit plays an crucial role in the circuit model, enabling learning model’s
weights w accordingly to input data x.

feature maps; however, the latent space in quantum embed-
dings is high-dimensional Hilbert space. Reference [5] shows
that the decision boundary established in the Hilbert space
is associated with complex decision boundaries in the input
space.

This paper introduces an automated search algorithm
that derives optimal entangling layout design for super-
vised quantum machine learning. First, the proposed work
directly addresses the ansatz optimization for emerging quan-
tum machine learning via searching the optimal entangle-
ment layout for ansatz architectures. The novel encoding
scheme of entanglement as genotype vectors allows us to
leverage ML-based search algorithms for the problem of
ansatz optimization, which results in well-performed quan-
tum neural networks. Second, we instigate the entangle-
ment level to reduce the cardinality of the search space
to a feasible size for practical implementations. Finally,
we mitigate the cost of evaluating the true loss function
by using surrogate models via sequential model-based opti-
mization. We demonstrate the feasibility of our proposed
approach on simulated and bench-marking datasets, includ-
ing Iris, Wine, and Breast Cancer datasets, which empirically
shows that found quantum embedding architecture by QES
outperforms manual designs of entanglement in predictive
performance.

1) We instigate an efficient encoding scheme of quantum
embedding’s architectures as directed multi-graphs,
which enable us to well-define the search space of
the quantum embedding search problem. Moreover,
we introduce the constraints over the search space by
quantum entanglement level, which reduces the car-
dinality of the search space to a reasonable size for

practical implementations. The formulation of quan-
tum entanglement as genotype vectors allows classical
ML algorithms to address the ansatz optimization prob-
lems efficiently.

2) Leveraging the sequential model-based optimization
via Tree Parzen Estimator [14] (SMBO-TPE) our
search strategy enjoy a two-fold advantage: (1) usage
of surrogate models enables the approximation of
the actual loss function, which significantly reduces
computational cost in the optimization, and (2) non-
parametric densities in TPE allows us to draw multi-
ple architecture candidates for evaluating the expected
improvement of surrogates, which is more computa-
tionally effective.

3) Discovered quantum embedding architectures by QES
outperform manual designs in both synthesis and Iris
dataset [15] while achieving consistent results com-
pared to classical machine learning models.

We organize the paper as: Section II summarizes related
work in the literature, Section III discusses our proposed
QES algorithm in-depth, Section IV reports experimental
results. Finally, we discuss the implication and threats to the
validity of QES in Section V.

II. RELATED WORKS
A. AUTOMATED ARCHITECTURE SEARCH
Automated architecture search has drawn significant atten-
tion from the ML/DL-related research community. Its moti-
vation is practical but straightforward; there is no univer-
sal network design for all datasets. The main objective of
such an algorithm is to find an optimal strategy for the
model’s architecture based on pre-defined selection criteria.
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Initialization of automated architecture search algorithm
starts with defining the configuration of the search space. The
basic search space structure is known as flat search space,
referred to as hyper-parameters optimization. For example,
the flat search space of neural architecture is to find the depth
(number of layers), the width (number of initial channels),
and the size of the kernel. A more complicated formation
of search space is cell-based neural architectures, where
each neural candidate can be encoded as a directed acyclic
graph [16], [17]. The search space of our proposed QES
is motivated by the latter configuration, which will be dis-
cussed hereafter in Section III. Many frameworks have been
proposed to tackle the mechanical architecture search prob-
lems. An early solution involves random search [18], which
is often used as the baseline for comparison. The next
progression is the development of sequential model-based
optimizations, which mitigate the expensive cost of actual
loss function by using surrogate models [14], [19]. More
advanced search strategies have been proposed to tackle
the problem, involving reinforcement learning [16], evolu-
tionary [20], gradient-based with continuous relaxation and
bilevel optimization [21], heuristic search with performance
prediction [22] and SMBO-TPE [23]. The biggest challenge
in automated architecture search is the computational cost
for the search phase. Search strategies such as reinforce-
ment learning and evolutionary take up to 2000 − 3150
GPU days to find optimal architecture for the CIFAR-10
dataset [16], [17]. Although progression helps to shorten the
time complexity of the search procedure to reasonable time
and hardware, the expensive computation is inherited from
the costly evaluation of the cost function. The same issue
appears while training quantum machine learning models
in near-term quantum computers and quantum simulators.
Recent work solves quantum circuit optimization problems
by reinforcement learning with circuit transformation [24],
which achieves remarkable results. However, such an algo-
rithm still relies on evaluating the true loss function for
maximizing the cumulative reward. We find that sequen-
tial model-based optimization is another potential solution
for quantum embedding search/quantum circuit optimization
since surrogates’ approximation of true loss function reduces
the computational expense of searching for the optimal quan-
tum embedding architecture.

B. QUANTUM MACHINE LEARNING
Quantum machine learning has become an emerging quan-
tum computing technology due to its potential for near-
term intermediate-scale quantum hardware. Current literature
has witnessed the advantages of quantum machine learn-
ing over its classical counterparts given various learning
tasks [25]–[30]. The primary approach for quantum machine
learning is circuit-based models, referred to as variational
quantum classifiers [9], [10], [31]. Different strategies of
classifier in the quantum Hilbert space have been proposed,
including linear classifier [32], bitstrings parity-binary map-
ping [33], Helstrom, and fidelity classifiers [5]. Moreover,

a strong connection between quantum machine learning and
kernel methods has been established in [2]–[4]. The core
component of circuit-based quantum machine learning mod-
els is the variational (parameterized) circuits called ansatz
(plural ansaetze). The construction of an ansatz is formed
by stacking multiple identical sub-layers, similar to the
construction of cell-based neural architecture designs [16].
Although many variational ansaetze have been proposed in
the literature [4], [7], [31], [34]–[37], there is no general
framework to design optimal ansatz for data-specific scenar-
ios or specific use-cases. It is the main motivation for our
QES algorithm, which directly tackles the problem of dis-
covering optimal quantum embedding architectures for given
datasets of interest.

C. QUANTUM ENTANGLEMENT
Besides parallelism, the power of quantum computing is
rooted in quantum entanglement, which is the action of tying
information among qubits. Specifically, the time-evolution
of qubits (discrete-variable) can be represented as the wave-
function of particles [38]. Quantumechanist sees parti-
cles as the wavefunction that spreads through spacetime
and obeys the Heisenberg uncertainty under measurement.
When two particles are entangled, they will have opposite
quantum-parameterization of spin due to the conservation law
of angular momentum. Thus, if we place the two particles
into closed boxes and send the boxes to a very far distance,
measuring one particle will immediately reveal the informa-
tion of the remaining particle. This indicates that information
is immediately transferred when one of the two particles
is measured. As a result, Einstein called this phenomenon:
‘‘spooky action at a distance’’ since actions on one entangled
particle instantly affect the remaining one. This gave rise
to a great debate of realist and orthodox positions. On the
one side, realists such as Einstein and his advocates tried to
prove that quantum mechanics could be incomplete (as EPR
paradox [39]). It is believed that there is a cosmological
variable in the parameterization of an entangled pair of parti-
cles. On the other hand, Neil Bohr, in the orthodox position,
believes that there are no hidden variables between the quan-
tified particles. The debate ended with Bell’s inequality [40],
which strengthens Neil Bohr’s hypothesis.

From computational perspective, CNOT gate is used to
establish entanglement among qubits in discrete-variable sys-
tem. Specifically, the quantum gate is acted on 2 qubits, which
has matrix representation:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1)

The first qubit is the controlled qubit, and the second is the
target qubit. If the controlled qubit is |0〉, the target qubit
remains the same. Otherwise, it is flipped when the con-
trolled qubit is |1〉. The classical analog of the CNOT gate
is the reversible XOR gate. In terms of a continuous-variable
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system (optical), we use and manipulate quantum statis-
tics of photons (boson) to perform computation. It is noted
that photons are chargeless particles, and they have mini-
mal interaction with each other. Thus, entanglement on the
n−boson system is established as the symmetric product. For
example, the number state |n〉 (Fock state) used in Boson
Sampling [41] is written as |n〉 = |s1s2 . . . sm〉, which implic-
itly induces entanglement.

D. ANSATZ OPTIMIZATION
Optimizing ansatz circuit plays an indispensable role in
designing quantum algorithms for specific tasks in practice.
The ansatz optimization problem can be categorized into two
main types. In the first category, we perform circuit simpli-
fication to reduce the computation for quantum hardware.
In other words, the local or global structure of ansatz is
optimized by being replaced with equivalent but more com-
putationally efficient architectures [24], [42], [43]. On the
other hand, the second categorize of ansatz optimization aim
to find the optimal ansatz that yields the best performance
on given tasks. In other words, the heuristic search enables
well-performed ansatz on specific tasks instead of reducing
computation. Our proposed work is in the second category,
which aims to find the optimal ansatz for quantum machine
learning problems. Several studies have the same objective
as our proposed work, including: [44] introduces the usage
of classical neural networks as surrogates to approximate the
optimal parameters for tasks such as the Quantum Approx-
imate Optimization Algorithm (QAOA) for MaxCut and
Sherrington-Kirkpatrick Ising model or VQE for Hubbard
model. Reference [45] leverages student-teacher learning
(or knowledge distillation) for tuning the circuit parameters
such that the ansatz output is pre-chosen. [46] optimizes
VQE for discovering the ground stats of LithiumHydride and
Heisenberg model.

III. METHODOLOGY
Our proposedQES aims the find the optimal quantum embed-
ding for supervised quantum machine learning under classi-
fication tasks. We follow the common design of ansatz used
for supervised ML [2], which is discussed in Section III-A.
In this formalism, the quantum embedding is simplified into
sub-components, including feature-dependent block, entan-
glement structure between qubits, and parameterized rota-
tions (considered as model weights). This layered structure
is called quantum neural networks (CNN), enabling feature
maps in Hilbert space. Although only considered a very
restricted design compared to the universal ansatz method,
these designs show promising results towards applications of
quantummachine learning in the NISQ era. Besides, the opti-
mization of such embeddings remains challenging even in the
restricted designs since all combinations of the choices and
numbers for rotation or CNOT gates form a massive search
space. Hence, QES reduces the search space by assuming that
the rotation gates are the static components of the ansatz.
In other words, our proposed scheme develops the optimal

entanglement layout for quantum embeddings. We theoreti-
cally show that even in a very restricted manner, the search
space of finding optimal entanglement layout is massive and
exponentially expanded when the number of qubits increases
in Section III-B. Thus, the SMBO-TPE for search strategy of
ansatz optimization offers several advantages over other com-
petitors, such as genetic algorithms or reinforcement learn-
ing. First, SMBO leverages surrogates to approximate the
true value of the fitness function, which significantly reduces
the cost for training QNNs in the current implementation.
Second, the chosen search strategy enables efficient searching
by leveraging prior knowledge. Finally, with sorted queries
in the history, SMBO using TPE can be efficiently scalable
when the search space expands (Section III-C).

A. QUANTUM EMBEDDINGS
Let x ∈ X be the feature vector in classical data space,
quantum embedding is similar to the kernel method since
the input feature space is mapped to a high-dimensional
Hilbert space [2]. Mathematically speaking, the mapping is
given by

X → H
x → |φ(x)〉, (2)

where φ(x) is the quantum representations of origi-
nal input data and H is the quantum Hilbert space.
In particular, a system of n qubits is corresponding to
a vector space C2n . The measurements on these quan-
tum states yield embedded outputs, that is the represen-
tation of the observable in the latent space. In general,
the intermediate representations of a quantum state can be
written as

g(x) = 〈x|Z|x〉, (3)

where Z is the measurement associated with the observable.
Our choice for Z is the expectation values in Z basis over
all qubits, which is Z =

∏
⊗n
1 σz. State-of-the-art quantum

machine learning model [2], [5] transforms the expectation
in continuous domain to categorical labels by thresholding
the outcome. In contrast, we leverage the continuous latent
representation of the measurements. The decision boundary
of the quantummachine learning model in Figure 1 is created
by single-layer linear classifier. We will show the power
of representation learning from quantum embeddings over
classical counterparts with five-time complexity hereafter
in Section IV.
The layered gat architectures of a quantum embedding

includes a stack of multiple circuit ansatz (Figure 1) which
results in intractable latent representations for universal
quantum computing [47]. The Quantum Approximate Opti-
mization Algorithm (QAOA) [31] inspires the embedding
circuit ansatz, which transforms the classical input data into
quantum representations. Figure 1 shows our assumption
for the design of a partially parameterized circuit ansatz,
which includes an input-depend unitary block, fixed unitary
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FIGURE 2. Directed multi-graph representation for given entangling
structures. The representation of corresponding graphs are also
represented as adjacency matrices, where diagonal entries are 0 and
off-diagonal elements takes value 0 (absence of CNOT gate) or
1 (presence of CNOT gate). Moreover, these hand-crated designs are
referred as baseline 1 and baseline 2, respectively.

block and learnable unitary block. Primitive gates of uni-
tary includes Control-rotation gates Rσ1∈{X ,Y ,Z }(x), which are
parameterized by the input data x. Then immediate quan-
tum representations U1|φ(x)〉 are fed forward into the fixed
unitary block including multiple entangling patterns active
on certain number of qubits. The primitive gates for entan-
glement establishment is CNOT gate, which offers a highly
entangled state over all qubits in the system. Finally, the
last block of an ansatz circuit includes control rotation gates
Rσ2∈{X ,Y ,Z }(w) parameterized by learnable weights w. Math-
ematically, the ansatz acts on n-qubits system as

|x〉 → 9(x,w)|0〉⊗n, (4)

where 9(x,w) is parameterized unitary transformation
of w with realizations x. By backpropagation, the set of
weights w will be learned to minimize the cost function
throughout the training process. Figure 2 depicts several man-
ual designs for strongly entangled patterns of an quantum
embeddings, which will be considered as baseline compar-
ison for Section IV.

Observations:
Before further exploration, we would like to address sev-

eral findings from our observations over the preliminary
experiments (Figure 4).

1) Different entangling structures result in varying loss
values in the validation set.

2) Entangling structure is permutation variant. In other
words, the order of CNOT gates over qubits signifi-
cantly impacts the overall performance.

3) Larger number of CNOT gates does not guarantee
higher predictive power of the resulting architecture.

4) Repetitions of similar entangling connections are
possible.

The detail of preliminary experiments on the Iris dataset
is given in Appendix C, where several statistical tests
are conducted to provide statistical evidence for our
observations.

FIGURE 3. Encoding scheme for the search generator. First, the set of all
possible edges is generated considering order of elements. Then
‘‘genotype’’ vector of length k is drawn by the quantum search engine,
in which elements are index of corresponding edges.

FIGURE 4. Preliminary results of quantum embeddings with different
entangling structures on Iris dataset. The permutation of CNOT gates
leads to significant improvement in terms of validation loss. Moreover,
extending the number of CNOT gates may reduce the performance of the
embedding.

B. SEARCH SPACE CONFIGURATION
1) ENCODING SCHEME
We proposed a representation for entangling layouts as
directed multi-graphs, in which vertices represent qubits and
edges formed by CNOT gates. The main objective of our
proposed work is to find the optimal structure for entangling
patterns on a given dataset. Hence, we fix the choice of rota-
tion axis in the first and third parameterized unitary blocks at
σ1 = σ2 = Y [5]. In other words, we only consider param-
eterized control rotation by Y-axis over all qubits. Moreover,
the encoded graph representation for each candidate circuit
layout in the search space is associated with an asymmetric
adjacency matrix (Figure 2), which allows better illustration
in the complexity analysis.

2) COMPLEXITY ANALYSIS
Given a set of N qubits, the number of off-diagonal entries
for the adjacent matrix is given as

E = N 2
− N = N (N − 1) (5)

With regard the order permutation of CNOT gates in candi-
date circuit layouts, the total number of possible candidate in
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FIGURE 5. General framework of automated model search. After
well-defining the search space, the automated intelligence draws an
architecture candidate following the search strategy. The drawn
architecture will be evaluated using selection criteria, which create a
response for updating the search intelligence. In investigating search
strategy SMBO-TPE, the prior knowledge of search intelligence will be
updated corresponding to the response score during the search phase.

the search space of N qubits embeddings is

|�Full| =

E∑
k=0

k!
(
E
k

)
=

E∑
k=0

E !
(E − k)!

. (6)

As a result, the search space of all possible circuit layouts is
extensively large (≈ 1.3×109) even though we only consider
a small system of 4 qubits. Moreover, the complexity of
the search space is exponentially expanded when increasing
the number of input qubits, which is tremendously hard to
find the optimal circuit layout for the entanglement block.
Thus, we proposed additional parameters for the search space
configuration, called the entanglement level, which is the
fixed number of CNOT gates within the entangling layer.
Given a pre-defined entangling level k , the total number of
possible circuit candidates in the reduced search space is:

|�Reduced| = k!
(
E
k

)
=

E !
(E − k)!

. (7)

The search space is reduced to a reasonable cardinality for
finding optimal circuit architecture by implementing the pro-
posed entangling level. Together with proposed encoding
scheme (Figure 3), each circuit candidate in the search space
of N qubits constrained by entangling lever k is represent
by an encoded genotype vector α of length k , whose each
component is corresponding with each element of the ordered
set of all possible connections E = {ei}i∈{0,...,E}.

C. SEQUENTIAL MODEL-BASED OPTIMIZATION
Figure 5 illustrates the framework of the automated search
for optimal configurations of the entanglement design. This
procedure is motivated by hyper-parameters optimization,
which has been well-studied in classical machine learning
but is not utilized in quantum machine learning. For exam-
ple, the optimization method is commonly used to find the
optimal configurations of neural networks (number of layers,
initial channels, or kernel size) or optimal training setting
(learning rate or type of optimizer). It is worth mentioning

that sequential model-based optimization (SMBO) enables
efficient searching on highly complex search space (hundreds
of dimensions [14]), which is a promising search strategy
for the defined search space in Section III-B. Specifically,
SMBO does not require the computation of the true fitness
function (true loss) to propose the most potential candidates
for the next trial. Instead, SMBO leverages surrogate mod-
els to approximate the true cost function and samples the
most promising candidates based on selection criteria such
as conditional entropy of minimizer, bandit-based measure,
or expected improvement [14]. In this proposed research,
we consider the expected improvement (EI) as the crite-
rion for the sampler due to its versatility in different hyper-
parameter settings [14]. This characteristic does not appear
in other search strategies such as reinforcement learning or
gradient-based search since the methods demand the compu-
tation of the true cost function to update their samplers.

We employ the sequential model-based optimiza-
tion (SMBO) using tree Parzen estimator [14] as the search
strategy for the optimal circuit candidate, which can be
mathematically stated as

α∗ = argmin
α∈�

L(α)
val (y, ŷ), (8)

where ŷ is the prediction of the model. The cost function
L(α)
val (y, ŷ) is the validation loss value corresponding to the

circuit candidate α, which is modeled by less computational
expensive surrogate model S(α) by SMBO. In other words,
we approximate the true loss function by surrogates that
are much simpler to be computed. Essentially, the usage of
surrogates enables sampler to propose the most promising
candidate for the next trial based on the prior knowledge.
In the inner loop of Algorithm 1, we aim to optimize the
Expected Improvement (EI) under surrogates S(α) using
numerical optimization. The Expected Improvement (EI) is
the expected value from a given statistical model f (x) in the
model spaceM that the value f (x) will be greater than a given
threshold t̄ . Mathematically, we have:

EIt̄ =
∫
∞

−∞

max(t̄ − t)pM (t|α)dt, (9)

where M is an arbitrary model in the model space that
L(α)
val (y, ŷ) will exceed t̄ . Moreover, pM (t|α)s the conditional

probability density of outputs corresponding to the candidate
model parameterized by genotype vector α. The TPE esti-
mator enables the decomposition of the conditional probabil-
ity p(t|α) as two densities:

p(α|t) =

{
l(α) if , t < t̄
g(α) if , t ≥ t̄,

(10)

reforming the EI in Equation 9 into

EIt̄ =
∫ t̄

−∞

(t̄ − t)
p(α|t)p(t)
p(α)

dt

∝

[
p(t < t̄)+

g(α)
l(α)

[1− p(t < t̄)]
]−1

(11)

VOLUME 10, 2022 41449



N. Nguyen, K.-C. Chen: Quantum Embedding Search for Quantum Machine Learning

Algorithm 1 Sequential Model-Based Optimization via TPE
Estimator
Given search space � initialized by k , cost function L(.),
initial model candidateM0, T number of iterations, surrogates
S(.) and historyH.

initializeH← ∅
for i = 1 to number of trials T :

α∗← argminα S(α,Mi−1)
compute L(α∗)

val (y, ŷ)
updateH← H ∪ {α∗,L(α∗)

val (y, ŷ)}
fit Mi toH

returnH

Due to the decomposition, the TPE estimator enables sam-
pling multiple candidates based on the density l(.), allowing
a more efficient estimation of the EI. Furthermore, TPE
estimators are different fromGaussian-based estimators (GP)
in the choice of thresholding value for output t̄ . Specifically,
GP favors values less than the best evaluation in history while
TPE favors t̄ larger than such a best observation. Hence,
TPE estimators can propose a threshold value corresponding
to some outputs quantile, enabling more efficient sampling.
Besides, SMBO-TPE is initialized with the prior distribution
of discrete variables ppriori , which have the same length as
the genotype vector. Thus, the posterior is proportional to
Lppriori + Ci, where L is the length of the genotype vector
and Ci is the number of choices for each element in the
genotype. As a result, the search time of each trial using
SMBO-TPE can be linearly scaled with the length of the
genotype vector with sorted observation in the historyH. This
property is very desirable since the search space of entangling
layout is exponentially expanded with an increasing number
of input qubits or primitive gates. The final evaluation metric
to compare the performance of derived architectures is the
validation loss computed by the validation dataset, illustrating
the generalization of such embeddings.

D. PROCEDURE
We would like to summarize the general procedure to imple-
ment our proposed framework in this section.

Step 1 - Initialization: The current implementation of
quantum computers and quantum simulators only supports
a very limited number of noisy qubits, which restricts the
capability of quantum embeddings within low-dimensional
datasets. However, we canmitigate the curse of dimension for
quantum embeddings by adopting hybrid classical-quantum
neural architectures [35]. In these hybrid architectures,
the classical component plays a role as an autoencoder
(feature extractor), that transforms the input spaceRp

→ Rq,
where q < p. Thus, if the given dataset is low-dimensional
(the number of features is less than several available qubits),
the original features will be directly used as input of quantum
ansatz. Otherwise, a classical autoencoder will reduce the
number of input features. Then the resulting feature maps will

FIGURE 6. Results from search phase with increasing number of
entanglement levels k on low dimensional datasets including synthesized
and Iris datasets. The best validation score on synthesized data is
0.4746± 0.011 using k = 8. On the other hand, there is not enough
statistical evidence to show that larger k leads to better entanglement
layout on Iris dataset.

be used as input of quantum embeddings. We will give more
details about the hybrid classical-quantum architecture with
use-cases in Section IV.

Step 2 - Search Phase: Given q number of input features,
we create an ansatz (illustrated in Figure 1) with q number of
qubits for the quantum embeddings. Then, we initialize the
first search space in Section III-B by selecting k = q for the
first iteration. This initial guess for k is equivalent to base-
line manual entanglement layouts such as full entanglement
(Figure 2). We further perform searching by using increasing
values for k until the improvement gain appears diminishing.
Consequently, our proposed framework only guarantees to
find the optimal local solution of the entanglement layout
since we only investigate a limited number of search spaces
associated with the entanglement level. However, finding
global solutions remains an extremely difficult challenge for
architecture optimization in machine learning. Therefore, the
greedy heuristic for selecting k used in our proposed work
enables locally optimal solutions while requiring reasonable
computational resources such as hardware requirement or
searching time.

Step 3 - Evaluation Phase: After discovering the entan-
glement structure, we compare the derived quantum ansatz
with other classical counterparts using predictive perfor-
mance as the evaluation metrics.

IV. NUMERICAL EXPERIMENTS
In this section, we report the experiment justifications for
the effectiveness of our proposed QES by using different
data scenarios. Incorporating with Section III-D, we first
evaluate QES on low dimensional datasets using stand-alone
quantum embeddings, including synthesized datasets and
the IRIS dataset. The generated dataset includes 400 obser-
vations in the feature space of dimension 4, classifying
three classes. We employ a small factor of hypercube size
to obtain a synthesis dataset that is hard to be separated.
Secondly, we further investigate the validity of QES on
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more challenging datasets, including Breast Cancer and Dig-
its datasets. Although these datasets are not highly com-
plex for classical machine learning, they can be considered
high-dimensional datasets for the current implementation of
quantum computers and simulation. Hence, we leverage the
hybrid classical-quantum neural architecture for these exper-
iments. The detailed hyper-parameter setting for training the
quantum embeddings is given in Appendix A.

A. EXPERIMENTAL RESULTS OF STAND-ALONE QUANTUM
EMBEDDINGS ON LOW DIMENSIONAL DATASETS
1) SYNTHESIZED DATASET
In the search phase on the synthesis dataset, we consider
search spaces corresponding with increasing values of k .
Moreover, the depth of each architecture candidate is set
equal to two layers during both the search and evaluation
phases.

Figure 7 illustrates the found architectures using
SMBO-TPE and baseline random search. It is worth mention-
ing that the model complexity of the two settings is equivalent
to that number of parameters in derived embedding architec-
tures are equal. It is because the primitive CNOT gates do not
contain any learnable weights. The score function for both
search procedures is based on the loss value on the (inde-
pendent) validation set. We compare our found architectures
with two common baseline entangling structures (strongly
entangled layers) in Figure 2 and also with classical machine
learning counterparts. In Table 1, our discovered quantum
embedding circuit under gains a significant improvement in
comparison to the baseline structures while nearly achieving
the performance of SVM and XGBoost with only a minimal
gap of 0.5%. Moreover, an obvious modification of over
10% gain in validation accuracy is witnessed compared to a
neural network with the same number of parameters. Besides,
expanding the search space yields the locally optimal value
k = 8, enabling discovery circuit structures with higher
predictive power consistently for both search strategies.

We further analyze the effectiveness of SMBO-TPE com-
pared to baseline random search. Figure 8 shows the interme-
diate values of search strategy over trials of the two investi-
gating optimization approaches. Overall, the validation loss
converges after 50 epochs for both settings of the search
space. Moreover, optimal architectures are found in early
trials using SMBO-TPE, while random search discovers such
architectures in late attempts of the search phase. The parallel
coordinate plot is another advantage of SMBO-TPE over
random search. We can see that the TPE sampler leverages
the knowledge during the search phase to update its prior
knowledge. Sampling results from TPE concentrate on edges
that potentially form higher predictive performance, while the
random search’s sampled edges are widely spread throughout
the configuration space.

Finally, the search cost of quantum embeddings is sig-
nificantly higher than searching for classical neural net-
work architectures due to the computational limitation of

FIGURE 7. Discovered quantum circuit architectures from different search
space configurations and search strategies on synthesized dataset. Found
architecture contains a sequence of CNOT gates, which establishing
entanglement over all qubits.

TABLE 1. Comparison of found architectures with classical machine
learning models and baseline hand-crafted entangling structure on
synthesis dataset. The evaluation is the validation accuracy based on
5 independent runs. Discovered quantum embedding outperforms
baseline designs while achieves compatible performance as classical
machine learning models.

near-term quantum simulators. For example, candidates in
neural architecture search are convolution neural networks
involving up to millions of parameters, which can be found in
only 0.25− 8 GPU days by recent state-of-the-art NAS algo-
rithms [21], [23]. On the other hand, training aminor quantum
embedding of very few qubits consumes much larger compu-
tational expenses. Our experimental setting takes 2− 4 GPU
days to search for an architecture of only 23 parameters on the
quantum simulators. Fortunately, the computational costs are
majorly accounted for in training the quantum embeddings.
In other words, the enhancement of quantum computing
and quantum machine learning in the near-term devices that
accelerates the trainability of quantum embeddings will be
directly benefited by the proposed QES in term of search
time.

2) RESULTS ON IRIS DATASET
In this experiment, we use the original Iris datasets without
any classical pre-processing, which includes 4 input fea-
tures. We witness that the Iris dataset contains very well-
representation observations, which is much easier to be
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FIGURE 8. Training response of all trials under each search space
configurations and search strategies on synthesis dataset. Each
architecture candidate is trained for 100 epochs at each trial. The
validation loss converges within 50 epochs (as shown). Best score is
witnessed from the search space with k = 8 under SBMO-TPE.

FIGURE 9. Found architecture of quantum embedding and its
optimization history. The same pattern is as presented on simulated
dataset. The full architecture of the quantum embedding includes stack of
two identical layers with reported entanglement layout as in the left
panel.

TABLE 2. Comparison between quantum and classical networks on Iris
dataset. The results is mean and standard deviation of test accuracy
based on 100 independent runs.

separated in comparison to the synthesized dataset
(Figure 15). Hence, the magnitude of validation loss using
different k is hard to capture. From the left panel of Figure 6,
there is not enough statistical evidence to show that increasing
number of primitive results in better predictive performance.
Thus, we only investigate the search space initialized by base-
line k = 4. We present the found structure for entanglement
of quantum ansatz in Figure 9, which involves a stack of
two identical found architectures in the search phase. The
same pattern in the simulated dataset, where the TPE sampler
leverages the knowledge learned from response scores to
update its prior distribution, enables better architectures.

FIGURE 10. Learning curves of quantum embedding’s parameters on Iris
dataset. Model weights start converging after 100 epochs, achieve
95.33± 0.0125 in validation accuracy.

FIGURE 11. Structure of hybrid classical-quantum neural networks. The
data scenarios is when the number of input features (p) is larger than the
number of available qubits (q). We decompose the architecture to
investigate the representation learning ability of each component.

FIGURE 12. Discovered entanglement layouts using hybrid
classical-quantum neural architectures. The final ansatz includes a stack
of two layers.

The discovered architecture achieves 95.33 ± 0.0125 in the
validation accuracy (based on ten independent runs), outper-
forming two baseline designs close to 2%. Figure 10 presents
the convergence of model weights from founded quantum
embedding, which indicates a stable neural solution.

We further compare the proposed quantum embedding
with classical embeddings using a fair neural network. In the
quantum classifier, there are 8 learnable parameters for the
variational rotation gates in the embeddings, followed by
classical post-processing using a fully connected layer with
15 parameters. Thus, the total number of parameters for
the quantum classifier is 23, including quantum embedding
and post-processing layers. We construct fair autoencoders,
which involve a single layer of hidden nodes (ranging from
6 to 10), followed by the same fully connected layer for
the classifier. Since training a small network may result in
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FIGURE 13. Results from the search phase using hybrid classical-quantum neural architecture on breast cancer and wine dataset. (Left)The locally
optimal value for entangling level from the breast cancer data is k = 7, while that from wine data is k = 5. (Right) Evaluation results from found
ansatz in comparison to fair classical neural networks.

varying classification performances, we prepare each neural
network 100 times and report their accuracy. As a result, the
proposed quantum embedding outperforms a fairly classical
neural networkwith 7 hidden nodes by over 0.3% (95.33%vs.
95%), while containing approximately 2.5× less of parame-
ters (Table 2).

B. EXPERIMENTAL RESULTS OF HYBRID
CLASSICAL-QUANTUM ON HIGHER
DIMENSIONAL DATASETS
This section evaluates the proposed QES onmore challenging
data scenarios. These datasets have a higher number of orig-
inal features than the number of available qubits on quantum
ansatz, which is summarized in Table 3. We leverage a classi-
cal autoencoder, which includes a stack of 3 fully connected
layers, to reduce the dimensionality of the input dataset for
quantum ansatz (Figure 11). The usage of hybrid neural archi-
tectures may raise the concern of whether learning comes
from classical or quantum components. Therefore, we also
analyze the representation learning ability from each part by
comparing pre- and post-quantum feature maps. A detailed
comparison will be given within each case study hereafter.

The left panel of Figure 13 shows the optimal values for
entanglement level k following procedure in Section III-D.
On the wine dataset, the optimal quantum circuit is identified
in the search space generated by k = 5, which is visualized in
the left panel of Figure 12. On the other hand, k = 7 is found
in the breast cancer dataset, resulting in the structure of CNOT
depicted in the right panel of Figure 12. We analyze the
performance of found ansatz and compare it to fair classical
neural networks. It is important to emphasize that we only
replace the quantum ansatz with a fully connected layer.
In other words, the classical autoencoder (Figure 11) is used
in all experiments and contributes a static number of param-
eters to the model complexity. We report the configuration
of fair classical neural networks (NN) in the right panel of
Figure 13, in which the NN has single depth d = 1 with
h hidden nodes. In addition, the total number of weights
of the whole hybrid architecture is reported for comparison.

FIGURE 14. Analysis on representation learning pre- and post- quantum
embeddings using T-SNE: (Top) Wine dataset, (Bottom) Breast Cancer
dataset. The T-SNE features from pre-ansatz representations is hard to be
separated using linear classifier, while those features from
post-representations can be well-separated using the same classifiers.

As a result, the proposed quantum ansatz outperforms classi-
cal NN in the wine dataset (based on 100 independent runs)
whilemaintaining less than several parameters. Regarding the
Breast Cancer dataset, the performance of discovered ansatz
is higher than NNs with 4 and 8 hidden nodes but slightly
lower than NN with h = 16 despite possessing the least
number of parameters.

We are aware that the usage of hybrid architectures may
raise a critical concern about the effectiveness of found
ansatz. Particularly, it is not hard to wonder whether the
classical autoencoders have already learned since they have a
relatively large model complexity for less complex problems
like Wine and Breast Cancer datasets. Thus, we decom-
pose the neural architectures and analyze the representations
pre-/post- quantum ansatz (red and blue vectors in Figure 11).
The evaluation of representation learning can be delivered
using T-SNE [50] visualization of feature vectors, in which
we can observe the distance between clusters of classes,
depicted in Figure 14. In the T-SNE visualization from
the wine dataset, the decision boundary between clusters
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is unclear when visualizing the pre-ansatz features. In con-
trast, T-SNE of post-ansatz features shows clearer boundaries
between classes, resulting in three separated clusters. This
is consistent with the predictive performance of the hybrid
architecture with ansatz, which possesses the test accuracy
of 98.34 ± 0.0021. The same observations can be seen from
Breast Cancer dataset, where the T-SNE of pre-quantum rep-
resentations is difficult to be separated by a linear classifier,
while that from post-ansatz features are well-separated. The
experiments enable insights into the effectiveness of found
ansatz, which leads to more efficient representation learning
in terms of predictive performance.

V. DISCUSSION AND CONCLUSION
A. IMPLICATION
Beyond the numerical experiments, we would like to address
several general principles from our QES. Our proposed
approach provides an automated search intelligence that can
find an optimal architecture of a quantum embedding circuit
for a given dataset. It is reasonable to believe that there is
no universal design of the embedding structure for every
dataset, but instead, we can derive optimal architectures that
well-performs on the dataset.

B. THREADS TO VALIDITY
Threats to the internal validity of QES consider the repro-
ducible ability of the algorithm, which is the most chal-
lenging factor in automated machine learning [51], [52].
As we are in the noisy intermediate-scale quantum era, such
issues have been amplified compared to classical compu-
tational hardware. Moreover, our proposed QES relies on
the assumption of the entangling level that tremendously
reduces the cardinal of the search space. Hence, we lack
empirical evidence of the effectiveness of QES on expanded
search space, especially when the number of qubits is scaled.
We want to defer the investigation of such a problem for
further study. Nevertheless, QES well-performs in small
qubits can achieve similar results with classical machine
learning counterparts and outperform basic entangling
structures.

Threats to external validity include the generalization of
QES on different data scenarios, the number of qubits in
the system, and noises inherited from actual quantum com-
puting hardware. Although the experimental results from
simulated quantum computing hardware are robust and sta-
ble, the story may change when we implement QES on
near-term noisy quantum computers. Another thread is the
computational limitation of near-term quantum computers
and quantum simulators. The cost for training single quan-
tum embedding is remarkably higher than training classi-
cal encoders in the quantum simulations, which leads to
a very high computational expense for the search phase.
These threats indicate future research opportunities in quan-
tum embeddings, including implementing different search
strategies.

C. CONCLUSION
This paper proposes an automated procedure for finding
optimal quantum embeddings architecture that leads to high
representation learning ability on the quantum Hilbert space.
The algorithm is accessible and promising compared to
the classical machine learning model, which can be imple-
mented on near-term quantum computers. Although our
QES cannot guarantee to find the optimal global design
of the quantum embedding architecture in any full search
space, it can certainly discover high-performed architec-
ture solutions under the constrain of the entanglement
level.

APPENDIX A
EXPERIMENTAL ENVIRONMENT AND SETTING
Our experiments are conducted using Pennylane and Qiskit
quantum simulators in Python 3.6 and Pytorch 1.8. The
implementation of search strategies is via Optuna 2.7.0 pack-
age. For low dimensional datasets, we use Adam optimizer
with initial learning rate of 0.5 and β = (0.9, 0.999). The
decay rate of the learning rate is set at 0.97 with a decay
period of every 2 epoch. We train each architecture candi-
date for 100 and 50 epochs on synthesis and Iris datasets,
respectively. Final validation accuracy of synthesis datasets
based on five independent runs, while ten independent runs
are used in the Iris dataset. For the hybrid neural architec-
ture, we use SGD optimizer with a learning rate of 0.5 and
momentum of 0.9. The early stopping is used to yield the final
model, which monitors the improvement of validation loss
over 10 epochs. Regarding the parameter setting for the TPE
sampler, we initialize the search phase with 20 random trials,
followed by 300 trials. The number of samples to evaluate the
expected improvement each trial is 1000 samples. Moreover,
the same number of trials is used for the random search
sampler.

APPENDIX B
ANALYSIS OF PRELIMINARY EXPERIMENTS
In the experiment on the Iris dataset, we hand-crafted lay-
outs of entanglements for observations. We start with sam-
pling a quantum embedding with an entanglement level
of k = 3 to identify the first layout. Then we permute
the order of CNOT gates to get the second layout. Finally,
the last layout is constructed by adding a random CNOT
gate to the second layout. The validation loss of each lay-
out is reported in Table 4, which involves five independent
runs. Let denote the actual means of the validation score
as µ1, µ2, and µ3 for corresponding layouts. The p-value
for the t-test of the null hypothesis H0 : µ1 = µ2 is
0.017. Thus, we have strong statistical evidence to reject
the null hypothesis, meaning the two means are not equal.
Similarly, the p-value of the t-test over null hypothesis
H0 : µ2 = µ3 is 0.001, indicating differences in the
mean validation loss from different quantum embedding
architectures.
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FIGURE 15. Illustrations of datasets used in experiments on stand-alone
quantum embeddings: (Top) Synthesized dataset, (Bottom) Iris dataset.

TABLE 3. Description of datasets used in experiments of hybrid
classical-quantum neural architecture.

TABLE 4. The validation loss of preliminary quantum embedding layouts
on Iris dataset. The same hyper-parameter setting is used across all
experiments.

APPENDIX C
DESCRIPTION OF DATA SCENARIOS
We depict the low dimensional datasets used in experiments
on stand-alone quantum embeddings in Figure 15. Using a
small value for hypercube enhances the difficulty for the
simulated dataset, which leads to variations in performance
when using different k . Table 3 depicts the details of data used
in hybrid classical-quantum neural architecture.
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