
Received February 10, 2022, accepted April 8, 2022, date of publication April 14, 2022, date of current version April 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3167403

A Novel QP-Based Kinematic Redundancy
Resolution Method With Joint
Constraints Satisfaction
ŁUKASZ WOLIŃSKI AND MAREK WOJTYRA
Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, 00-665 Warsaw, Poland

Corresponding author: Łukasz Woliński (lwolinski@meil.pw.edu.pl)

This work was supported in part by the National Science Centre, Poland, under Grant 2018/29/B/ST8/00374; and in part by the Warsaw
University of Technology (WUT) Internal Grant for Research in Automation, Electronic, and Electrical Engineering.

ABSTRACT Kinematically redundant manipulators are advantageous for their increased dexterity and
ability to fulfill some secondary requirements along with their primary task to follow the prescribed
trajectory. The redundancy results in a non-trivial inverse kinematics problem (IK). Standard methods of
redundancy resolution are based on the pseudoinverse of the Jacobian matrix of the manipulator. The
excessive degrees of freedom are utilized to perform secondary tasks that are projected onto the null
space of the Jacobian matrix. However, the joint constraints satisfaction cannot be easily ensured in this
way—even though methods that account for the joint position limits are known, the constraints for joint
velocities and especially accelerations are not straightforward to include. In this paper, a novel redundancy
resolutionmethod based on a less common quadratic programming (QP) approach is described. The proposed
velocity-level IK method allows fulfilment of the joint constraints at the position, velocity, and acceleration
levels. In the derived formulas, accelerations instead of the usual velocities are used—the discretized joint
state equations allow the use of joint accelerations as decision variables in the QP problem. The developed
algorithm is investigated in a series of numerical tests in which the kinematics of the KUKA LWR4+
redundant 7-DOF manipulator is exploited. The newly elaborated QP-based IK method is firstly compared
with the classic pseudoinverse-based approach and then tested for its ability to keep the joint accelerations
within the prescribed bounds. The prospects of the proposed approach are discussed in the concluding
section.

INDEX TERMS Inverse kinematics, optimization, quadratic programming, redundant manipulators,
redundant robots.

I. INTRODUCTION
A typical industrial robot has as many degrees of freedom
as necessary for a task it was chosen for. However, to work in
human-centered unstructured environments, a robotic manip-
ulator shall have a versatile design. As can be observed
in a human arm, a redundant structure increases dexterity.
Similarly, redundant manipulators can easily handle singu-
larities, avoid obstacles or keep their joints away from the
limits [1], [2].

Usually, the desired end effector trajectory is planned in
the Cartesian space, whereas the robot’s controller requires
the joint space trajectory. Therefore, the inverse kinematics

The associate editor coordinating the review of this manuscript and

approving it for publication was Sunith Bandaru .

problem has to be solved. Since redundant robots have more
degrees of freedom than the end effector trajectory, the solu-
tion of inverse kinematics (IK) is not trivial. Standard meth-
ods are based on the pseudoinverse of the Jacobian matrix of
the manipulator [1], [2]. The redundant degrees of freedom
can be utilized to perform tasks additional to the end effector
trajectory tracking. These secondary tasks are projected onto
the null space of the Jacobian matrix [3]–[7]. The classic
methods of redundancy resolution are discussed in more
detail in Sec. II of this article, in order to establish a ground
for their comparison with the newly proposed approach.

However, the joint constraints satisfaction cannot be
ensured in the pseudoinverse-based IK—attaining this goal
needs additional effort. In [8], [9], fulfilment of the joint
position limits is treated as the main task; moreover,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 41023

https://orcid.org/0000-0001-9617-4117
https://orcid.org/0000-0001-7225-7647
https://orcid.org/0000-0001-5436-2128

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

an enhancement consisting of modification of the Jacobian
matrix singular values so that it never loses rank is proposed.
To guarantee the continuity of the solution, the pseudoinverse
operator from [5], [10] is utilized. Another approach for
avoiding joint limits, based on a weighted least norm solu-
tion and minimizing unnecessary self-motion, is presented
in [11]. In [12], an iterative algorithm, exploiting constraints
prioritization, is used to clamp the joint space motion in
the vicinity of the joint limits. Another iterative method is
proposed in [13] to construct a null space projection operator,
which—after ensuring its continuity by introducing activa-
tion factors—forms a basis for obtaining joint velocities.

The aforementioned methods are more complex than the
basic pseudoinverse-based IK. Even though they account for
the joint position limits, the higher order constraints are not
straightforward to include. To remedy this problem, a method
based on a quadratic programming (QP) formulation is pro-
posed in this paper. Although the QP formulation of IK is
known—it can be used to derive the pseudoinverse-based
IK [2], [14]—this paper presents an important enhancement.
The scientific novelty of this work is the proposition of
a velocity-level IK method that allows the fulfilment of the
joint acceleration constraints together with the velocity- and
position-level constraints. The elements of the goal function,
the Hessian matrix and other necessary quantities, are formu-
lated in the form that uses accelerations instead of the usual
velocities, as in [2], [14]. The discretization of the joint state
equations allows to use the joint accelerations as the decision
variables in the QP-based IK.

The remainder of this paper is organized as follows.
In Section II, classic methods of kinematic redundancy res-
olution are briefly recapitulated. Section III presents a novel
method of enforcing joint limits on acceleration, velocity and
position levels within the framework of the QP approach to
the IK solution. Then, in Section IV, the performance of the
proposed method is verified and compared with the classic
approach. Finally, the conclusions and outlook of further
works are given in Section V.

II. CLASSIC INVERSE KINEMATICS SOLUTION
A. PRELIMINARIES
Let n be the dimension of the manipulator’s joint space, and
m be the dimension of the task space. The task space variables
in the vector x ∈ Rm are related to the joint space variables
q ∈ Rn by the equation:

x = f(q), (1)

where f(q) → Rm is a function describing the forward
kinematics of the manipulator. For a full 6 degree-of-freedom
task, the vector x ∈ R6 can consist of the end effector’s
position r ∈ R3 and orientation φ ∈ R3 (given for example
by Euler angles):

x =
[
r
φ

]
, (2)

whereas the forward kinematics function f(q) can be written
as:

f(q) =
[
fr(q)
fφ(q)

]
, (3)

where fr(q) describes the position and fφ(q) describes the
orientation of the end effector.

In a general case, the end effector task might have less
degrees of freedom (m < 6), and not all elements of r and
φ might be necessary in x. Accordingly, not all elements of
f(q) given by (3) would be necessary in such a case.

Differentiating (1) with respect to time leads to the follow-
ing equation:

ẋ = Jaq̇, (4)

where:
• Ja = Ja(q) ∈ Rm×n is the analytical task Jacobian of
the manipulator,

• m < n for the manipulator to be redundant for a given
task of the size m,

• q̇ ∈ Rn is the vector of joint velocities,
• ẋ ∈ Rm is the vector of time derivatives of the task
variables x.

The analytical task Jacobian matrix Ja is computed as [1]:

Ja(q) =
∂f(q)
∂q

. (5)

In practice, it is often more convenient to use the geometric
Jacobian J = J(q) ∈ Rm×n, since it describes the relationship
between the joint velocities q̇ and task velocites v ∈ Rm:

v = Jq̇, (6)

instead of relationship between q̇ and ẋ.
Again, for a full 6 degree-of-freedom task, the vector v ∈

R6 can consist of the end effector’s translational velocity ṙ ∈
R3 and angular velocity ω ∈ R3:

v =
[
ṙ
ω

]
, (7)

and the angular velocity ω can be expressed as:

ω = T(φ)φ̇, (8)

where T(φ) is a transformation matrix that corresponds to the
used method of parameterization of orientation.

However, in a case of m < 6 not all elements of ṙ and ω
might be necessary in v. For example, in a pure translational
end effector task, the task variables vector x and the task
velocity vector v are given by x = r and v = ṙ, respectively.
It is worth noting that in such a case the analytical and
geometric Jacobians are identical: Ja = J. On the other hand,
when m = 6, there exists a following relationship between J
and Ja:

J =
[
I 0
0 T(φ)

]
Ja. (9)

The well-known recursive algorithms for computing the
geometric Jacobian J can be found in [1], [2].

41024 VOLUME 10, 2022

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

Moreover:
• R(J) ⊆ Rm is the range space of J(q), and it contains
the end effector task velocities v that can be generated
by the joint velocities q̇ for a given configuration q,

• N (J) ⊆ Rn is the null space of J(q), and it contains the
joint velocities q̇ that do not produce any task velocity,
for a given configuration q,

• ρ ≤ m is the rank of J,
• dim (R(J)) = ρ,
• dim (N (J)) = n − ρ, and, because of the redundancy,
dim (N (J)) > 0,

• dim (R(J))+ dim (N (J)) = n.
For redundantmanipulators, the Jacobian J(q) is not square

(because m < n), and the straightforward solution to the
inverse kinematics problem:

q̇ = J−1v (10)

is not available. Instead, to solve Eq. (6) with respect to q̇,
a Moore-Penrose pseudoinverse J# of the Jacobian matrix J
might be used [1], [2]:

q̇ = J#v. (11)

Assuming that all of the manipulator joints are of the same
type (e.g., rotational or translational), the solution (11) min-
imizes the Euclidean norm of the joint velocity vector ‖q̇‖.
However, other solutions are possible. In particular, the abil-
ity of the redundant manipulator to perform self motions—
enabled by the existence of N (J)—might be utilized to
achieve additional objectives along the main task, given by v.
Therefore, the minimum norm solution (11) can be expanded
to the following form [1], [2], [15], [16]:

q̇ = J#v+ q̇NS , (12)

where q̇NS ∈ N (J) is the null space velocity. In other words,
q̇NS does not affect the end effector task velocity v, since:

Jq̇NS = 0. (13)

Usually, the null space velocity is expressed as [1], [2]:

q̇NS = Pq̇JS , (14)

where q̇JS is an arbitrarily chosen vector that represents the
constraint of the additional task specified directly in the joint
space, and P is the matrix which projects the vector q̇JS onto
the null space of the Jacobian N (J) [1], [2], [17]:

P = In − J#J, (15)

and JP = 0.
Substituting (15) and (14) into (12) results in:

q̇ = J#v+
(
I− J#J

)
q̇JS , (16)

which is the solution to the inverse kinematics problem,
known as the redundancy resolution at the velocity level.

B. SECONDARY TASKS
One of the methods to select the vector q̇JS for
the solution (16) is to employ the local optimization
[1], [2], [16], [18]:

q̇JS = kH∇qH (q), (17)

where H (q) is a scalar configuration-dependent objective
function, ∇qH (q) is its gradient and kH is a scalar gain
coefficient. Since (17) is projected onto the null space of
the Jacobian, this approach is called the projected gradient
method. It can be used for singularity avoidance [1], [2],
increasing the dynamic manipulability [19], obstacle avoid-
ance [2], [20], or keeping the joints close to the middle of
their range [1], [2].

The ability of the redundant manipulator to avoid the col-
lisions with obstacles in the workspace can be also utilized
by adding a task defined by its Jacobian matrix and velocity
vector [21], [22]. However, specifying multiple additional
tasks alongside the main one might result in conflicting task
situations. Therefore, a task priority strategy is needed to
ensure that each lower priority task is satisfied only in the
null space of the higher priority tasks [3], [4], [6], [22], [23].

The multiple tasks are usually defined as:

vi = Jiq̇, i = 1, . . . , l, (18)

where vi ∈ Rmi is the i-th task velocity, Ji ∈ Rmi×n is the
i-th task Jacobian, l is the number of tasks, mi is the i-th task
dimension, and

∑l
i=1mi ≤ n. The order of task priority is

decreasing, i.e., the task i + 1 has a lower priority than the
task i.
A recursive solution for (18) is given in [3] (called in [6]

a standard method):

q̇i = q̇i−1 +
(
JiPi−1A

)# (
vi − Jiq̇i−1

)
, (19)

for i = 1, . . . , l, and where q̇l is the solution accounting
for all the tasks, while q̇0 = 0 and P0

A = I. The matrix PiA
[3], [6]:

PiA = I− JiA
#
JiA = Pi−1A −

(
JiPi−1A

)#
JiPi−1A (20)

is the projector onto the null space of the augmented Jacobian
of the first i tasks:

JiA =

J1

J2
...

Ji

 . (21)

C. JOINT SPACE SOLUTION
To obtain the joint coordinates in any given moment t , the
solution (16) has to be integrated over time (starting from t0):

q(t) = q(t0)+
∫ t

t0
q̇(τ)dτ. (22)

However, for implementation in the control system, usually
equations in discrete form are required. The integral (22)

VOLUME 10, 2022 41025

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

can be approximated by using the forward rectangular rule,
resulting in the explicit Euler method:

qk+1 = q0 +
k∑

h=0

q̇h1t, (23)

which can be expressed recursively as:

qk+1 = qk + q̇k1t, (24)

where q0 = q(t0) is the initial joint configuration, qk = q(tk)
is the sample at time instant tk , 1t is the time step, and
k = 1, 2, . . . ,N . The joint velocity q̇k is just a discrete form
of (16):

q̇k = J#(qk)vk + P(qk)q̇
JS
k , (25)

where q̇k = q̇(tk), vk = v(tk), q̇JSk = q̇JS (tk), and
P(qk) (recall (15)):

P(qk) = I− J#(qk)J(qk). (26)

It should be noted that the numerical integration introduces
some error in each step which accumulates over time. The
closed-loop inverse kinematics (CLIK) approach overcomes
this problem by treating the inverse kinematics as a feedback
control problem and including the end effector error in the
solution [1], [2], [9], [24]–[30].

Up to this point, the end effector velocity vk was treated as
the desired velocity:

vk = vd,k . (27)

However, in the CLIK solution, the end effector velocity
vk takes the following form:

vk = vd,k +Kek , (28)

where K ∈ Rm×m is a positive definite gain matrix, and ek is
the end effector trajectory error in the k-th step:

ek =
[
rd,k − fr(qk)

eφ,k

]
, (29)

where rd,k is the desired end effector position in the k-th step,
and fr(qk) is the position part of the forward kinematics
function f(qk) (given by (3)) in the k-th step. The orientation
error eφ,k is much harder to define and depends on the chosen
orientation representation. A couple of ways of expressing the
orientation error eφ,k are presented in [2].

It should also be noted that inmanyworks (28) is simplified
to a form [9], [10], [24]–[27], [29]:

vk = vd,k + Kek , (30)

whereK > 0 is a scalar gain coefficient. Stability of the CLIK
algorithms based on (30) and using the explicit integration
methods was investigated in [27], leading to the following
condition for K :

K <
2
1t
. (31)

III. PROPOSED METHOD
A. JOINT STATE EQUATIONS
As can be seen in Sec. II, the pseudoinverse-based IK does not
account for joint constraints—in particular for velocity and
acceleration bounds. To directly bound the acceleration q̈k at
each time tk , the joint state equations have to be formulated
at the acceleration level:qk+1 = qk + q̇k1t +

1
2
q̈k (1t)

2

q̇k+1 = q̇k + q̈k1t.
(32)

Equation (32) can be written as:

zk+1 = Azk + Buk , (33)

where the state zk ∈ R2n is:

zk =
[
qk
q̇k

]
, (34)

and the joint acceleration is the control vector: uk = q̈k . The
state matrices A ∈ R2n×2n and B ∈ R2n×n are defined as:

A =
[

In 1tIn
0n×n In

]
, (35)

B =

[1
2
(1t)2 In
1tIn

]
, (36)

and are constant.
Equation (33) can be divided into two parts:{

qk+1 = A0zk + B0uk
q̇k+1 = A1zk + B1uk

(37)

where the matrices A0, B0, A1 and B1 are:

A0 =
[
I 0

]
A,

B0 =
[
I 0

]
B,

A1 =
[
0 I

]
A,

B1 =
[
0 I

]
B, (38)

and I ∈ Rn×n and 0 ∈ Rn×n.
The relationship between the joint and end effector velocity

vectors—given by (6)—can be written for step k + 1 as:

J(qk+1) · q̇k+1 = vk+1. (39)

Combining (39) with (37), the following result is obtained:

Jk+1 · (A1zk + B1uk) = vk+1, (40)

where:

Jk+1 = J(qk+1) = J (A0zk + B0uk) . (41)

Equation (40) is nonlinear in terms of uk—because of
Jk+1 given by (41). It can be used to formulate and solve
a nonlinear optimization problem; some examples of non-
linear optimization utilization in solving IK include [20],
[31], [32]. On the other hand, an approximation of Jk+1
based on the solution from the previous step can be used
to formulate a linear kinematic constraint. In that approach,

41026 VOLUME 10, 2022

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

an approximation q̂k+1 of the future joint position qk+1 can
be computed as:

q̂k+1 = A0zk + B0ûk , (42)

where ûk = u∗k−1 is the solution from the previous step. Then,
by using (42), Jk+1 can be approximated as Ĵk+1:

Ĵk+1 = J(q̂k+1). (43)

Using (43) in (40), a linear equation in terms of uk is
obtained:

Ĵk+1 · (A1zk + B1uk) = vk+1. (44)

In [33], a similar approach—utilizing the previous step
solution to simplify the kinematic equations—was success-
fully applied to the joint space trajectory generation.

B. JOINT CONSTRAINTS
The equality constraint (44) describes the end effector tra-
jectory tracking task. The novel IK formulation requires also
the inequality constraints to represent the joint position (qmin
and qmax), velocity (q̇min and q̇max) and acceleration limits
(q̈min and q̈max). Although the constant acceleration bounds
represent purely kinematic limits, they are often used in liter-
ature as approximation of torque constraints [14], [34]–[38].
No bounds on acceleration might cause the discontinuities
in joint velocities, as observed in [14]. However, in [14],
the joint acceleration constraints are included indirectly in
additional velocity bounds.

The joint position constraints can be written as:

qmin ≤ qk + q̇k1t +
1
2
q̈k (1t)

2
≤ qmax, (45)

where the operator ≤ used with vectors means an element-
wise operation. The joint velocity bounds are:

q̇min ≤ q̇k + q̈k1t ≤ q̇max, (46)

and the acceleration limits can be included as:

q̈min ≤ q̈k ≤ q̈max. (47)

Another fact to bear in mind is that the robot joints can-
not stop in an instant. Applying the maximum deceleration
q̈min,j < 0 to the j-th joint for some time t ≥ tk results in the
following position and velocity:qj(t) = qk,j + q̇k,j(t − tk)+

1
2
q̈min,j(t − tk)2

q̇j(t) = q̇k,j + q̈min,j(t − tk).
(48)

When the j-th joint reaches its limit qmax,j, its velocity
should be less or equal to zero. Suppose this event happens at
some t = t∗ > tk :qj(t∗) = qk,j + q̇k,j(t∗ − tk)+

1
2
q̈min,j(t∗ − tk)2 = qmax,j

q̇j(t∗) = q̇k,j + q̈min,j(t∗ − tk) ≤ 0.
(49)

From (49), it follows that the j-th joint velocity at tk is
upper bounded by [14], [37], [38]:

q̇k,j ≤
√
−2q̈min,j(qmax,j − qk,j). (50)

Similarly, from the case of applying the maximum acceler-
ation q̈max,j > 0 to the j-th joint to avoid crossing the qmin,j
limit, it follows that the lower velocity bound at tk is [14],
[37], [38]:

q̇k,j ≥ −
√
2q̈max,j(qk,j − qmin,j). (51)

The joint constraints (45)–(51) can also be transformed
into a form dependent on uk . In that regard, the joint position
limits (45) become:

qmin − A0zk ≤ B0uk ≤ qmax − A0zk , (52)

while the joint velocity bounds (46) are now:

q̇min − A1zk ≤ B1uk ≤ q̇max − A1zk , (53)

and the acceleration limits (47) can be included as:

q̈min ≤ uk ≤ q̈max. (54)

Finally, the constraints (50) and (51) for q̇k+1 can be
transformed, by using (32) and (42), into:

ρmin ≤ uk ≤ ρmax, (55)

where:

ρmin,j =
−
√
2q̈max,j(q̂k+1,j − qmin,j)− q̇k,j

1t

ρmax,j =

√
−2q̈min,j(qmax,j − q̂k+1,j)− q̇k,j

1t
(56)

for j = 1, . . . , n.

C. SECONDARY TASKS IN THE GOAL FUNCTION
As described in section II-B, a redundant manipulator can
handlemultiple tasks thanks to the utilization of the null space
projection. In this section, a different approach is presented,
based on a multiobjective optimization formalism [39].

The secondary tasks can be thought of as parts of a multi-
objective goal function to be minimized:

min
q̇

1
2

l∑
i=1

(
Jiq̇− vi

)T
Wi

(
Jiq̇− vi

)
, (57)

where l is the number of null space tasks, Wi ∈ Rmi×mi are
positive-definite weight matrices, and mi is the size of the
i-th task. By setting the different values of weights, the task
hierarchy can be defined, with the most important task having
the highest weight [39]. In general, deciding on the hierarchy
of tasks of various kinds might not be trivial.

The task Jacobian Ji ∈ Rmi×n and task velocity vi ∈ Rmi

can represent any secondary task defined as (18). It is worth
pointing out that these tasks usually do not directly depend
on time but rather on the joint configuration q. An example
of such a task is the obstacle avoidance [21], [22]. The joint

VOLUME 10, 2022 41027

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

space tasks can be implemented by setting Ji = I and vi =
q̇JS,i, where q̇JS,i is given by (17).
As described above, the secondary tasks can be defined

in different ways, each having different units—for example,
joint space task velocity will have units of rad

s , whereas the
Cartesian space: ms . Since in (57) the terms are all summed,
the units shall be consistent. Therefore, the role ofWi matri-
ces is not only to set the task priorities with weights but also
to ensure the consistency of the units. To this end, the units of
elements of Wi can be chosen in such a way that each term
in the sum in (57) becomes unitless.

Since the equality constraint (44) and inequality con-
straints (52)–(55) are formulated in terms of uk , the goal
function in (57) also has to be redefined. A newminimization
problem—with the joint acceleration vector replacing the
joint velocity as the optimization variable—can be written as:

min
uk

1
2

l∑
i=1

(
Ĵ
i
k+1 · (A1zk + B1uk)− v̂ik+1

)T
Wi

·

(
Ĵ
i
k+1 · (A1zk + B1uk)− v̂ik+1

)
+

1
2
γl+1uTk uk , (58)

where the joint velocity seen in (57) was replaced by q̇k+1
from (37). The terms Ĵ

i
k+1 and v̂ik+1 are the approximations

of the i-th task Jacobian and velocity, respectively, computed
for step k + 1 with the use of q̂k+1, given by (42). If the task
velocity vi does not depend on the joint configuration q but
rather on time, then v̂ik+1 = vik+1 = vi(tk+1).
The cost function in (58) includes the additional goal of

minimizing the control action uk , introduced with the weight
γl+1 > 0. It should be pointed out that the joint velocity
minimization task is still possible by defining the i-th task as:
Ĵ
i
k+1 = I, v̂ik+1 = 0 andWi = γiI, where γi > 0.
Equation (58) can be further regrouped into:

min
uk

1
2

l∑
i=1

uTk B
T
1 (Ĵ

i
k+1)

TWiĴ
i
k+1B1uk +

1
2
γl+1uTk uk

+

l∑
i=1

uTk B
T
1 (Ĵ

i
k+1)

TWi

(
Ĵ
i
k+1A1zk − v̂ik+1

)
. (59)

The constant terms of (58) were omitted in (59), because
they do not affect the optimization process.

D. QUADRATIC PROGRAMMING FORMULATION OF THE
INVERSE KINEMATICS
Gathering the equations derived in sections III-A, III-B,
and III-C, the QP formulation of IK can be expressed as:

min
ξ

1
2
ξTHξ + ξTh

s. t. 8eqξ = beq, biqmin ≤ 8
iqξ ≤ biqmax, (60)

where the vector of optimization variables ξ ∈ Rn is:

ξ = uk (61)

whereas the components of the Hessian matrixH ∈ Rn×n and
gradient vector h ∈ Rn of the goal function are, respectively
(compare with (59)):

H =
l∑
i=1

BT1 (Ĵ
i
k+1)

TWiĴ
i
k+1B1 + γl+1I, (62)

and:

h =
l∑
i=1

BT1 (Ĵ
i
k+1)

TWi

(
Ĵ
i
k+1A1zk − v̂ik+1

)
. (63)

It should be pointed out that due to the joint acceleration being
the decision variable (61), the matricesH and h, given by (62)
and (63), respectively, take a different form than in [2], [14].

Based on (44), the matrix of the equality constraints set
8eq
∈ Rm×n is:

8eq
= Ĵk+1B1, (64)

whereas the equality constraints vector beq ∈ Rm is:

beq = vk+1 − Ĵk+1A1zk . (65)

Based on (52)–(55), the matrix of the inequality constraints
set 8iq

∈ R4n×n is:

8iq
=

B0
B1
In
In

 , (66)

whereas the vector of the lower bounds biqmin ∈ R4n is:

biqmin =

qmin − A0zk
q̇min − A1zk

q̈min
ρmin

 , (67)

and the vector of the upper bounds biqmax ∈ R4n is:

biqmax =

qmax − A0zk
q̇max − A1zk

q̈max
ρmax

 . (68)

The solution of the IK problem is obtained for the
time interval 〈t0, tend 〉, with a given time step 1t , using
Algorithm 1.

Lastly, to include the CLIK in the QP formulation (60), the
end effector velocity vk+1 can be defined similarly as in (30):

vk+1 = vd,k+1 + K êk+1, (69)

where the end effector error êk+1 is a function of xd,k+1 and
f(q̂k+1), similarly as in (29). For a pure translational task, it is:

êk+1 = rd,k+1 − f(q̂k+1). (70)

41028 VOLUME 10, 2022

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

FIGURE 1. Scenario 1A: Desired end effector path (left) and velocity (right).

Algorithm 1 QP IK Solver
(Initialization)
Set t := t0, ûk := 0, zk :=

[
q(t0)T q̇(t0)T

]T
Set the joint limits qmin, qmax, q̇min, q̇max, q̈min, q̈max
Compute constant matricesA (35), B (36), andA0, B0,A1,
B1 (38)
(Main loop)
while t < tend do

Compute q̂k+1 (42), Ĵk+1 (43)
Obtain vk+1 from the end effector trajectory generator
If secondary tasks are present, obtain Ĵ

i
k+1 and v̂

i
k+1

Formulate the QP problem (60)
Set the initial guess ξ init := ûk
Solve the QP problem (60) and obtain ξ∗

Set uk := ξ∗

Compute new state zk+1 := Azk + Buk (33)
Set ûk+1 := uk
Set t := t +1t
Set k := k + 1

end while

E. DISCUSSION
Obviously, the idea of the QP formulation of the IK problem
is not new. The pseudoinverse-based solution (11) can be
obtained analytically by minimizing the quadratic goal func-
tion 1

2 q̇
T q̇ with an equality constraint (6), and no constraints

on joint positions, velocities or accelerations [2].
An efficient QP-based method is proposed in [40]. It can

be divided into two steps. First, the reduced joint velocity q̇p
is obtained from (6) where the Jacobian J is replaced with
a square matrix Jp with only linearly independent columns
of J. Then, the QP problem is formulated to obtain the free
variables of the joint velocity which are necessary to compute
the full vector q̇; conveniently, the equality constraint (6) is no
longer needed, the unequality constraints for joint positions
and velocities are included, and the number of the optimiza-
tion variables is reduced to the number of redundant degrees
of freedom n − m. However, calculating the partial solution

FIGURE 2. Scenario 1A: Joint position difference between the classic IK
solution and the proposed method.

to (6) and combining it with the optimal solution to a reduced
QP problem might no longer be necessary—due to the abun-
dance of computing power of modern computers, a full QP
problem for a typical 7-degree-of-freedom manipulator can
be easily solved.

In [41], the variable joint velocity limits in the QP IK
problem for redundant robots are explored. It should be
noted, however, that these constraints are derived for one spe-
cific manipulator. Meanwhile, the constraints (50) and (51)
(or (55) and (56)) are general for manipulators with revolute
joints.

The QP formulation of IK problem is not limited to
manipulators. It can also be used in mobile robots such as
humanoids [42] or hexapods [43].

All of the discussed methods implement constraints only
on the joint positions q and velocities q̇. The main advantage
of the proposed method is that it directly includes the joint
acceleration constraints. A QP-based method that constrains
the joint accelerations is also proposed in [44]; however, the
inverse kinematics problem is formulated at the acceleration
level. On the other hand, in our method, even though the

VOLUME 10, 2022 41029

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

FIGURE 3. Scenario 1A: End effector error for the classic IK (left) and the proposed
method (right).

FIGURE 4. Scenario 1B: Joint position for the classic IK (left) and the proposed method (right). The red dashed
lines represent the joint limits.

joint acceleration q̈ (or u) is the optimization variable in (60),
the manipulator kinematics is defined at the velocity level,
represented by the constraint (6).

The different subtasks are weighted in the goal function
which simplifies the algorithm; however, in such a for-
mulation, a tradeoff between secondary tasks might occur.
In [42], a sequential QP (SQP) formulation is proposed that
also handles inequality subtasks (e.g. keeping a part of the
manipulator below or above a specified height). A modifica-
tion of Algorithm 1 will be explored in the future to allow for
prioritizing the subtasks in the SQP framework.

IV. RESULTS
A. SIMULATION SETUP
To compare the IK solver proposed in Sec. III with the classic
pseudoinverse solution described in Sec. II, several numerical
simulations were performed. The test subject was a kinematic
model of the KUKA LWR 4+ 7-degree-of-freedom manipu-
lator [45]–[47]. The results of four simulations are presented
in the next sections, whereas this section is devoted to the
description of the simulation setup.

TABLE 1. LWR 4+ modified Denavit-Hartenberg parameters.

The local coordinate frames were attached to the links
of the LWR 4+ manipulator using the modified Denavit-
Hartenberg parameters [48], shown in Tab. 1, whereas the
end effector position in the last link frame was set as: r(7)EE =[
0.1 0 0.078

]T m.
In each scenario, the main task consisted of tracking the

desired end effector position, i.e., a 3-degree-of-freedom
task. Each trajectory consisted of several linear segments
and was generated with the method described in detail in
Appendix.

41030 VOLUME 10, 2022

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

TABLE 2. Scenario 1A&B: Points of the path.

The time step of the simulation was set as 1t = 0.005 s.
The classic IK solution was obtained with (24) and (25),
and the gain for the CLIK in (30) was K = 100 1

s . In the
proposed approach, the Algorithm 1 was used, and the CLIK
gain in (69) was set to K = 50 1

s .
The simulations were perfromed in MATLAB R2020b

on a computer with the Intel(R) Core(TM) i7-6500U CPU
with two 2.6 GHz cores and 16 GB RAM. At each time
step, the solution to (60) was obtained by MATLAB func-
tion quadprog, utilizing the active-set algorithm with default
settings [49].

B. SCENARIO 1A
The start configuration was equal to:

q0 =
[
0◦ 0◦ 0◦ −45◦ 0◦ 45◦ 0◦

]T
,

corresponding to the end effector position X0, and then
the path continued through the points X1, X2, X3, X4, and
again X1, shown in Table 2.
The resulting path consisted of 5 linear segments, as shown

in Fig. 1. The time to traverse each segment was set equal to
T1 = 1.35 s, T2 = 1.5 s, T3 = 1.65 s, T4 = 1.5 s, and
T5 = 1.9 s, resulting in total motion time tend = 7.9 seconds.
The segment times were chosen in such a way that shows the
limits of the classic IK approach. The trajectory generation is
described in detail in Appendix.

To account for the joint velocity minimization in the pro-
posed method, there was one additional task (l = 1) defined
in (57) as J1 = I and v1 = 0 with the weight matrix
W1 = γ1I and γ1 = 106s2. Correspondingly, the necessary
components of (62) and (63) were set to Ĵ

i
k+1 = I and v̂ik+1 =

0 for each simulation step k . There was no joint acceleration
minimization task, and therefore γ2 = 0. No joint constraints
were set.

As can be seen in Fig. 2, both solutions are very close—the
maximumdifference is in the order of a hundredth of a degree.
The norm of the end effector error, computed as:

e = ||rd − fr(q)||, (71)

where rd is the desired end effector trajectory and fr(q)
describes the forward kinematics, is shown in Fig. 3. The
maximum error (71) for the classic method is e = 5.62 ·
10−5 m, whereas for the proposed method it is e = 1.67 ·
10−6 m. The average computation time in each step is 0.14ms
for the classic IK and 1.5 ms for the proposed method.

TABLE 3. Scenario 2: Points of the path.

The results show that the proposed method behaves cor-
rectly and provides the solution similar to the pseudoinverse-
based approach.

C. SCENARIO 1B
In this simulation, the setup from Scenario 1A (Sec. IV-B)
was repeated. This time, however, the existence of the fol-
lowing joint constraints was considered: qmin = −120I

◦

7×1,
qmax = 120I◦7×1, q̇min = −150I7×1

◦

s , q̇max = 150I7×1 ◦s ,
q̈min = −250I7×1

◦

s2
, q̈max = 250I7×1 ◦s2 .

Additionaly, the joint acceleration minimization task was
included in the proposed method with a weight set to
γ2 = 10 s4. The joint velocity minimimization was still
active, with the same weight as in Sec. IV-B, namely
γ1 = 106s2.

As can be seen in Fig. 4, the joint positions are within
their bounds in both solutions. The same is true for joint
velocities, shown in Fig. 5. However, at the acceleration
level, the constraints for the 2nd and 4th joint are violated
in the classic IK solution, as pictured in Fig. 6. At the
same time, the proposed method fulfills the constraints—it is
clearly visible in Fig. 6 that the accelerations saturate at their
limits.

The maximum end effector error (71) for the proposed
method is the same as in the case without the joint limits
(i.e., Scenario 1A, Sec. IV-B), namely e = 1.67 · 10−6 m.
The average computation time in each step is 0.14 ms for the
classic IK and 1.49 ms for the proposed method.

D. SCENARIO 2
The start configuration q0 was chosen as:

q0 =
[
−45◦ 0◦ 0◦ 45◦ 0◦ −45◦ 0◦

]T
,

corresponding to the end effector position X0. From X0, the
path continued through the points X1, X2, X3, X4, and again
X1, shown in Table 3.

The resulting path consisted of 5 linear segments, as shown
in Fig. 7. The time to traverse each segment was set equal
to T1 = 2 s, T2 = 1.5 s, T3 = 1.2 s, T4 = 1.2 s, and
T5 = 1.2 s, resulting in total motion time tend = 7.1 seconds.
The segment times were chosen in such a way that shows the
limits of the classic IK approach. The trajectory generation is
described in detail in Appendix.
The joint limits were set as follows: qmin = −100I

◦

7×1,
qmax = 100I◦7×1, q̇min = −150I7×1

◦

s , q̇max = 150I7×1 ◦s ,
q̈min = −350I7×1

◦

s2
, q̈max = 350I7×1 ◦s2 .

VOLUME 10, 2022 41031

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

FIGURE 5. Scenario 1B: Joint velocity for the classic IK (left) and the proposed method (right). The red dashed
lines represent the joint limits.

FIGURE 6. Scenario 1B: Joint acceleration for the classic IK (left) and the proposed method (right). The red dashed
lines represent the joint limits.

FIGURE 7. Scenario 2: Desired end effector path (left) and velocity (right).

For the proposed method, the joint velocity minimiza-
tion and joint acceleration minimization tasks were active
with the same weights as in Sec. IV-C: γ1 = 106s2 and
γ2 = 10 s4.

The joint positions are shown in Fig. 8. In the classic IK
solution, the 1st joint exceeds its limit, whereas the proposed
method satisfies the position constraints. The same happens

at the velocity level, shown in Fig. 9. The joint accelerations
are shown in Fig. 10. Again, the classic IK method results in
the constraint violation, whereas in the proposed method the
constraints are satisfied.

The end effector error (71) is shown in Fig. 11. The max-
imum error of the classic IK is e = 6.82 · 10−5 m, and the
maximum error of the proposed method is e = 1.95 · 10−6.

41032 VOLUME 10, 2022

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

FIGURE 8. Scenario 2: Joint position for the classic IK (left) and the proposed method (right). The red dashed lines
represent the joint limits.

FIGURE 9. Scenario 2: Joint velocity for the classic IK (left) and the proposed method (right). The red dashed lines
represent the joint limits.

FIGURE 10. Scenario 2: Joint acceleration for the classic IK (left) and the proposed method (right). The red dashed
lines represent the joint limits.

The average computation time of the classic IK is 0.11 ms
and of the proposed method 1.29 ms.

E. SCENARIO 3
In this scenario, the start configuration q0 was:

q0 =
[
0◦ 0◦ 0◦ −45◦ 0◦ 45◦ 0◦

]T
,

corresponding to the end effector position X0, and then the
path continued through the points X1, X2, X3, X4, and again
X1, shown in Table 4.
The resulting path consisted of 5 linear segments, as shown

in Fig. 12. The time to traverse each segment was set equal
to T1 = 1.1 s, T2 = 0.75 s, T3 = 2.4 s, T4 = 0.6 s, and

VOLUME 10, 2022 41033

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

FIGURE 11. Scenario 2: End effector error for the classic IK (left) and the proposed method
(right).

FIGURE 12. Scenario 3: Desired end effector path (left) and velocity (right).

FIGURE 13. Scenario 3: Joint position for the classic IK (left) and the proposed method (right). The red dashed lines
represent the joint limits.

T5 = 1.1 s, resulting in total motion time tend = 5.95 sec-
onds. The trajectory generation is described in detail in
Appendix.

The joint limits were set to: qmin = −120I
◦

7×1, qmax =

120I◦7×1, q̇min = −150I7×1
◦

s , q̇max = 150I7×1 ◦s , q̈min =

−350I7×1 ◦s2 , q̈max = 350I7×1 ◦s2 .

Again, similarly as in Sec. IV-C and IV-D, the weights of
the joint velocity and acceleration minimization tasks in the
proposed method were set to γ1 = 106s2 and γ2 = 10 s4,
respectively.

The joint positions are within their bounds in both the
classic IK and the proposed method, as shown in Fig. 13.

41034 VOLUME 10, 2022

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

FIGURE 14. Scenario 3: Joint velocity for the classic IK (left) and the proposed method (right). The red dashed
lines represent the joint limits.

FIGURE 15. Scenario 3: Joint acceleration for the classic IK (left) and the proposed method (right). The red dashed
lines represent the joint limits.

FIGURE 16. Scenario 3: End effector error for the classic IK (left) and the proposed method
(right).

However, as can be seen in Fig. 14, the joint velocity for the
2nd axis exceeds its limit in the classic IK solution, whereas
in the proposed method it just touches its bound. At the
acceleration level, pictured in Fig. 15, the joint constraints
violations are again the domain of the classic IK, whereas the
proposed method satisfies the limit.

The end effector error (71) is shown in Fig. 16. The
maximum error of the classic IK is e = 1.63 ·
10−4 m, and the maximum error of the proposed method
is e = 8.58 · 10−6. The average computation time of
the classic IK is 0.09 ms and of the proposed method
1.18 ms.

VOLUME 10, 2022 41035

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

TABLE 4. Scenario 3: Points of the path.

V. CONCLUSION
A novel QP-based redundancy resolution method developed
and tested in this work has proven to be capable of keeping the
joint accelerations within the prescribed limits, which distin-
guishes it from the previously proposed methods of this kind,
being useful in maintaining constraints up to the velocity
level only. The QP approach itself is an attractive alternative
to classic pseudoinverse-based methods, as it offers greater
flexibility in the fulfilment of secondary tasks.

During the simulations, to emphasize the practicability of
the proposed algorithm, the kinematics of a 7-DOF industrial
robot was exploited. Even though the computation time is an
order of magnitude bigger than for the classic IK method,
it is still—on average—under 2 ms in the tested scenarios.
A low-level C/C++ implementation utilizing fast algebraic
libraries (like BLAS and LAPACK [50], [51]) and an efficient
QP solver (for example qpOASES [52]–[54]), should be able
to easily solve the IK problem for a typical redundant manip-
ulator under real-time operation conditions, using a medium
performance computer.

Of course, the newly proposed method is not a faultless
approach that provides an ultimate solution to all redun-
dancy resolution problems. Clearly, a constrained optimiza-
tion problem might not always be feasible—the required
motion may be beyond the robot’s capabilities, and a solution
that fulfills the constraints may be non-existent. In other
words, if the desired trajectory becomes too demanding,
it cannot be achieved within the imposed joint limits. In such
a case, it might be necessary to relax requirements for the
end effector velocities or accelerations while maintaining the
desired shape of the trajectory. Technically, a solution to that
problem can come in the form of trajectory scaling—the end
effector will stay on the path, but the motion duration will
be extended [55]. Therefore, a natural continuation of the
work presented here is to focus on extending the QP-based
approach to trajectory scaling problems. Our preliminary
research on this problem indicates that the QP-based frame-
work of redundancy resolution is well suited for trajectory
scaling applications.

APPENDIX
TRAJECTORY GENERATION
For each i-th segment, the end effector position r(t) and
velocity v(t) are defined as:{

r(t) = Xi−1 + µisi(ϕ)
v(t) = µiṡi(ϕ),

(72)

where the unit vector µi along the direction of motion is:

µi =
Xi − Xi−1

||Xi − Xi−1||
, (73)

whereas the time law si(ϕ) is defined as a fifth-order poly-
nomial that smoothly increases from 0 to 1 for ϕ increasing
from 0 to Ti:

si(ϕ) =
6

T 5
i

ϕ5 −
15

T 4
i

ϕ4 +
10

T 3
i

ϕ3, (74)

and the local time ϕ, measured from the start to end of the
segment, is:

ϕ(t) =

{
t for t ∈ 〈0, T1)

t −
∑i−1

k=1
Tk for t ∈ 〈T1, tend 〉 ,

(75)

where the total duration of motion tend =
∑NT

i=1 Ti, whereas
Ti is the duration of the i-th segment, and NT is the number
of segments.

REFERENCES
[1] S. Chiaverini, G. Oriolo, andA.A.Maciejewski,Redundant Robots. Cham,

Switzerland: Springer, 2016, pp. 221–242.
[2] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, ‘‘Differential kinemat-

ics and statics,’’ in Robotics. London, U.K.: Springer, 2009, pp. 105–160.
[3] B. Siciliano and J. J. E. Slotine, ‘‘A general framework for managing

multiple tasks in highly redundant robotic systems,’’ in Proc. 5th Int. Conf.
Adv. Robot. (ICAR), vol. 2, Jun. 1991, pp. 1211–1216.

[4] S. Chiaverini, ‘‘Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators,’’ IEEE Trans. Robot.
Autom., vol. 13, no. 3, pp. 398–410, Jun. 1997.

[5] N. Mansard, O. Khatib, and A. Kheddar, ‘‘A unified approach to integrate
unilateral constraints in the stack of tasks,’’ IEEE Trans. Robot., vol. 25,
no. 3, pp. 670–685, Jun. 2009.

[6] F. Flacco andA.D. Luca, ‘‘A reverse priority approach tomulti-task control
of redundant robots,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep. 2014, pp. 2421–2427.

[7] S. Moe, G. Antonelli, A. R. Teel, K. Y. Pettersen, and J. Schrimpf, ‘‘Set-
based tasks within the singularity-robust multiple task-priority inverse
kinematics framework: General formulation, stability analysis, and exper-
imental results,’’ Frontiers Robot. AI, vol. 3, p. 16, Apr. 2016.

[8] A. Colomé and C. Torras, ‘‘Redundant inverse kinematics: Experimental
comparative review and two enhancements,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2012, pp. 5333–5340.

[9] A. Colomé and C. Torras, ‘‘Closed-loop inverse kinematics for redundant
robots: Comparative assessment and two enhancements,’’ IEEE/ASME
Trans. Mechatronics, vol. 20, no. 2, pp. 944–955, Apr. 2015.

[10] N. Mansard, A. Remazeilles, and F. Chaumette, ‘‘Continuity of varying-
feature-set control laws,’’ IEEE Trans. Autom. Control, vol. 54, no. 11,
pp. 2493–2505, Nov. 2009.

[11] T. F. Chan and R. V. Dubey, ‘‘Aweighted least-norm solution based scheme
for avoiding joint limits for redundant joint manipulators,’’ IEEE Trans.
Robot. Autom., vol. 11, no. 2, pp. 286–292, Apr. 1995.

[12] D. Raunhardt and R. Boulic, ‘‘Progressive clamping,’’ in Proc. IEEE Int.
Conf. Robot. Autom., Apr. 2007, pp. 4414–4419.

[13] P. Jiang, S. Huang, J. Xiang, and M. Z. Q. Chen, ‘‘Iteratively successive
projection: A novel continuous approach for the task-based control of
redundant robots,’’ IEEE Access, vol. 7, pp. 25347–25358, 2019.

[14] F. Flacco, A. De Luca, and O. Khatib, ‘‘Control of redundant robots under
hard joint constraints: Saturation in the null space,’’ IEEE Trans. Robot.,
vol. 31, no. 3, pp. 637–654, Jun. 2015.

[15] A. Liégeois, ‘‘Automatic supervisory control of the configuration and
behavior of multibody mechanisms,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., vol. SMC-7, no. 12, pp. 868–871, Dec. 1977.

[16] H. Zghal, R. V. Dubey, and J. A. Euler, ‘‘Efficient gradient projection
optimization for manipulators with multiple degrees of redundancy,’’ in
Proc. IEEE Int. Conf. Robot. Autom., vol. 2, May 1990, pp. 1006–1011.

41036 VOLUME 10, 2022

Ł. Woliński, M. Wojtyra: Novel QP-Based Kinematic Redundancy Resolution Method With Joint Constraints Satisfaction

[17] A. Ben Israel and T. N. E. Greville, Generalized Inverses: Theory
and Applications. New York, NY, USA: Springer-Verlag, 2003, doi:
10.1007/b97366.

[18] D. N. Nenchev, ‘‘Redundancy resolution through local optimization:
A review,’’ J. Robot. Syst., vol. 6, no. 6, pp. 769–798, Dec. 1989.

[19] T. Yoshikawa, ‘‘Dynamic manipulability of robot manipulators,’’ in Proc.
IEEE Int. Conf. Robot. Autom., vol. 2, Mar. 1985, pp. 1033–1038.

[20] A. Zube, ‘‘Cartesian nonlinear model predictive control of redundant
manipulators considering obstacles,’’ inProc. IEEE Int. Conf. Ind. Technol.
(ICIT), Mar. 2015, pp. 137–142.

[21] A. A.Maciejewski and C. A. Klein, ‘‘Obstacle avoidance for kinematically
redundant manipulators in dynamically varying environments,’’ Int. J.
Robot. Res., vol. 4, no. 3, pp. 109–117, Sep. 1985.

[22] T. Petrič, A. Gams, N. Likar, and L. Žlajpah, ‘‘Obstacle avoidance with
industrial robots,’’ inMotion and Operation Planning of Robotic Systems,
G. Carbone and F. Gomez-Bravo, Eds. Cham, Switzerland: Springer, 2015,
pp. 113–145.

[23] F. Flacco and A. De Luca, ‘‘Unilateral constraints in the reverse prior-
ity redundancy resolution method,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2015, pp. 2564–2571.

[24] D. A. Drexler, ‘‘Solution of the closed-loop inverse kinematics algorithm
using the Crank–Nicolson method,’’ in Proc. IEEE 14th Int. Symp. Appl.
Mach. Intell. Informat. (SAMI), Jan. 2016, pp. 351–356.

[25] D. A. Drexler and L. Kovács, ‘‘Second-order and implicit methods in
numerical integration improve tracking performance of the closed-loop
inverse kinematics algorithm,’’ in Proc. IEEE Int. Conf. Syst., Man,
Cybern. (SMC), Oct. 2016, pp. 003362–003367.

[26] D. Drexler, ‘‘Closed-loop inverse kinematics algorithm with implicit
numerical integration,’’ Acta Polytech. Hungarica, vol. 14, no. 1,
pp. 147–161, Jan. 2017.

[27] P. Falco and C. Natale, ‘‘On the stability of closed-loop inverse kinematics
algorithms for redundant robots,’’ IEEE Trans. Robot., vol. 27, no. 4,
pp. 780–784, Aug. 2011.

[28] G. Antonelli, ‘‘Stability analysis for prioritized closed-loop inverse kine-
matic algorithms for redundant robotic systems,’’ IEEE Trans. Robot.,
vol. 25, no. 5, pp. 985–994, Oct. 2009.

[29] S. R. Buss and J.-S. Kim, ‘‘Selectively damped least squares for inverse
kinematics,’’ J. Graph. Tools, vol. 10, no. 3, pp. 37–49, Jan. 2005.

[30] D. D. Vito, C. Natale, and G. Antonelli, ‘‘A comparison of damped least
squares algorithms for inverse kinematics of robot manipulators,’’ IFAC-
PapersOnLine, vol. 50, no. 1, pp. 6869–6874, 2017.

[31] A. Reiter, A. Müller, and H. Gattringer, ‘‘Inverse kinematics in minimum-
time trajectory planning for kinematically redundant manipulators,’’ in
Proc. 42nd Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2016,
pp. 6873–6878.

[32] A. Reiter, A. Müller, and H. Gattringer, ‘‘On higher order inverse kine-
matics methods in time-optimal trajectory planning for kinematically
redundant manipulators,’’ IEEE Trans. Ind. Informat., vol. 14, no. 4,
pp. 1681–1690, Apr. 2018.

[33] M. Faroni, M. Beschi, C. G. L. Bianco, and A. Visioli, ‘‘Predictive joint
trajectory scaling for manipulators with kinodynamic constraints,’’Control
Eng. Pract., vol. 95, Feb. 2020, Art. no. 104264.

[34] T. Kröger, A. Tomiczek, and F. Wahl, ‘‘Towards on-line trajectory com-
putation,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006,
pp. 736–741.

[35] X. Broquere, D. Sidobre, and I. Herrera-Aguilar, ‘‘Soft motion trajectory
planner for service manipulator robot,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Sep. 2008, pp. 2808–2813.

[36] R. Haschke, E. Weitnauer, and H. Ritter, ‘‘On-line planning of time-
optimal, jerk-limited trajectories,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2008, pp. 3248–3253.

[37] F. Flacco and A. De Luca, ‘‘Optimal redundancy resolution with task
scaling under hard bounds in the robot joint space,’’ in Proc. IEEE Int.
Conf. Robot. Autom., May 2013, pp. 3969–3975.

[38] A. Del Prete, ‘‘Joint position and velocity bounds in discrete-time accel-
eration/torque control of robot manipulators,’’ IEEE Robot. Autom. Lett.,
vol. 3, no. 1, pp. 281–288, Jan. 2018.

[39] J. Branke, K. Deb, K. Miettinen, and R. Slowiński, Multiobjective Opti-
mizatio. Berlin, Germany: Springer-Verlag, 2008.

[40] F.-T. Cheng, T.-H. Chen, and Y.-Y. Sun, ‘‘Efficient algorithm for resolving
manipulator redundancy—The compact QP method,’’ in Proc. IEEE Int.
Conf. Robot. Autom., vol. 1, Jan. 1992, pp. 508–513.

[41] Z. Zhang and Y. Zhang, ‘‘Variable joint-velocity limits of redundant robot
manipulators handled by quadratic programming,’’ IEEE/ASME Trans.
Mechatronics, vol. 18, no. 2, pp. 674–686, Apr. 2013.

[42] O. Kanoun, F. Lamiraux, and P.-B. Wieber, ‘‘Kinematic control of redun-
dant manipulators: Generalizing the task-priority framework to inequality
task,’’ IEEE Trans. Robot., vol. 27, no. 4, pp. 785–792, Aug. 2011.

[43] D. Khudher and R. Powell, ‘‘Quadratic programming for inverse kinemat-
ics control of a hexapod robot with inequality constraints,’’ in Proc. Int.
Conf. Robot., Current Trends Future Challenges (RCTFC), 2016, pp. 1–5.

[44] S. Cocuzza, I. Pretto, and S. Debei, ‘‘Least-squares-based reaction con-
trol of space manipulators,’’ J. Guid., Control, Dyn., vol. 35, no. 3,
pp. 976–986, May 2012.

[45] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schaeffer,
A. Beyer, O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, and
G. Hirzinger, ‘‘The KUKA-DLR lightweight robot arm—A new reference
platform for robotics research and manufacturing,’’ in Proc. 41st Int. Symp.
Robot. (ISR), 6th German Conf. Robot. (ROBOTIK), Jun. 2010, pp. 1–8.

[46] Lightweight Robot 4+ Specification, Version: Spez LBR 4+ V2en, KUKA,
Augsburg, Germany, 2010.

[47] L. Woliński and M. Wojtyra, ‘‘Comparison of dynamic properties of two
LWR 4+ robots,’’ in Proc. 21st CISM-IFToMM Symp. Robot Design, Dyn.
Control (ROMANSY), vol. 569, Jun. 2016, pp. 413–420.

[48] K. J. Waldron and J. Schmiedeler, Kinematics. Cham, Switzerland:
Springer, 2016, pp. 11–36.

[49] MATLAB Documentation: Quadprog, Mathworks, Natick, MA, USA,
2020.

[50] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, andM.Heroux,
‘‘An updated set of basic linear algebra subprograms (BLAS),’’ ACM
Trans. Math. Softw., vol. 28, no. 2, pp. 135–151, Jun. 2002.

[51] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1999.

[52] H. J. Ferreau, H. G. Bock, and M. Diehl, ‘‘An online active set strategy
to overcome the limitations of explicit MPC,’’ Int. J. Robust Nonlinear
Control, vol. 18, no. 8, pp. 816–830, 2008.

[53] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
‘‘qpOASES: A parametric active-set algorithm for quadratic program-
ming,’’Math. Program. Comput., vol. 6, no. 4, pp. 327–363, 2014.

[54] H. J. Ferreau, A. Potschka, and C. Kirches. (2017). qpOASES. [Online].
Available: http://www.qpOASES.org/

[55] M. Wojtyra and L. Woliński, ‘‘Proposition of on-line velocity scaling
algorithm for task space trajectories,’’ in ROMANSY 23—Robot Design,
Dynamics and Control, G. Venture, J. Solis, Y. Takeda, and A. Konno, Eds.
Cham, Switzerland: Springer, 2021, pp. 423–431.

ŁUKASZ WOLIŃSKI received the B.S. and M.S.
degrees in robotics and control from the War-
saw University of Technology, Warsaw, Poland,
in 2012 and 2013, respectively, where he is cur-
rently pursuing the Ph.D. degree in automation,
electronic, and electrical engineering.

In 2015, he completed a research visit at JKU
Linz. In 2018, he worked for RT Robotics Com-
pany, Warsaw. Since 2020, he has been a Research
and Teaching Assistant with the Faculty of Power

and Aeronautical Engineering, Warsaw University of Technology.

MAREK WOJTYRA received the Ph.D. degree in
mechanics and the D.Sc. degree in automation and
robotics from the Warsaw University of Technol-
ogy (WUT), Warsaw, Poland, in 2000 and 2013,
respectively.

He is currently an Associate Professor with the
Institute of Aeronautics and Applied Mechanics,
WUT, where he is also the Head of the Division of
Theory of Machines and Robots. He has published
a book and more than 80 journal articles and con-

ference papers. His research interests includemultibody systems and robotics
with its applications.

Dr. Wojtyra serves as a reviewer for several journals.

VOLUME 10, 2022 41037

http://dx.doi.org/10.1007/b97366

