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ABSTRACT This paper is concerned with the distributed fusion estimation problem of range-only target
tracking system with unknown but bounded noises, where the linear and nonlinear motion models are
both considered. Particularly, a kind of nonlinear transformation is used to convert the nonlinear distance
measurement model into a linear one, which eliminates the corresponding linearization errors in the design
of estimation error system. In spite of the transformed measurement noise becomes more complicated, while
it is still bounded. Moreover, for the nonlinear target motion model, the state linearization error caused by the
Taylor expansion is modeled by the state dependent matrix with uncertainty bounded matrix. In this case,
based on the bounded recursive optimization algorithm, two kinds of convex optimization problems are
established to determine the gains of the local/fusion estimators, and the stability of the designed estimators
also can be guaranteed. Finally, two different range-only target tracking systems are presented to show the
effectiveness and advantages of the proposed methods.

INDEX TERMS Target tracking, range-only measurement, nonlinear transformation, bounded recursive
optimization, distributed fusion estimation.

I. INTRODUCTION
As an essential application of multi-sensor fusion estimation,
target location and tracking not only attracted significant
interest in the military field initially, but also has been a
research hotspot in the civilian field over the past decades,
such as emergency location [1], intelligent transport sys-
tems [2], cellular mobile station location [3]. Generally, the
time-of-arrival (TOA), time-difference-of-arrival (TDOA),
angle-of-arrival (AOA) and received signal strength (RSS)
are conventional measurement-based location and tracking
methods [4]–[8], where AOA is based on the angle of the
target, RSS is based on the signal strength, TOA and TDOA
are based on the time information. However, among these
location methods, AOA requires the sensor to have angle-
measuring capability, TOA and TDOA require the clock syn-
chronization between the sensors, and RSS requires sensors
to identify the strength of the signal. In fact, the target tracking
problem also can be viewed as a nonlinear state estimation
problem for the range-only tracking systems. Therefore, dif-
ferent from above conventional location methods, this paper
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will focus on distributed fusion estimation problem of the
target tracking systems, which only requires to know the
range-only measurement.

Since the target tracking problem is essentially a nonlin-
ear state estimation problem, a variety of nonlinear filters
have been developed in [9]–[13] to track the mobile target.
Specifically, the extended Kalman filter (EKF) [14] usually
linearized the nonlinear process and measurement model by
Taylor series expansion, then the classical Kalman filter (KF)
can be used to estimate the target’s position. However, the
linearization errors were inevitably introduced by using the
Taylor expansion, whichmight causing the nonlinear filtering
was unstable. For example, a stability condition with respect
to the linearization errors should be given to ensure the sta-
bility of the estimator in [11]. Though the second-order or
higher-order EKF [15] can reduced the linearization errors,
the Jacobian matrix or Hessian matrix were difficult to be
calculated and thus the computation burden was increased
as well. To better overcome this limitation, the unscented
Kalman filter (UKF) [16] was developed to estimate the
nonlinear system, where the sigma points were sampled
to approximate the probability distribution of the nonlinear
system, and the estimation precious can up to third-order
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Taylor expansion. However, the UKF performed a sensi-
tive ability to nonpositive definite covariances, thus the key
parameters α, β, κ also should be adjusted reasonably in
practice. Then, a cubature Kalman filter (CKF) [17] was
emerged to reduce the sampling points, thus the computa-
tion time can be reduced while keeping a fairly estimation
performance and a better stability. Unfortunately, when the
prediction error was larger, the UKF or CKF methods might
be performed an unsatisfactory estimation performance that
introduced by the higher orders. Therefore, for the target
tracking systems with range-only measurements, a kind of
nonlinear transformation [18] is employed in this paper to
transfer the nonlinear measurement into a linear form, which
can avoids the linearization errors caused by above lineariza-
tion approaches.

Notice that, whether the above single-sensor tracking
estimation methods, or multi-sensor fusion tracking meth-
ods [19]–[22], the system uncertainty should be effectively
handled. Particularly, for the most existing distributed esti-
mation works, a saturated-constrained distributed filtering
algorithm was developed in [23] under uncertain missing
probabilities, and the boundedness and monotonicity were
also discussed. In [24], a recursive and distributed Kalman fil-
tering algorithm was developed for interconnected dynamic
systems, where each local estimator was designed by its
own and neighbors’ information. Additionally, a generalized
nonlinear weighted measurement fusion UKF (WMF-UKF)
algorithm was developed in [25], and the asymptotic global
optimality has also been demonstrated. However, the above
methods were all assumed that the noise covariances of sys-
tems should be have a prior information, while the process
and measurement may contain various noises without statis-
tical properties in practice [26]. In this case, a noise estimator
was proposed in [27] for estimating the noises, and then elimi-
nated the estimated noises to obtain a desirable performance.
Although a nonlinear transformation developed in [18] can
transformed the nonlinear distance measurement to a linear
one [28], the converted noises were no longer Gaussian even
if the original system noises assumed to be Gaussian. Then,
by using a similar nonlinear transformation, the dimension
of the augmented measurement in [29] was reduced by the
Gauss–Markov measurement fusion, and an adaptive factor
was introduced by the hypothesis test to deal with the non-
Gaussian noises. Recently, a bounded recursive optimization
algorithm was developed in [30] to solve the uncertainty
caused by unknown bounded noises, while the stability of the
designed nonlinear estimator was not discussed. Meanwhile,
a distributed nonlinear estimation problem was considered
in [31] based on the recursive optimization approach for
rang-only target tracking system. Then, a decoupling strat-
egy with sequential-structure was proposed in [32] to solve
the interconnected terms, where the designed algorithm can
implemented fully distributed estimation. In spite of [33]
presented the stability condition of the nonlinear estimator
without noise statistical characteristics, the distance measure-
ment function or the linearization errors of the range-only

measurement were not easily judged as bounded, thus the
stability condition was useless in the range-only tracking
systems.

From the above analysis, the design problem of stable
fusion tracking estimators for range-only target tracking sys-
tems will be considered in this paper. The contributions of
this paper can be summarized as follows: (1) A nonlinear
transformation is employed to transform the distance mea-
surement into a linear measurement model, which can avoid
the linearization errors caused by the conventional lineariza-
tion approaches; (2) The linearization error of the nonlinear
state model is modeled by the bounded uncertainty matrix
with state-dependent matrix, and a bounded recursive opti-
mization scheme is constructed to establish different convex
optimization problems, which can deal with the transformed
measurement noises without statistical characteristics. Then,
the stable local estimator gains and fusion criterion can be
determined by the standard software packages. Finally, two
different target tracking examples are given to verify the
effectiveness and advantages of the proposed methods.
Notations: Rm×n denotes the set of m × n real matrices,

the superscript ‘‘T’’ denotes the matrix transpose, and A < 0
denotes a negative definite matrix. O and I are zero and
identity matrix with appropriate dimension, respectively, the
symmetric terms of a symmetric matrix are denoted by ‘‘∗’’.
Moreover, || · ||2 represents the 2-norm, and λmax(A) is the
maximum eigenvalue of the A. col {b1, . . . , bn} denotes a
column vector whose elements are b1, . . . , bn, while diag {·}
denotes a block diagonal matrix.

II. PROBLEM FORMULATION
Consider a multi-sensor range-only target tracking system
(see Fig. 1), where the motion process of the target can be
described by the following nonlinear state model:

x(t + 1) = f (x(t))+ B(t)w(t) (1)

where the x(t) ∈ Rn denotes the target’s motion state
in the planar coordinate, f (x(t)) is the nonlinear function
that assume to be continuously differentiable. B(t) ∈ Rn×r

is time-varying matrix, w(t) ∈ Rr×1 is the system noise
satisfy:

‖w(t)‖2 ≤ σw (2)

where σw is a unknown upper bound.
Moreover, when considering only the distance between the

target and each sensor can be measured by the sensors, and
there are qi ≥ 3 sensor nodes within each sensor group. Then,
the measurement model of each sensor can be given by

d i1(t) =
√
(xp(t)− x i1)

2 + (yp(t)− yi1)
2 + vi1(t)

d i2(t) =
√
(xp(t)− x i2)

2 + (yp(t)− yi2)
2 + vi2(t)

...

d iqi (t) =
√
(xp(t)− x iqi )

2 + (yp(t)− yiqi )
2 + viqi (t) (3)
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FIGURE 1. Distributed multi-sensor fusion tracking structure.

where i = 1, 2, . . . ,m and m is the number of the sensor
groups, (xp(t), yp(t)) and (x iqi , y

i
qi ) are the target’s position and

the sensor’s position in the X − Y planar, respectively, and
viqi (t) is the sensor measurement noise satisfy:

‖viqi (t)‖2 ≤ σ
i
qi (4)

where σ iqi is also a unknown upper bound.
Generally, the sink nodes collecting the measurements

from each sensor of its corresponding sensor groups, then the
measurement yi(t) ∈ Rqi can be written as:

yi(t) = hi(x(t))+ vi(t) (5)

where yi(t) , col{d i1(t), d
i
2(t), . . . , d

i
qi (t)} is a nonlinear

measurement. In order to reduce the influence of linearization
errors in the nonlinear state estimation problem, a kind of
nonlinear transformation, which has been developed in [18],
with respect to range-only information of target tracking
system is introduced to convert yi(t) as a linear model. Specif-
ically, rearranging and squaring both sides of the equations in
(3) to yield

(d i1(t)− v
i
1(t))

2
= (xp(t)− x i1)

2
+ (yp(t)− yi1)

2

(d i2(t)− v
i
2(t))

2
= (xp(t)− x i2)

2
+ (yp(t)− yi2)

2

...

(d iqi (t)− v
i
qi (t))

2
= (xp(t)− x iqi )

2
+ (yp(t)− yiqi )

2 (6)

Then, taking the 1-th equation in (6) as a benchmark, and
subtracting the 1-th equation from others, one has

zi(t) = Ci(t)x(t)+ v̄i(t) (7)

where

Ci(t) = 2


(x i1 − x

i
2) (yi1 − y

i
2)

(x i1 − x
i
3) (yi1 − y

i
3)

...
...

(x i1 − x
i
qi ) (y

i
1 − y

i
qi )

 (8)

v̄i(t) =


2d i2(t)v

i
2(t)− 2d i1(t)v

i
1(t)

2d i3(t)v
i
3(t)− 2d i1(t)v

i
1(t)

...

2d iqi (t)v
i
qi (t)− 2d i1(t)v

i
1(t)



+


(vi1(t))

2
− (vi2(t))

2

(vi1(t))
2
− (vi3(t))

2

...

(vi1(t))
2
− (viqi (t))

2

 (9)

zi(t) =


(x i1)

2
− (x i2)

2
+ (yi1)

2
− (yi2)

2

(x i1)
2
− (x i3)

2
+ (yi1)

2
− (yi3)

2

...

(x i1)
2
− (x iqi )

2
+ (yi1)

2
− (yiqi )

2



+


(d i2(t))

2
− (d i1(t))

2

(d i3(t))
2
− (d i1(t))

2

...

(d iqi (t))
2
− (d i1(t))

2

 (10)

Under this case, the measurements {zi(1), zi(2), . . . , zi(t)}
are employed to design nonlinear local state estimate (LSE)
x̂ni (t) as follows:{

x̂pi (t) = f (x̂ni (t − 1))
x̂ni (t) = x̂pi (t)+ Kn

i (t)[zi(t)− Ci(t)x̂
p
i (t)]

(11)

where x̂pi (t) denotes one-step prediction, and Kn
i (t) is the

nonlinear local gain to be determined in the next section.
Next, the LSEs x̂ni (t)(i = 1, 2, . . . ,m) are used to design

nonlinear distributed fusion estimate (DFE) x̂n(t) as follows:

x̂n(t) =
m∑
i=1

Wn
i (t)x̂

n
i (t) (12)

where the distributed weighting fusion matrices satisfy∑m
i=1W

n
i (t) = I .

Notice that, when the nonlinear state model (1) reduces to
a linear state space:

x(t + 1) = A(t)x(t)+ 0(t)w(t) (13)

where A(t) is the state transition matrix with appropriate
dimensions. Then, the linear LSEs x̂ li (t)(i = 1, 2, . . . ,m) for
linear systems (13) and (7) can be designed as:

x̂ li (t) = A(t − 1)x̂ li (t − 1)

+Kl
i(t)[zi(t)− Ci(t)A(t − 1)x̂ li (t − 1)] (14)

where Kl
i(t) is the linear local gain to be determined.

Similarly, based on the LSEs x̂ li (t)(i = 1, 2, . . . ,m), the
linear DFE x̂l(t) is given by:

x̂l(t) =
m∑
i=1

Wl
i(t)x̂

l
i (t) (15)

where the weighting fusion matrices satisfy
∑m

i=1W
l
i(t) = I .

Consequently, the main objectives of this paper are to solve
the following problems:
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• The first is to design local gains Kn
i (t) in (11) and Kl

i(t)
in (14) such that the local linear/nonlinear estimators
are stable, respectively, while the upper bound of square
errors (SEs) of the corresponding LSEs are minimal at
each time.

• The second is to design distributed weighting fusion
matrices Wn

i (t) in (12) and Wl
i(t) in (15) such that the

fusion estimators are stable, while the upper bound of
SEs of the corresponding DFEs are also minimal at each
time.

Remark 1: Notice that, the nonlinear raw measurement
yi(t) in (5) are usually linearized by the Taylor series expan-
sion and unscented transformation, while the linearization
errors will inevitably be introduced. This is because the Tay-
lor series usually expanding the nonlinear function in first
or second order, while the higher-order terms are neglected
on the designing of filter, and the neglected higher-order
terms also affect the accuracy of the estimation. At the same
time, the calculate of Jacobian or Hessian matrices will
increase the computation burden of the designed estimation
algorithms. Though the unscented transformation by using
the sigma points to approximate the probability distribution,
which avoids solving the Jacobian or Hessian matrices and
the estimation precision can up to the third order Taylor
expansion, it still might be given a undesirable estimation
error caused by the higher orders or prediction errors. In this
case, a nonlinear transformation is introduced in this paper
to convert the nonlinear measurement model (3) to a linear
one (7), which can avoid the linearization errors caused by
above linearization approaches and improve the stability of
the designed estimators.
Remark 2: It can be seen from (9) that the measurement

noise vi(t) in (5) after nonlinear transformation is no longer
Gaussian and cross uncorrelated, even assuming that the
measurement noises in (3) obey mutually independent Gaus-
sian distribution, thus the various extension Kalman filtering
methods cannot be directly employed to track the target.
Though it increases the difficulty of estimator design, the
developed estimator (11) in this paper are not require to have a
prior knowledge of the noise statistical characteristics, which
not only can performs an effective estimation performance,
but also reduces the computation complexity of the noise
covariances as compared with [29].

III. MAIN RESULTS
In this section, the distributed linear/nonlinear fusion estima-
tion algorithms will be proposed. Firstly, an useful Lemma is
introduced for deriving the main results as follows.
Lemma 1 ( [36]): Let PT1 = P1, P2 and P3 be real

matrices of appropriate dimensions withF(t) satisfyingFT(t)
F(t) ≤ I . Then

P1 + P3F(t)P2 + PT2F
T(t)PT3 < 0

if and only if there exists a positive scalar ε > 0 such that−εI εP2 0
∗ P1 P3
∗ ∗ −εI

 < 0

A. LINEAR DISTRIBUTED FUSION ESTIMATION
ALGORITHM DESIGN
For the linear target motionmodel (13), based on the designed
local estimator (14) and fusion criterion (15), the local esti-
mator gain Kl

i(t) and weighting fusion matrix Wl
i(t) will be

given in Theorem 1.
Define

AKCi (t) , (I − Kl
i(t)Ci(t))A(t − 1)

0K
Ci (t) , (I − Kl

i(t)Ci(t))0(t − 1)
ALW(t) ,Wl(t)diag{AKC1

(t), . . . ,AKCm (t)}
0LW(t) ,Wl(t)col{0K

C1
(t), . . . , 0K

Cm (t)}
KL
W(t) ,Wl(t)diag{−Kl

1(t), . . . ,−K
l
m(t)}

Wl(t) , [Wl
1(t), . . . ,W

l
m−1(t), I −

∑m−1

i=1
Wl

i(t)]

(16)

Theorem 1: Each local estimator gain Kl
i(t) for linear sys-

tems (13) and (7) can be determined by solving the following
convex optimization problem:

min
2i(t)>0, ϒi(t)>0,

4i(t)>0,K
l
i (t),χi(t)

Tr{ϒi(t)} + Tr{4i(t)}

s.t. :




−I AKCi (t) 0K

Ci (t) −K
l
i(t)

∗ −2i(t) O O
∗ ∗ −ϒi(t) O
∗ ∗ ∗ −4i(t)

 < 0

2i(t)− χi(t)I < I
χi(t) ≤ 1

(17)

where AKCi (t) and 0
K
Ci (t) have been defined in (16). In this

case, the local estimation error (LEE) x̃ li (t) will be bounded,
that is

lim
t→∞

[x̃ li (t)]
Tx̃ li (t) < γi (18)

where γi > 0 is a scalar. Next, the distributed weighting
fusion matrix Wl

i(t) can be solved by the following convex
optimization problem:

min
2(t)>0,ϒ(t)>0,4(t)>0,
21(t),22(t),ϒ1(t),W(t)

Tr{2(t)} + Tr{ϒ(t)} + Tr{4(t)}

s.t. :



−I ALW(t) 0LW(t) KL

W(t)
∗ −2(t) −21(t) −22(t)
∗ ∗ −ϒ(t) −ϒ1(t)
∗ ∗ ∗ −4(t)

 < 0 (19)

where ALW(t), 0LW(t),KL
W(t) are defined in (16).

Proof: Define the local estimation error x̃ li (t) = x(t) −
x̂ li (t). Then, from (13) and (14), one has

x̃ li (t) = AKCi (t)x̃
l
i (t − 1)+ 0K

Ci (t)w(t − 1)− Kl
i(t)v̄i(t) (20)

where AKCi (t) and 0
K
Ci (t) are defined in (16).

Next, in order to construct an upper bound of [x̃ li (t)]
Tx̃ li (t),

it gives that

[x̃ li (t)]
Tx̃ li (t) < [x̃ li (t − 1)]T2i(t)x̃ li (t − 1)

+wT(t − 1)ϒi(t)w(t − 1)

+v̄Ti (t)4i(t)v̄i(t) (21)
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where 2i(t) > 0, ϒi(t) > 0 and 4i(t) > 0. Subsequently,
substituting (20) into (21), one has x̃ li (t)

w(t − 1)
v̄i(t)

T
J

i
1(t) J

i
1(t) J

i
3(t)

∗ J i4(t) J
i
5(t)

∗ ∗ J i6(t)


︸ ︷︷ ︸

Ji(t)

 x̃ li (t)
w(t − 1)
v̄i(t)

 < 0 (22)

where 

J i1(t) , (AKCi (t))
TAKCi (t)−2i(t)

J i2(t) , (AKCi (t))
T0K

Ci (t)
J i3(t) , (AKCi (t))

TKl
i(t)

J i4(t) , (0K
Ci (t))

T0K
Ci (t)− ϒi(t)

J i5(t) , (0K
Ci (t))

TKl
i(t)

J i6(t) , (Kl
i(t))

TKl
i(t)−4i(t)

(23)

To ensure the right term of (21) can be viewed as the upper
bound of [x̃ li (t)]

Tx̃ li (t), the condition Ji(t) < 0 must be held.
Therefore, by using the Schur complement lemma [36], the
first inequality in (17) is equivalent to Ji(t) < 0. Furthermore,
when the second and third inequalities in (17) are satisfied,
it can be obtained from the similar derivation in [30, Th.1]
that the bounded condition (18) of local estimator holds.

Let ϑi(t − 1) , col{w(t − 1), v̄i(t)}, notice that

ϑT
i (t − 1)

[
ϒi(t) 0
∗ 4i(t)

]
ϑi(t − 1)

≤ λmax

(
ϑi(t − 1)ϑT

i (t − 1)
)
(Tr{ϒi(t)}

+Tr{4i(t)}) (24)

Then, it can be concluded that

[x̃ li (t)]
Tx̃ li (t) < χi(t)[x̃ li (t − 1)]Tx̃ li (t − 1)

+λmax

(
ϑi(t − 1)ϑT

i (t − 1)
)
(Tr{ϒi(t)}

+Tr{4i(t)}) (25)

Similarly, the right term of (25) also can be taken as an upper
bound. Thereby, the ‘‘min(Tr{ϒi(t)}+Tr{4i(t)})’’ is selected
as an optimization objective to minimize this upper bound,
and then the optimization problem (17) is formulated to deter-
mine the Kl

i(t) based on the designed stable estimator (14).
Next, let x̃l(t) , x(t)− x̂l(t) be the fusion estimation error

(FEE), it follows from (13) and (15) that

x̃l(t) =
m∑
i=1

Wl
i(t)x̃

l
i (t) (26)

Then, based on the LEE (20) and FEE (26), an fusion error
system is formulated to determine each distributed weighting
fusion matrix Wl

i(t) as follows

x̃l(t) = ALW(t)x̃m(t − 1)+ 0LW(t)w(t − 1)+ KL
W(t)v̄(t)

(27)

where x̃m(t − 1) , col{x̃ l1(t − 1), . . . , x̃ lm(t − 1)} and
v̄(t) , col{v̄1(t), . . . , v̄m(t)}, and ALW(t), 0LW(t),KL

W(t) have
been defined in (16).

Moreover, define ϕ(t) , col {x̃m(t),w(t), v̄(t + 1)}, and
introducing some unknown matrices such that

x̃Tl (t)x̃l(t) < ϕT(t − 1)

2(t) 21(t) 22(t)
∗ ϒ(t) ϒ1(t)
∗ ∗ 4(t)

ϕ(t − 1)

(28)

By using the similar derivation in [30, Th.1], the (28) holds
when the inequality in (19) is held. Then, it follows from (28)
that

x̃Tl (t)x̃l(t) ≤ λmax(ϕ(t − 1)ϕT(t − 1))

×(Tr{2(t)} + Tr{ϒ(t)} + Tr{4(t)}) (29)

Therefore, the right term of (29) can be regarded as an upper
bound, and ‘‘min(Tr{2(t)}+Tr{ϒ(t)}+Tr{4(t)})’’ is selected
as an optimization objective to construct the optimization
problem (19). This completes the proof. �

Based on Theorem 1, the computation procedures for the
linear LSEs x̂ li (t)(i = 1, · · · ,m) and the DFE x̂l(t) are
summarized in Algorithm 1.

Algorithm 1Distributed Fusion Estimation Based on Range-
Only Measurement for Linear Target Dynamic

1: Initialization state x(0) and x̂ li (0);
2: for i := 1 to m do
3: Solve the optimization problems (17) and (19) by the

‘‘mincx’’ function of MATLAB LMI Toolbox;
4: Determine local linear estimator gain Kl

i(t) and dis-
tributed weighting fusion matrix Wl

i(t);
5: Calculate linear LSE x̂ li (t) by (14) and DFE x̂l(t)

by (15);
6: end for
7: Return to Step 2 and implement Steps 2-6 for deter-

mining x̂ li (t + 1) and x̂l(t + 1).

Remark 3: By using the idea of bounded recursive opti-
mization approach [30], the convex optimization prob-
lems (17) and (19) are established in terms of linear matrix
inequalities (LMIs), which can be solved by using the func-
tion ‘‘mincx’’ of MATLAB LMI Toolbox [36]. Moreover,
when considering the linear LSEs x̂ li (t)(i = 1, 2, . . . ,m)
determined by the stable estimators (14), then the designed
fusion estimator (15) is stable, that is, the SE of the DFE for
the linear systems (13) and (7) is bounded at each time.

B. NONLINEAR DISTRIBUTED FUSION ESTIMATION
ALGORITHM DESIGN
When considering the nonlinear target dynamic process (1),
according to the proposed nonlinear local estimator (11) and
fusion criterion (12), the nonlinear local estimator gain Kn

i (t)
and weighting fusion matrix Wn

i (t) are given in Theorem 2.
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Define

ANKi (t) , (I − Kn
i (t)Ci(t))Ani (t − 1)

BNKi (t) , (I − Kn
i (t)Ci(t))B(t − 1)

ENKi (t) , (I − Kn
i (t)Ci(t))Eni (t)

ĒNKi (t) ,
[
(ENKi (t))

T O O O
]T

ANEi (t) , (I − Kn
i (t)Ci(t))(Ani (t − 1)+ Eni (t)Fni (t))

OIi (t) ,
[
O εi(t)I O O

]

1i(t) ,


−I ANKi (t) BNKi (t) −K

n
i (t)

∗ −5i(t) O O
∗ ∗ −9i(t) O
∗ ∗ ∗ −8i(t)



(30)

Theorem 2: Each nonlinear local estimator gain Kn
i (t) for

nonlinear systems (1) and (7) can be determined by solving
the following convex optimization problem:

min
5i(t)>0,9i(t)>0,εi(t)
8i(t)>0, K

n
i (t), ζi(t)

Tr{9i(t)} + Tr{8i(t)}

s.t. :



−εi(t)I O
I
i (t) O

∗ 1i(t) ĒNKi (t)

∗ ∗ −εi(t)I

 < 0

5i(t)− ζi(t)I < I
ζi(t) ≤ 1

(31)

where OIi (t) and1i(t) have been defined in (30). In this case,
the nonlinear LEE x̃ni (t) will be bounded, that is

lim
t→∞

[x̃ni (t)]
Tx̃ni (t) < αi (32)

where αi > 0 is a scalar. Then, the distributed weighting
fusion matrix Wn

i (t) can be solved by the following convex
optimization problem:

min
5(t)>0,9(t)>0,8(t)>0,ε(t)
51(t), 52(t), 91(t),W(t)

Tr{5(t)} + Tr{9(t)} + Tr{8(t)}

s.t. :


−ε(t)I OI (t) O
∗ 1(t) ĒNW(t)
∗ ∗ −ε(t)I

 < 0 (33)

where OI (t),1(t),ENW(t) are defined by:

ANW(t) ,Wn(t)diag{ANK1
(t), . . . ,ANKm (t)}

BNW(t) ,Wn(t)col{BNK1
(t), . . . ,BNKm (t)}

KN
W(t) ,Wn(t)diag{−Kn

1(t), . . . ,−K
n
m(t)}

EN
W(t) ,Wn(t)diag{ENK1

(t), . . . ,ENKm (t)}

ĒN
W(t) ,

[
(EN

W(t))T O O O
]T

OI (t) ,
[
O ε(t)I O O

]

1(t) ,


−I ANW(t) BNW(t) KN

W(t)
∗ −5(t) −51(t) −52(t)
∗ ∗ −9(t) −91(t)
∗ ∗ ∗ −8(t)


Wn(t) , [Wn

1(t), . . . ,W
n
m−1(t), I −

∑m−1

i=1
Wn

i (t)]

(34)

Proof: Firstly, define the nonlinear estimation error
x̃ni (t) , x(t)− x̂ni (t), thus, it follows from (1) and (11) that

x̃ni (t) = f (x(t − 1))+ B(t − 1)w(t − 1)

−f (x̂ni (t − 1))− Kn
i (t)(zi(t)− Ci(t)f (x̂

n
i (t − 1)))

(35)

Then, by using the Taylor expansion to linearize the nonlinear
function f (x(t − 1)) near the x̂ni (t − 1), one has

f (x(t − 1)) = f (x̂ni (t − 1))

+Ani (t − 1)x̃ni (t − 1)+Of ([x̃ni (t − 1)]2)

(36)

where Ani (t−1) = ∂f (x(t−1))/∂x(t−1)|x(t−1)=x̂ni (t−1), and
Of ([x̃ni (t − 1)]2) represents the high order-terms of Taylor
series expansion.
In order to further analyze the stability of the designed

estimators, the linearization errorsOf ([x̃ni (t−1)]
2) in (36) can

be modeled by state-dependent scaling matrix with uncertain
matrix [35], one obtains

Of ([x̃ni (t − 1)]2) , Eni (t)Fni (t)x̃
n
i (t − 1) (37)

where Eni (t) is the state-dependent scaling matrix, and Fni (t)
is a unknown matrix with norm constraint, i.e.

‖Fni (t)‖2 < 1

Then, substituting (36) and (37) into (35) yields

x̃ni (t) = ANEi (t)x̃
n
i (t − 1)+ BNKi (t)w(t − 1)− Kn

i (t)v̄i(t)

(38)

where ANEi (t) and B
N
Ki
(t) have been defined in (30). Since (38)

has a similar form of (20), thus to ensure [x̃ni (t)]
Tx̃ni (t) has an

upper bound, the following inequality is held from the similar
derivation in Theorem 1:

−I ANEi (t) BNKi (t) −Kn
i (t)

∗ −5i(t) O O
∗ ∗ −9i(t) O
∗ ∗ ∗ −8i(t)

 < 0 (39)

Then, it can be derived from Lemma 1 that the first inequal-
ity in (31) holds. Moreover, the optimization problems (31)
and (33) can be formulated by using the similar proof in
[34, Th.1,Th.2], the detailed derivation is omitted here. �
Based on Theorem 2, the computation procedures for the

nonlinear LSEs x̂ni (t)(i = 1, · · · ,m) and the DFE x̂n(t) can
be summarized in Algorithm 2.
Remark 4: Though the range-only measurement model (3)

can avoid the linearization errors by using a nonlinear trans-
formation, it cannot be used for the nonlinear state model (1).
In this case, the Taylor expansion has been used in [30]
to linearize nonlinear function f (x), while the higher-order
terms were modeled by bounded noises, thus the linearization
errors were still be ignored and the stability of the estimator
was not discussed as well. In fact, the estimation perfor-
mance will be affected by the linearization errors, thus the
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Algorithm 2Distributed Fusion Estimation Based on Range-
Only Measurement for Nonlinear Target Dynamic

1: Initialization state x(0) and x̂ni (0);
2: for i := 1 to m do
3: Solve the optimization problems (31) and (33) by the

‘‘mincx’’ function of MATLAB LMI Toolbox;
4: Determine local linear estimator gain Kn

i (t) and dis-
tributed weighting fusion matrix Wn

i (t);
5: Calculate nonlinear LSE x̂ni (t) by (11) and DFE x̂n(t)

by (12);
6: end for
7: Return to Step 2 and implement Steps 2-6 for deter-

mining x̂ni (t + 1) and x̂n(t + 1).

Of ([x̃ni (t − 1)]2) in (36) is modeled by a state-dependent
matrix with unknown bounded matrix, which can further to
analyze the characteristic of the linearization errors. Then, the
stability of the designed nonlinear local/fusion estimators can
be guaranteed, and the estimation performance also can be
further improved.
Remark 5: Notice that the computational complexity of

Algorithm 1 and Algorithm 2 depends on solving differ-
ent convex optimization problems, while these optimization
problems on the design of the local estimators and distributed
fusion criteria are established in terms of linear matrix
inequalities (LMIs). In this case, the calculation amount of
the proposed algorithms are mainly determined by following
aspects: one is the dimension of the LMIs, and the other is
the number of introduced parameters for these optimization
problems. For example, the dimension of the first LMI in (17)
isDl = 2n+r+qi and the number of the introduced unknown
parameters is Sl = n2 + r2 + q2i , then the computational
complexity of optimization problem (17) can be assumed to
be O(D2

l Sl). Consequently, dwindling the dimension of the
LMIs and decreasing the number of the introduced unknown
parameters are feasible schemes to reduce the search space
for these optimization problems, then the solution time can be
shortened. Moreover, the computational time will also have a
significant impact on the online running of Algorithm 1 and
Algorithm 2, while the calculating speed can be improved
with the rapid development of computer software and hard-
ware technology.

IV. SIMULATION EXAMPLES
In this section, two kinds of target tracking systems are
presented to show the effectiveness and advantages of the
proposed fusion estimation algorithms.

A. LINEAR TARGET MOTION SYSTEM
Consider a single target tracking example in X-Y planar,
where only the distance information can be collected by each
sensor. Generally, the position and velocity of the target are
taken as the state, i.e. x(t) , col{xp(t), ẋp(t), yp(t), ẏp(t)},
and the motion process of the target can be modeled by (13),

where the specific parameters are given as follows [38]

A(t) =


1

sin(ωT0)
ω

0
cos(ωT0)− 1

ω
0 cos(ωT0) 0 − sin(ωT0)

0
1− cos(ωT0)

ω
1

sin(ωT0)
ω

0 sin(ωT0) 0 cos(ωT0)

 (40)

0(t) =
[
T0 1 0 0
0 0 T0 1

]T
(41)

where angular velocity ω is taken as π/15 rad, and sampling
period T0 is given by 0.5. It is assumed that 12 sensors
are installed to obtain the measurements, which can be
divided into 3 sensor groups. Then, the position of sensors
are taken as (x11, y11) = (80, 5), (x12, y12) = (95, 10),
(x13, y13) = (75,−8), (x14, y14) = (88,−5); (x21, y21) =
(−6, 85), (x22, y22) = (12, 88), (x23, y23) = (−10, 70),
(x24, y24) = (5, 75); (x31, y31) = (70, 85), (x32, y32) =
(75, 70), (x33, y33) = (86, 90), (x34, y34) = (88, 72).
Here, the process noise w(t) in (13) and measurements vi,qi
(i = 1, 2, 3, qi = 1, 2, 3, 4) in (3) are set as

w(t) = col {0.3%1(t)− 0.1, 0.2%2(t)− 0.1} ;
v11(t) = 0.05`11(t)− 0.02, v12(t) = 0.02`12(t)− 0.01,
v13(t) = 0.07`13(t)− 0.02, v14(t) = 0.02`14(t)− 0.01;
v21(t) = 0.06`21(t)− 0.03, v22(t) = 0.01`22(t)− 0.01,
v23(t) = 0.08`23(t)− 0.03, v24(t) = 0.03`24(t)− 0.02;
v31(t) = 0.05`31(t)− 0.01, v32(t) = 0.02`32(t)− 0.01,
v33(t) = 0.07`33(t)− 0.03, v34(t) = 0.01`34(t)− 0.01.

(42)

where %κ (t)(∈ [0, 1])(κ = 1, 2) and `ij(t)(∈ [0, 1])(i =
1, 2, 3, j = 1, 2, 3, 4) are random variables. The initial state
is assumed to be known, which is taken as x(0) = x̂ li (0) =
[10, 0.5, 10, 0.5]T.
By implementing the range-only measurement fusion esti-

mation method in Algorithm 1, the tracking effect of the local
estimators and fusion estimator are drawn in Fig. 2. It is seen
from the subfigure (a-c) of Fig. 2 that each local estimator
can tracking the target’s motion trajectory well, and subfig-
ure (d) shows the distributed fusion estimator also tracking
the target’s trajectory well, which indicate that the proposed
fusion estimationAlgorithm 1 performing a effective tracking
performance, that is the designed LSE (14) and DFE (15) in
this paper are useful. Moreover, the mean square error (MSE)
is employed to further assess the tracking capabilities, which
is defined by

MSE(t) ,
1
N

N∑
j=1

(x(t)− x̂j(t))T(x(t)− x̂j(t)) (43)

where x̂j(t) denotes the corresponding local or fusion esti-
mates at time t , and N is the number of Monte Carlo sim-
ulations. Then, the MSEs over an average of 100 runs of
Monte Carlo method [9] for LSEs and DFE are drawn in
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FIGURE 2. (a-c) The tracking trajectory of the three local estimators,
respectively; (d) The target’s tracking trajectory of the designed linear
distributed fusion estimator.

Fig. 3 (a), respectively. It can be found that the MSE of the
DFE is smaller than that of each LSE, which implies that the
tracking capabilities can be further improved by the designed
fusion estimation algorithm. This is because for the DFE (15),
an optimization problem (19) is established with respect to
each LSE, and then a better tracking performance can be
obtained based on the local estimates.

Moreover, the stability condition of the designed estima-
tors has been addressed in the theoretical analysis section,
then it can be concluded fromTheorem 1 that (18) holds when
the optimization problem (17) can be solvable at each time.
In this case, the following condition must be held:

GKi(t) , ‖(I − Kl
i(t)Ci(t))A(t − 1)‖2 < 1 (44)

which has been verified by Fig. 3 (b), and then the stability
of the local estimators (14) can be guaranteed. Since the
distributed fusion estimator is a linear combination of local
estimators, thus the designed fusion estimator (15) is also
stable.

To further show the advantages of the Algorithm 1 for
tracking the motion target, the tracking performance of pro-
posed local estimator, EKF [14], UKF [16] and CKF [17]
methods are presented in Fig. 4. It is seen that the MSE of
LSE (14) is smaller than EKF, UKF and CKF with known
covariancesQw = diag{3, 1}×10−2,Qv = diag{5, 6, 7, 3}×
10−3, which implies that the developed local estimators in
this paper have an better tracking capabilities. The main
reason for this situation is that the statistical characteris-
tics of noises are difficult to be accurately obtained in the
target motion process, while the normal filtering methods
are required a prior information of the noises. Thus, for the
unknown bounded noises (42), the designed tracking algo-
rithmwith independent of the noise statistical information has
a better tracking performance.

FIGURE 3. (a) The MSEs of local estimators and fusion estimator; (b) The
stability judgement conditions GKi (t)(i = 1, 2, 3).

FIGURE 4. (a-c) The comparison of tracking performance among the
estimation Algorithm 1, EKF [14], UKF [16] and CKF [17].

B. NONLINEAR INTELLIGENT VEHICLE TRACKING SYSTEM
In this example, consider a nonlinear intelligent vehicle track-
ing system, where also only the distance information from the
vehicle to sensors can be obtained. When taking the vehicle’s
state as x(t) , col

{
xp(t), yp(t), θ(t)

}
, where xp(t) and yp(t)

are vehicle’s position in theX andY axis of plane coordinates,
respectively, and θ(t) is the angular orientation. Then the
motion trajectory of the vehicle can be modeled by (1), and
the parameters can be set as [37]:

f (x(t)) ,

 xp(t)+
ct
cr
cos

(
θ (t)+ t0cr

2

)
yp(t)+

ct
cr
sin
(
θ (t)+ t0cr

2

)
θ (t)+ t0cr


w(t) , col

{
ĉt
ĉr

cos(θ(t)+
t0ĉr
2

)−
ct
cr

cos(θ(t)+
t0cr
2

),

ĉt
ĉr

sin(θ (t)+
t0ĉr
2

)−
ct
cr

sin(θ(t)+
t0cr
2

),

t0wr (t)}

B(t) = diag{1, 1, t0}
(45)
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FIGURE 5. (a-c) The tracking trajectory of the local estimators,
respectively; (d) The target’s tracking trajectory of the nonlinear
distributed fusion estimator.

where t0 = 0.5 is the sampling period, w(t) is the process
noise, ct = 0.2 and cr = 0.8 are the control transla-
tional and rotational velocity, respectively. Similarly, there
are 12 sensors that are divided into 3 groups to obtain
the measurements, and the position of sensors are taken as
(x11, y11) = (5, 20), (x12, y12) = (9, 23), (x13, y13) = (0, 15),
(x14, y14) = (7, 16); (x21, y11) = (18, 21), (x22, y22) =
(21, 25), (x23, y23) = (12, 16), (x24, y24) = (20, 18);
(x31, y31) = (20, 6), (x32, y32) = (24, 12), (x33, y33) =
(12, 3), (x34, y34) = (21, 5). Here, Eni (i = 1, 2, 3) and the
noises wp(t), wr (t) are set as

En1 = diag{0.01, 0.01, 0.01}
En2 = diag{0.03, 0.03, 0.03}
En3 = diag{0.02, 0.02, 0.02}
wp(t) = 0.2ρ1(t)− 0.1,wr (t) = 0.3ρ2(t)− 0.1;

(46)

where ρκ (t)(∈ [0, 1])(κ = 1, 2) are random variables, and
vi,qi are given in (42). Meanwhile, the initial state is given by
x(0) = x̂ni (0) = [0.1, 0.05, 0.08]T. In addition, the matrix
Ani (t − 1) can be calculated by

Ani (t − 1) =


1 0 −

ct
cr

sin(θ (t)+
t0cr
2

)

0 1
ct
cr

cos(θ(t)+
t0cr
2

)

0 0 1


x(t−1)=x∗

(47)

Then, implementing the fusion estimation Algorithm 2, the
tracking effect of the LSEs (11) and DFE (11) are drawn in
Fig. 5. As shown in subfigure (a-d) that all nonlinear local
estimators and distributed nonlinear fusion estimator can
tracking the target’s motion trajectory well, it verified that the
proposed nonlinear estimationAlgorithm 2 addressing a good
tracking ability, and the designed nonlinear estimators (11)
and (12) are also effective. Then, the MSEs of the LSEs

FIGURE 6. (a) The estimation performance comparison between the local
estimators and fusion estimator; (b) The stability judgement conditions
AEi (t)(i = 1, 2, 3).

FIGURE 7. (a-c) The comparison of tracking performance among the
nonlinear estimation Algorithm 2, EKF [14], UKF [16] and CKF [17].

and the DFE with 100 Monte Carlo runs are performed in
Fig. 6 (a), respectively. It shows that the tracking capability
of the nonlinear DFE is better than that of each LSE, thus the
tracking performance of this tracking system can be further
improved by the fusion estimation Algorithm 2. Particularly,
Fig. 6 (b) shows the condition ‖ANEi (t)‖2 < 1 holds, when
the optimization problem (31) is solvable. Then, it can be
concluded from Theorem 2 that the stability of local/fusion
nonlinear estimators is held. Notice that, the linearization
errors of the f (x(t)) in (45) are not easily judged as bounded
errors, thus the stability condition (C.2) of [33, Th.2] is
useless for this example. However, this paper modeling the
linearization errors by the state-dependent scaling matrices
with unknown bounded matrices, which can modified the
stability conditions of [33, Th.2] and ensured the designed
nonlinear estimators are stable.

Similarly, when considering the unknown bounded
noises (42) and (46), the MSEs of local estimator proposed
in Algorithm 2, EKF, UKF and CKF methods are plotted in
Fig. 7, respectively. From Fig. 7, it shows that the proposed
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LSE (11) in this article has a better tracking performance
than that of EKF, UKF and CKF with known covariances
Qw = diag{3, 1, 2} × 10−2,Qv = diag{2, 1, 2, 3} × 10−3

as well. This is because these nonlinear tracking methods
usually require to know the covariances of Gaussian noises,
but the statistical properties of noises in (42) and (46) are still
without knowledge. Therefore, it follows from the analysis
of previous example that the developed nonlinear tracking
Algorithm 2 is more suitable for practical tracking system.

V. CONCLUSION
In this article, a distributed fusion tracking problem with
range-only measurement has been investigated. For the non-
linear distance measurement model, which was converted
to a linear model in regard to the position of the target by
using a nonlinear transformation. When considering the non-
linear motion dynamic of the target, a uncertainty bounded
matrix combined with sate-dependent matrix were intro-
duced to describe the state linearization error caused by
the Taylor expansion. Though the measurement noises were
more complicated and the uncertainty parameters have been
introduced by the corresponding nonlinear transformation,
a robust designed approach based on the bounded recursive
optimization scheme was developed in this article, which can
avoided the instability of nonlinear estimator. Then, the stable
local estimator gains and fusion criterion were determined by
the constructed convex optimization problems. Finally, two
range-only target tracking examples were addressed to verify
the effectiveness of the proposed tracking algorithms.

Furthermore, the target tracking and location problems
over the WSNs are also give a significant research direction.
Particularly, the time-delay, packet-dropouts, resource con-
straints and cyber-attacks problems in the networked struc-
ture, which are widely existed. In this case, based on the
developed dimensionality reduction approach, quantization
approach and event-triggered scheme, how to design the sta-
ble estimator for WSNs-based target tracking systems will be
our future works.
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