
Received March 1, 2022, accepted April 5, 2022, date of publication April 13, 2022, date of current version April 28, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3167033

E-Ride: An Adaptive Event-Driven Windowed
Matching Framework in Ridesharing
HAN WU , YU CHEN , LIPING WANG , AND GUOJIE MA
School of Software Engineering, East China Normal University, Shanghai 200062, China

Corresponding author: Liping Wang (lipingwang@sei.ecnu.edu.cn)

ABSTRACT Ridesharing services aim at reducing the users’ travel cost and optimizing the drivers’ routes to
satisfy passengers’ expected maximum matching times in practice request dispatching. Existing works can
be roughly classified into two types, i.e., online-based and batch-based methods, in which the former mainly
focus on responding quickly to the requests and the latter focuses on enumerating request combinations
meticulously to improve the service quality. However, online-based methods perform poorly in terms of
service quality due to the neglect of the sharing relationship between requests, while batch-based methods
fail on efficiency. None of these works can smoothly balance the service quality and matching time cost since
the matching window is not sufficiently explored or even neglected. To cope with this problem, we propose
a novel framework E-Ride, which comprehensively leverages the matching time window based on the
event model. Specifically, an adaptive windowed matching algorithm is proposed to adaptively consider
personalized matching time and provide a matching solution with higher service rates at lower latencies.
Besides, we maintain the request groups through a mixed graph and further integrate the subsequent arrival
requests to optimize the matching results, which can scale to or satisfy online use demands. The extensive
experimental results demonstrate the efficiency and effectiveness of our proposed method.

INDEX TERMS Ridesharing, windowed matching, graph maintenance, KL-UCB.

I. INTRODUCTION
Ridesharing services have made a significant contribution to
modern transportation, facilitating the relief of traffic pres-
sure and reduction of exhaust pollution [1], [2]. In urban
transportation, ridesharing service provides a travel mode
between public transit and the cab service, balancing the
charging cost and travel convenience. So, it has become an
essential travel option in their daily lives. In the ridesharing
services, passengers are willing to accept a limited detour
to share available seats with other passengers in exchange
for a discount. Therefore, the existing ridesharing service
providers, such as Didi [3] and Uber [4], continuously strive
to improve service quality for their users by minimizing
total travel cost [5]–[8] or maximizing the platform service
rates [9], [10].

In reality, passengers usually hold specific requirements
for the response time of a ridesharing system and are eager
for a high-quality matching to save the travel cost. In general,
requests willing to wait longer tend to be better matched.
Therefore, a sound ridesharing system requires a trade-off

The associate editor coordinating the review of this manuscript and

approving it for publication was Rashid Mehmood .

between the response time and the service quality. Existing
widely-applied request dispatching methods can be roughly
classified into two types, i.e., online-based mode and batch-
based mode.

In online-based methods [5], [6], [11], [12], the requests
are assigned to the candidate vehicles with an updated route
sequentially in chronological order. The online-based meth-
ods have widely adopted insertion [13] operator for the route
planning. The insertion method plans a locally optimal route
for the vehicle in linear time by inserting the source and
destination of the request into the vehicle’s route, without
reordering waypoints among the original route (as shown
in Figure 1). While in batch-based methods [14]–[17], the
requests are usually grouped over a fixed time window and
then executed once with the specific matching algorithm
between the request group and candidate vehicles (i.e., bipar-
tite graph matching, linear programming [14]). The state-
of-the-art online-based methods [13], [18] are efficient in
response time, which benefits from its linear time complexity.
Although batch-based algorithms tend to have higher ser-
vice quality by meticulously enumerating feasible request
groups, it takes more time for computation. Moreover, in the
batch-based algorithm, the request that arrives closer to the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 43799

https://orcid.org/0000-0001-8535-6337
https://orcid.org/0000-0001-6933-9828
https://orcid.org/0000-0003-3049-9917
https://orcid.org/0000-0002-4997-5322

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

FIGURE 1. An illustration example of insertion operator.

FIGURE 2. A motivation example.

batch trigger time will be dispatched immediately, but such
just-arriving requests are willing to wait for more time to get
a better matching result.

If it is feasible to plan a route that serves a set of requests
simultaneously, then we call these requests are shareable. In
this paper, we implement a fine-grained realization of request
matching based on the concept of matching windows for
better service quality. We illustrate our motivation with the
following example.
Example 1: In the road network consisting of nodes a ∼ g

shown in Figure 2, there are four online arrivals requests
r1 ∼ r4. The details of the requests are shown in Table 1.
Suppose that the vehicles have enough capacity to accom-
modate three requests simultaneously, while it takes one
unit of time to travel one unit of distance on the road net-
work. If the request dispatching framework adopts the batch
mode and the processing interval T = 3, since requests
r1, r2 and r3 are shared to save 11 units of total travel distance
(let cost(R) denote the shortest travel distance to serve all
requests r ∈ R, then the saved travel distance is denoted as∑

r∈R cost({r})−cost(R)), so the dispatching framework will
dispatch r1, r2 and r3 to the same vehicle.
But the request r3 has just been released on the platform,

and in fact, r3 would like to wait for some more time to
get a better match rather than leaving immediately. When
r4 is released to the platform, we can get a better assign-
ment scheme with groups of {r1, r2} and {r3, r4}, which saves
16 units of total travel distance in sum.
Specifically, in this paper, we construct an edge for any

two shareable requests based on the online arrival requests
as nodes to obtain a dynamic shareability graph, which helps

TABLE 1. Requests release detail.

prune infeasible request groups to improve the efficiency of
request group enumeration. Furthermore, we maintain the
request group for each request within a mixed graph structure
named as State Graph. As the arrival and leaving of requests,
the state graph is continuously adjusted and optimized until
the node of request reaches the maximum time it is willing to
wait, or the current matching is challenging to be improved
anymore. Additionally, to balance response time and service
quality, we propose an adaptive windowed matching algo-
rithm that considers requests’ personalized tolerable match-
ing time to solve the ridesharing problem with an efficient
and effective matching strategy.

We summarize the contributions of this paper as follows.
• We study a novel dynamic windowed ridesharing prob-
lem that takes the requests’ personalized matching time
into consideration.

• We devise an event-driven windowed matching algo-
rithm, EGWM, which maintains and improves the
request groups within the matching windows and pro-
vides a request matching solution with higher service
rates at lower latencies.

• We propose an adaptive windowed matching algorithm
based on the KL-UCB [19] policy, which adaptively
balances the service quality and matching time through
a user-defined parameter ε to meet different application
scenarios.

• We conduct extensive experiments over two real-world
datasets to demonstrate that our method achieves a better
service quality with a shorter running time than the
existing methods.

II. PROBLEM DEFINITION
In this section, we introduce the dynamic windowed rideshar-
ing problem (DWRP) to be solved in this paper with its
related concepts. The road network is the foundation of route
planning in the ridesharing problem, and in this paper, we use
a directed weighted graph to represent the real-life road net-
work. Specifically, the nodes represent intersections, and the
edges with their weights cost(u, v) show the average travel
time between two intersections u and v.

A. DEFINITIONS
Definition 2 (Request): Let ri = 〈si, ei, ni, ti, di,wi〉

denote an online request ri released at time ti and required
to be dispatched within time w. It contains ni passengers that
depart at si and expect to arrive at ei before the deadline di.

43800 VOLUME 10, 2022

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

TABLE 2. Symbols and descriptions.

In practice, riders’ patience is limited, so the ridesharing
platform must complete each request’s matching within the
maximum tolerable waiting time wi. So we define theMatch-
ing Window of the request as follows.
Definition 3 (Matching Window): Let Ti = [ti, ti + wi)

denote a matching window of request ri which starts from
the release time ti to the maximum waiting time ti + wi.

We denote the request rb as available for ra if and only if
Ta ∩ Tb 6= ∅ (i.e., |ta − tb| ≤ min(wa,wb)). In ridesharing,
each vehicle vj can be assigned with multiple requests Rj.
Thus, while assigning requests to vehicles, the platform has to
plan a driving path for them that can serve multiple assigned
requests r ∈ Rj simultaneously. We define the driving path of
each vehicle as the route below.
Definition 4 (Route): Given a vehicle vj with its assigned

set Rj of m requests, let Sj = 〈o1, . . . , o2m〉 denote the route
for vj where ox is the pickup location si or drop-off location
ei of request ri ∈ Rj.
The route for each vehicle consists of a sequence of sources
and destinations for the assigned requests r ∈ Rj. And we
mark a route as feasible if and only if it satisfies the following
constraints:

• Sequential constraint. The source ox and destination oy
of assigned request r ∈ Rj in the feasible route S must
satisfy x < y.

• Capacity constraint. For any location ox ∈ S, the total
number of passengers on the vehicle should not exceed
the maximum capacity cj of the vehicle vj.

• Deadline constraint. For any location ox ∈ S,∑x
k=1 cost(ok−1, ok) ≤ ddl(ok), where ddl(ok) shown

in equation 1.

ddl(ok) =

{
ei − cost(si, ei), if ox is source
ei, otherwise

(1)

With the definitions above, we define the Dynamic Win-
dowed Ridesharing Problem as follows.
Definition 5 (Dynamic Windowed Ridesharing Problem):

Given a set R of n online requests with personalized matching
window Ti for each ri ∈ R, and a vehicle set W with maxi-
mum capacity constraint, the Dynamic Windowed Rideshar-
ing Problem (DWRP) requires planning a feasible route for
each vehicle w ∈ W to serve r ∈ R, which minimizes a
specific utility function.

FIGURE 3. Matching window preprocessing in brute-force algorithm.

In this paper, we adopt the following unified cost UC
defined in [18] as the optimization utility function. With
specific parameters α and penalty pr , the unified cost UC
can be used to represent a variety of different optimization
objectives, such as minimizing the total distance traveled,
maximizing the number of service orders, and maximizing
total revenue, etc.

UC(R,w) = α
∑
wi∈W

µ(Swi)+ β
∑
ri∈R−

cost(si, ei) (2)

µ(Sw) =
∑
ox∈Swi

cost(ox−1, ox) (3)

Table 2 summarizes the notationsmainly used in this paper.
Hardness of DWRP: The dynamic ridesharing problem

has been shown to be an NP-Hard problem [6], [11], [18],
[20], and Tong et al. proved that there is no polynomial-time
algorithm for the constant competitive ratio of the ridesharing
problem in [18].

B. BRUTE-FORCE SOLUTION
Given a group of requests R, we call they are shareable if and
only if there exists a feasible route S for serving r ∈ R simul-
taneously. The existing batch-based methods [14]–[17] for
the Dynamic Ridesharing Problem are based on a two-phase
framework: (1) the enumeration of shareable request groups
among the request in each batch; (2) the matching between
request groups and vehicles to minimize the utility function.
However, since each request ri ∈ R needs to be matched
within the matching window Ti in the DWRP, existing batch-
based methods [14]–[17] cannot be directly applied. Thus,
in the Brute-Force algorithm of DWRP, we preprocess the
matching window as shown in Figure 3 to fit the batch-based
algorithm. That is, in each batch-based algorithm’s trigger
timestamp t , we prioritize and process those advent requests
rx ∈ R whose matching window deadline wx expires earlier
than the next batch time t + τ .

The detailed algorithm of Brute-Force is shown in Algo-
rithm 1.We first retrieve the advent requestsR−, which expire
before the next trigger time t+τ (line 3). After that, we try to

VOLUME 10, 2022 43801

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

Algorithm 1: Brute-Force Solution
Input: A set R of n requests, a setW of m vehicles and a

batch period τ
Output: The planned routes set S for vehicle w ∈ W

1 t ← current timestamp
2 while R is not empty do
3 R−← {ri|ri ∈ R ∧ ti + wi < t + τ }
4 foreach wj ∈ W do
5 G← initialize a set for shareable groups
6 for k ∈ [1..c] do
7 G′← enumerate shareable request groups g

among R− where |g| = k
8 G← G ∪ G′

9 g∗← ming∈G UC(g,w)
10 Sj← planning route for serving r ∈ g∗

11 R← R \ R−; t ← t + τ

12 return S = {Sj|wj ∈ W }

identify the request group with the minimum unified cost for
each vehicle wj (line 4-10). Specifically, we first enumerate
request groups of different sizes (line 5-8). To satisfy the
maximum capacity constraint of the vehicle wj, we only
enumerate the request groups whose size does not exceed
the vehicle capacity constraint cj. Then, we select the request
group g∗ with the minimum unified cost from all the candi-
date request groupsG and plan the optimal driving route Sj for
the vehicle wj to serve the requests r ∈ g∗ (line 9-10). Note
that we plan the route for each vehicle by enumerating the
sequence of the sources and destinations of assigned requests
in a different order.
Complexity Analysis: For each vehicle wj, we enumerate

up to O(nc) candidate request groups. Then, to search for an
optimal route that serves all requests r ∈ g∗ simultaneously,
we need to enumerate up to O((2c)!) different sequences of
routes. And we have to examine each candidate route inO(c).
Thus, the time complexity of the Brute-Force algorithm is
O(m× nc × (2c)! × c).

III. GRAPH-BASED WINDOWED MATCHING
In Section II-B, we present the Brute-Force algorithm by
prioritizing the advent requests based on the existing batch-
based framework. However, it has not tailored design to the
features of the matching window for the DWRP problem,
whichmay result in insufficient utilization of the personalized
allowed matching time of requests. Meanwhile, it’s ineffi-
cient in the enumeration of candidate request groups, which
costs up toO(nc) times. Therefore, in this section, we propose
a well-tailored E-Ride framework based on the event model
for the DWRP. Additionally, we also proposed the concept
of the shareability graph. We pruned the infeasible groups
by their shareable relationships in the shareability graph,
facilitating a more efficient enumeration of candidate request
groups.

A. DYNAMIC SHAREABILITY GRAPH
In batch-based methods, the enumeration of request groups
is a fundamental operation. To facilitate the enumeration of
request groups, we first define the sharability graph to visu-
ally represent the shareable relationships between requests.
Definition 6 (Shareability Graph [21], [22]): Given a set

of requests R, SG = 〈R,E〉 denotes the shareability graph
of R, where e = (ri, rj) ∈ E reflects that request ri and rj are
shareable.

With the shareability graph, we have the following The-
orem 7 for transforming shareable request groups into the
k-clique structure in the shareability graph to continuously
optimize the request groups in the platform within the online
scenario. The clique [23]–[25] indicates a subset of intercon-
nected nodes in the graph.
Theorem 7: Given a shareable request group Q of size k,

the corresponding nodes of these k requests form a k-clique
in the shareability graph.

Proof: Assume we have a set, R, of k requests, and
there exists a feasible route S consisting of their sources and
destinations. Then, for any two requests ra, rb ∈ R, let S ′ be a
subsequence of S through removing the sources and destina-
tions of all other requests except for ra and rb. Removing the
locations from S will reduce the detours, which will maintain
the validation of S. Thus, S ′ must still be a feasible route.
According to the definition of the shareability graph, there
must be an edge connecting ra and rb in the corresponding
shareability graph. In conclusion, there must be an edge for
any two requests ra, rb ∈ R in the corresponding share-
ability graph, which means the nodes of k requests form a
k-clique. �
According to Theorem 7, candidate shareable request

groups will only exist in the k-cliques in the shareability
network.
Dynamic Update of the Shareability Graph: While in the

online scenario, we have to maintain the shareability graph
dynamically as requests arrive or leave the platform.
• On the arrival of a request ra, we first have to filter
out all candidate shareable requests for ra. Since the
shareable requests often share similar sources to meet
the deadline constraint, we can quickly filter out the
candidate shareable requests Ra by maintaining a grid
index. Next, we try to construct a feasible route for each
candidate request rb ∈ Ra by insertion [13], and we add
an edge e = (ra, rb) to the SG if such a route exists.

• On the leaving of a request ra, we simply update the
sharability graph SG by removing the corresponding
node ra with all related edges {e = (ra, rb)|rb ∈
NSG(ra)}, whereNSG(v) represents the neighbors of node
v in the SG.

B. AN OVERVIEW OF THE E-RIDE FRAMEWORK
We first briefly introduce the essential parts of our E-Ride
framework, as illustrated in Figure 4.
• Event Handler. The E-Ride framework mainly works
on the event model, which will make corresponding

43802 VOLUME 10, 2022

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

FIGURE 4. An overview of the E-ride framework.

actions according to the type of the arriving events. The
dynamic windowed ridesharing problem is an online
problem where requests arrive at the platform dynam-
ically. Both the arrival and leave of a request will affect
the matching result of previously released requests in the
platform, which makes it necessary for the framework to
handle both cases, and we call these the arrival and leave
of a request as events. As the arrival event arises, the
framework will update the graph structure maintained
for the requests within its matching window for optimiz-
ing the requests’ groups.

• Graph-Based Matching. Graphs are powerful tools for
maintaining relationships between nodes. Thus we store
the groups among requests that are still within thematch-
ing window in the framework via a mixed graph (i.e.,
State Graph in Section III-C). As a new request ri arrives,
we update the existing request groups stored in the graph
only if ri can provide optimization (lower unified cost)
for some existing groups.

• Indexing Structure. Since vehicles are always mov-
ing on the platform, the index structure adopted by
the framework needs to satisfy the requirement of fast
updates. A simple but effective way is to divide the full
map into m × n grid cells. As the vehicle’s location is
updated, we can calculate the new grid based on the
latitude and longitude of the vehicle in constant time to
complete the update. Moreover, based on the grid index,
we can achieve the approximate range query in constant
time, speeding up the search for candidate vehicles in
the assignment phase.

The brief processing flow of E-Ride is shown in the
Algorithm 2. As a new request rσ (i) arrives, we first include
the node rσ (i) into the shareability graph SG. Then, we try
to find out all candidate nodes R in the shareability graph
SG that can share a trip with rσ (i), and update the share-
ability graph by adding undirected edges between rσ (i) and
rj ∈ R (line 1-5). After that, we triggered the arrival handler
(Algorithm 3) to seek for the optimal request group of node

Algorithm 2: Event-Driven Windowed Matching
Input: The request arrival sequence σ with a matching

window T and a vehicle setW .
Output: An updated route set S for vehiclesW .

1 SG← initialize a empty shareability graph
2 foreach arrival request rσ (i) according to σ do
3 foreach request r ∈ SG do
4 if rσ (i) is shareable with rj then
5 SG← SG ∪ (rσ (i), rj)

6 trigger the Arrival Handler for rσ (i) via Algo. 3
7 foreach request r ∈ SG do
8 if current time t exceeds Tr then
9 trigger the Leave Handler for r via Algo. 4

rσ (i) by enumerating candidate cliques in SG with Theorem 7
and update it to the state graphMG. And for each unit time t ,
we check if requests in SG exceed the matching window Tr
(line 7-9). If the request needs dispatch immediately, we will
perform the request group dispatching by triggering the leave
handler (Algorithm 4).

C. GRAPH-BASED WINDOWED MATCHING
In the dynamic windowed ridesharing problem, requests can
be temporarily stored in the platform within the matching
window in exchange for better request groups. Therefore,
to maintain the temporary request groups in the platform,
we extend the shareability graph SG to the following
state (mixed) graph by adding a directed edge set A. For the
convenience of explanation, in the following, we take the
notation commonly used in the graph theory: N+(ri) denotes
the set of the out-neighbors of the node ri, N−(ri) for the
in-neighbors, and N (ri) for all undirected neighbors.
Definition 8 (State Graph): Let the mixed graph MG =
〈R,E,A〉 denotes the state graph on the shareability graph

VOLUME 10, 2022 43803

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

SG = 〈R,E〉, where for each of the node ri ∈ R with its in-
neighbors N−MG(ri) indicates the request group stored in the
state graph.
For example, with the state graph shown in the left of
Figure 5, the request node r2 with its in-neighborsN

−

MG(r2) =
{r3, r4} indicates the reqeust group Q2 stored in the state
graph MG. The node r1’s in-neighbors N

−

MG(r1) = ∅ shows
that request r1 forms a self-contained group Q1.
Because of the mutual sharing relationship between

requests, we assign each node in the state graph to be seller or
buyer to avoid redundant group enumeration. The node as a
buyer implies that the node has selected a previously arrived
node in the shareability graph to form a group. Conversely,
a node as a seller means that it was ‘‘bought’’ (selected) by
several nodes labeled with buyer to share their trips. There-
fore, for any request r in the sharability graph, two types
of request groups need to be analyzed: the group of r as
buyer and seller. We present the ‘‘bought’’ relationship by the
directional edges A in the state graph MG. And because of
the capacity constraint c and the uniqueness of the request,
the number of in-neighbors and out-neighbors of request
ri in the state graph MG should satisfy the following two
constraints.

|N−MG(ri)| < c (4)

|N+MG(ri)| ≤ 1 (5)

Therefore, a request group consists of only one seller node
and less than c buyer nodes in the state graph. We note a
request group with seller node ri as Qi =

{
ri ∪ N−(ri)

}
. And

we define the group confliction as Definition 9 once the given
request group pairs share a same seller node.
Definition 9 (Group Confliction): Given a pair of groups

Qa =
{
ra ∪ N−(ra)

}
and Qb =

{
rb ∪ N−(rb)

}
, we say that

Qa and Qb are conflict if and only if ra = rb. Moreover,
we denote the nodes Qa \ Qb and Qb \ Qa as conflict nodes
for Qa and Qb , respectively.
Example 10: Consider the state graph in the middle of

Figure 5, the seller node r2 together with the buyer nodes
ri and r4 form the request group Q∗2, and the seller node
r2 also form the request group Q2 with the buyer nodes r3, r4.
Therefore, we say Q2 and Q∗2 are conflict groups. And r3 is
the conflict node for group Q∗2.
The E-Ride framework always maintains and improves the

request groups in the state graph so that the request groups
within it have a better unified cost after several rounds of
iterations. Since a better request group Q implies that the
requests r ∈ Q are well shared, the induced sub-groups
in the state graph also perform better in the unified cost.
Therefore, we adopt the following two strategies in the group
enumeration for a newly arrived request ri:
1) Add ri to an existing request group Q;
2) Take the request r ∈ Q from the existing group Q to

form a new request group Q′ with ri.
After updating the state graph, the critical decision for the

request ri is to continue waiting for a better request group or

to be scheduled with the current one after events are triggered.
Since we cannot predict whether a better request group will
emerge or not in the online scenario, a simple but feasible
solution is to make a decision randomly. Therefore, for each
request ri, it will decide with a probability of 1/2 indepen-
dently to stay and wait or to leave immediately.

With the above state graph and update strategies, we pro-
pose a novel matching algorithm, Event-driven Graph-based
Windowed Matching (EGWM). Once a new request ri is
released on the platform, EGWM first enumerates and
searches for the optimal request group Qi of ri as a buyer
and updates them to the state graph MG. While updating the
requests r ∈ Qi may cause some conflict request groups to
be unavailable. Therefore, we will recursively update such
affected (conflict) nodes. Since subsequent arrival requests
may improve the current request group Qi (ri as seller), it is
not reasonable to dispatch Qi immediately compared to the
online-based methods. Thus, we will ‘‘toss a coin’’ to decide
that the request group Qi stays in the MG or dispatch. But
the request ri will stay in the SG and MG for at most wi time
because of the constraint of the matching window. And the
request ri will trigger a timeout event requiring us to dispatch
Qi after wi time elapses.
The details of the arrival handler are shown in the

Algorithm 3. We first enumerate the request groups for
ri by iterating over its neighbors rp ∈ N (ri). With the
Theorem 7, we only need to enumerate the k-cliques that con-
tain ri. (line 3-10). We adopt different enumeration strategies
depending on the label of the neighbor rp. In case the neighbor
rp as seller, which means that it already belongs to a request
group Qp, we try to enumerate among the nodes r ∈ Qp
and insert the feasible request groups to the priority queue
Q sorted by the unified cost (line 4-5). Note that we only
reserve the request groups for which the unified cost satisfies
UC(Q) < UC(Qp). Once the request rp is labeled as the buyer
in the state graph, we are not required to enumerate all request
groups since the groups containing other requests in Qp have
already been listed in line 5. So that we only need to take rp
from Qp for a new request group Qi = {ri, rp}, and check if
the unified cost satisfied UC(Qi)+ UC(Qp \ Qi) < UC(Qp)
(line 6-8). Otherwise, if rp is not labeled in MG, the 2-clique
Qi = {ri, rp} can be directly considered as an available candi-
date request group for improving the pairing rate (line 9-10).
After that, we take the clique Q∗i with the minimum unified
cost from the priority queueQ as the optimal request group of
ri and update it to the state graphMG (line 12). If the request
group Q∗i enumerated by the seller rp of the original group
Qp (i.e., Q∗i is the conflict group with Qp), the conflict nodes
Q∗i = Qp \ Q∗i need to be updated due to the unavailability
of rp (line 16). Therefore, we clear the original labels from
MG and rehandle the conflict nodes r ∈ Q∗i by Algorithm 3
recursively (line 17-19). Since it is hard to determine whether
a better request group will emerge shortly, we decide whether
to assign the current request groups directly by tossing a coin,
and we dispatch the request ri by Algorithm 4 to complete

43804 VOLUME 10, 2022

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

FIGURE 5. An illustration example of the state graph updating by EGWM algorithm.

Algorithm 3: Arrival Event Handler
Input: The arrived request ri, state graph

MG = 〈R,E,A〉 and vehicle setW .
Output: An updated set of workers and updated state

graphMG.
1 LMG(ri)← initialize the label of ri to none
2 Q← initialize a priority queue ordered by unified cost

(UC)
3 foreach rp ∈ N (ri) do
4 if LMG(rp) is seller then
5 Q[rp]←{

Q|Q ∈ CliqueEnum(ri ∪ Qp) ∧ (ri, rp ∈ Q)
}

6 else if LMG(rp) is buyer then
7 if UC({ri, rp})+UC(Qp \ {rp}) < UC(Qp) then
8 Q[rp]← Q[rp] ∪ {ri, rp}

9 else F None Label
10 Q[rp]← Q[rp] ∪ {ri, rp}

11 if |Q| > 0 then
12 {rp,Q∗} ← retrieve group with maximum UC in Q
13 LMG(ri)← buyer
14 A← A ∪ (ri, rp)
15 if rp is seller then
16 Q∗← Qp \ Q∗

17 clear labels of r ∈ Q∗ and related edges from
MG

18 foreach r ∈ Q∗ do
19 Rehandling r via Algorithm 3 recursively

20 else
21 LMG(rp)← seller

22 if toss a coin results in leaving directly then
23 dispatching request group of ri via Algorithm 4

the assignment. Specifically, we retrieve the request group
Q∗i in the state graph MG (line 1-6) and assign it to the near-
est available vehicle (line 7). Finally, we remove the nodes

Algorithm 4: Leaving Event Handler
Input: The leaving request ri, the state graphMG and

the vehicle setW .
Output: An updated set of workers and the updated

state graphMG.
1 if LMG(ri) is seller then
2 Q∗i ← N−(ri) ∪ {ri}

3 else if LMG(ri) is buyer then
4 Q∗i ←

⋃
r∈N+(ri) N

−(r) ∪ N+(ri)

5 else
6 Q∗i ← {ri}

7 retrieve the nearest vehicle w ∈ W to server Q∗i
8 remove r ∈ Q∗i and related edges from SG and MG

r ∈ Q∗i and related edges associated with the assigned
requests from the SG and MG.
Example 11: Let’s consider the requests in Example 2.

Assume that there exists a newly arrived request ri who
triggers an arrival event, and the updated shareabil-
ity graph is shown in left of Figure 5. We first iter-
ate over all neighbors of ri, N (ri), and try to enumer-
ate the optimal request group. Since r2 is currently a
seller, we enumerate all cliques containing ri and r2, i.e.,
{ri, r2},{ri, r2, r3},{ri, r2, r4},{ri, r2, r3, r4}, and we add them
to the priority queueQ with their corresponding unified cost.
Then we visit the neighbor r4, and because the label of r4 is
buyer, we check the sum of the unified cost of the group
Q2 \ {r4} after the loss of r4 from the original group Q2 with
the newly generated group {ri, r4}. We add the new request
group toQ because UC({ri, r4})+UC(Q2 \{r4}) < UC(Q2).
The operations on the remaining neighbors are omitted here.
After that, we pick the request group Q∗2 = {ri, r2, r4}with the
minimum unified cost from the priority queue Q and update
the label of ri to buyer with its associated edges to MG. Since
group Q∗2 is enumerated based on the neighbor r2 labelled as
seller, so the conflict node r3 ∈ Q2 \ Q∗2 should be updated
by Algorithm 3 for a new group. Finally, we derive the state
graph as shown in right of Figure 5.

VOLUME 10, 2022 43805

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

IV. ADAPTIVE DISPATCHING WITH KL-UCB POLICY
In Section III-C, the EGWM algorithm refines the processing
framework for the matching window feature in the DWRP
problem. However, the stochastic dispatch policy has not
taken the response time metric into account, which signif-
icantly impacts users’ experiences. Therefore, the EGWM
can not balance response time and service quality for dif-
ferent practical scenarios. Moreover, random dispatching is
not a wise choice for different requests. Thus, in this section,
we propose an online learned policy method based on the
Multi-ArmedBandit (MAB)model tomake dispatching deci-
sions dynamically.

A. ONLINE LEARNED DISPATCHING POLICY
The Multi-Armed Bandits (MAB) [26] problem is a classi-
cal machine learning problem, demonstrating the dilemma
of exploration and exploitation. In the MAB problem, the
agent selects the action without prior knowledge of the
reward for t rounds and maximizes the cumulative expected
reward (minimize expected regret). Through multiple rounds
of interaction with the environment, the agent will gather
observations of the distribution of rewards for each action.
Therefore, the agent would like to select the best performing
action from historical observations to obtain a relatively high
reward (Exploitation) and try some actions that have not been
observed enough to obtain potentially high payoffs (Explo-
ration). Note that over-exploitation may cause agents to miss
the optimal action, while over-exploration will cause agents
to pay too much learning cost. How to balance exploitation
and exploration is the critical issue to be considered by the
solution algorithms of MAB.

To balance the exploration and exploitation, the Upper
Confidence Bound (UCB) method is a typical strategy, which
maintains a upper confidence bound of the reward for each
action ai by the empirical mean reward Q̂t (ai) of past obser-
vations and the confidence radius Ût (ai). And the confidence
radius Ût (ai) is a function of Nt (a), which will decrease as
the number of observations Nt (a) of ai increases. Thus, in the
UCB methods, we always greedily choose the action a∗t with
the maximum upper confidence bound in round t as shown in
Equation 6.

a∗t = argmax
ai

{
Q̂t (ai)+ Ût (ai)

}
(6)

In [19], A Garivier et al. proposed Kullback-Leibler UCB
(KL-UCB) algorithm based on Bernoulli Kullback-Leibler
divergence, which satisfies a uniformly better expected
reward. The formal description of KL-UCB(ai) for each arm
ai is shown in Equation 7, which can be efficiently calculated
by Newton iteration.

max
{
q ∈ 2 : Nt (ai) d(

St (ai)
Nt (ai)

, q) ≤ log(t)+ c log(log(t))
}
,

(7)

where Nt (ai) and St (ai) denote the number of times action
ai gets selected and the total reward of ai in t rounds; c is

a parameter for the regret bound; d(p, q) is the Bernoulli
Kullback-Leibler divergence as shown in Equation 8.

d(p, q) = KL(p, q) = p log
p
q
+ (1− p) log

1− p
1− q

(8)

B. ADAPTIVE WINDOWED MATCHING
In the DWRP problem, the balance between response time
and service quality can be regarded as whether to leave the
platform early or not. The action of early leaving can reduce
the request’s response time while staying in the platform as
long as possible may improve the request group and thus
improve the service quality to reduce the cost. The KL-UCB
policy can be conveniently embedded in such a process.
We can consider staying and leaving as two candidate actions
and design the reward function tomaximize the desired objec-
tive by learning a better strategy through continuous online
iterations.

For KL-UCB to be able to balance the response time and
the service quality, we define the following reward function
Reward(Q,w) =

ε ·

(
1−

µ(Sw)∑
r∈Q cost(r)

)
+ (1− ε) ·

(
1−

∑
ri∈Q(t − ti)∑
ri∈Q |Ti|

)
where the left part of Reward(Q,w) evaluates the ratio of
travel time saved by the request group; the right part analyzes
the time saved by the earlier response with respect to the
maximum allowed matching time; the parameter ε balances
these two components so that they can be applied to scenarios
with different emphases.

Based on the KL-UCB Policy with the reward function
above, we have the following adaptive matching algorithm
shown in Algorithm 5. As new request ri arrives, we first
enumerate the request groups for ri and update the state
graphMG by following the same methods as in Algorithm 3,
lines 1-21 (line 1). Then we retrieve the recommended action
a∗i with the largest KL-UCB from the policy instance P of
the platform (line 2). Once the recommendation a∗i of P is to
dispatch ri immediately (line 3-8), we will select the service
vehicle w∗i by the reward function and feed the reward to the
policy instance P (line 5-6). Finally, we plan the route Sj for
the selected vehicle w∗j and remove the request ri with related
edges from the state graphMG (line 7-8).

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASETS
The request datasets of Chengdu (noted as CHD) and New
York City (noted as NYC) were used to demonstrate the
effectiveness and efficiency of our proposed methods in this
paper. The road networks of both cities are downloaded from
Geofabrik [27] and segmented by Osmconverter [28] with
city boundaries on OpenStreetMap [29] for CHD [30] and
NYC [31], respectively. In addition, we also carefully trimmed
the road networks according to the distribution boundaries
of request sources and destinations so that there are fewer

43806 VOLUME 10, 2022

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

Algorithm 5: Adaptive Windowed Matching
Input: The newly arrival request ri, the State GraphMG,

the instance of KL-UCB Policy P and a vehicle
set W .

Output: An updated route set S for vehiclesW .
1 Update state graphMG via line 1-21 of Algorithm 3
2 a∗← argmaxai∈{stay,leave} KL-UCB(P, ai)
3 if a∗ = leave then
4 Q∗i ← retrieve the request group of ri from MG
5 w∗j ← argmaxwj∈W Reward(Q∗i ,w)

6 P .updateState
(
Reward(Q∗i ,w

∗
j)
)

7 Sj← planning route for serving r ∈ Q∗i
8 remove r ∈ Q∗i and related edges fromMG

9 return S = {Sj|wj ∈ W }

FIGURE 6. Performance of varying |R|.

irrelevant regions as possible. The weight associated with
each edge on the road network is the average travel time of
the road segment. Since there is no field about the number of
passengers in CHD dataset, we generate the field based on
the distribution in NYC as [18]. And we set the deadline of
request ri as di = ti+ γ · cost(ri), which is a commonly used
configuration in many existing works [6], [11], [20].

In the experiments for analyzing the effects of different
parameters, we used data from CHD on October 31, 2016,
and NYC on April 09, 2016, for a full day of testing. These

TABLE 3. Experimental settings.

datasets are available on Didi GAIA [32] and NYC Official
Website [33], respectively. The detailed experiment-related
parameters are shown in Table 3 (default parameters are in
bold).

2) IMPLEMENTATION
We simulated the ridesharing and the driver’s moving based
on the released time of the requests. We pre-map the sources
and destinations of the requests to the nearest nodes on the
road network through the VP-Tree [34]. The initial location
of the worker is set to the earliest occurrence of GPS track
points in the dataset. The pruning strategy based on Euclidean
spaces is approximated bymultiplying the average travel time
by the maximum speed.

3) ENVIRONMENTS
All algorithms are implemented with C++ and compiled
with -O3 optimization. The algorithms run on a single server
equipped with Xeon(R) Silver 4210R CPU @ 2.40GHz and
128GB RAM. Besides, all algorithms are implemented in a
single thread.

B. APPROACHES AND MEASUREMENTS
We compare the following four algorithms in the experimen-
tal study.

• pruneGDP [18]. It inserts the request into the vehicle’s
current schedule sequentially and selects the vehicle
with the least increased distance for service.

• BF. The Brute-Force method shown in Algorithm 1.
It is in batch mode and enumerates all request groups
for each vehicle’s candidate requests in random order.
We performed preprocessing as shown in Section II-B
to accommodate the matching window.

• EGWM. The event-driven based algorithm proposed
in Section III maintains the request group by graphs.
It continuously iterates to optimize the request group
within the matching window allowed by request. Also,
it utilizes a randomized approach to decide whether a
request is to be dispatched before the maximum match-
ing window or not.

• AWM. It is a variant of the EGWM algorithm pro-
posed in Section IV, which dynamically learns to decide
whether a request is dispatching before the maximum
matching window based on the KL-UCB policy. Addi-
tionally, the reward function’s adaptation parameter ε
has been fine-tuned for better service quality by default.

VOLUME 10, 2022 43807

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

FIGURE 7. Performance of VARYING c .

We report all algorithms’ unified cost, service rate, and
overall running time. Specifically, the unified cost adopts the
evaluation of total revenue in [18], and the varying penalty
coefficient pr is equivalent to the balance between income per
unit time and fare per unit distance. The service rate evaluates
the number of requests the platform accepts with a limited
number of vehicles. The overall running time demonstrates
the efficiency of the algorithms for processing the same
number of requests. We early terminated those not completed
experiments within 12 hours.

C. EXPERIMENTAL RESULTS
1) EFFECT OF THE NUMBER OF VEHICLES
Figure 6 shows the results of varying the number of vehi-
cles from 1K to 5K. As the number of vehicles increases,
so does the service quality of the evaluated methods. The BF
algorithm leads other methods for the uniform cost, which
mainly benefit from its brute force enumeration strategy. The
EGWM and AWM have a very close performance with the
BF algorithm. However, in terms of the overall running time,
because of the high time complexity of the brute force com-
putation in the BF algorithm, it takes nearly up to three hours
and six hours to run on the two test datasets, respectively.
In contrast, the performance of the EGWM and AWM meth-
ods proposed in this paper is 61.03 times and 148.70 times
faster compared with the BF algorithm on the CHD and NYC
datasets (as shown in Figure 6(e) and 6(f)). It mainly results

from the fact that the clique enumeration strategy proposed
in Section III-A avoids unnecessary enumeration of request
combinations, and we store the better request group through
the state graph and keep optimizing them, which provides
a near online performance. Benefiting from the linear time
complexity of the online algorithmGDP, it is leading in terms
of overall running time. However, it performs not do well
in service quality (service rate and unified cost) because it
does not analyze request groups among requests. Further-
more, the superiority of EGWM and AWM gradually appears
when the number of vehicles is large enough. As shown in
Figure 6(c) and 6(d), when the number of vehicles is 5K, the
service rate of EGWM and AWM achieves 4.85% and 3.2%
improvement compared to the BF algorithm (about 12125 and
8000 requests, respectively).

2) EFFECT OF THE NUMBER OF REQUESTS
Figure 7 presents the results of varying the number of requests
from 10K to 250K. Because the number of accepted and
rejected requests increased significantly, the unified costs
of all experiment algorithms are growing. For service rate
shown in Figure 7(c) and 7(d), the AWM algorithm performs
the best, achieving improvements ranging from 3.57% ∼
34.61% and 2.84% ∼ 30.66% over other methods on the two
datasets CHD and NYC, respectively. For the running time,
the insertion-based methods are still faster. In Figure 7(e),
EGWM and AWM are 9.26× ∼ 78.3× faster than BF on
CHD. And on the NYC dataset, the AWMalgorithm performs
even 401.52× faster than the BF algorithm as shown in
Figure 7(f).

3) EFFECT OF DEADLINE
Figure 8 presents the results of the varying deadline of
requests by changing the deadline parameter γ from 1.2 to
2.0. The results for service rate are similar among the com-
pared algorithmswhenwe strictly set the deadline of requests,
i.e., γ = 1.2. The reason is that the number of candidate
vehicles for each request reduces significantly with a minor
deadline, making it challenging to achieve noticeable perfor-
mance improvements by applying request group analyzing
strategies. However, the AWM algorithm achieves similar
service quality using only 0.6% of the running time of the
BF. The superiority of AWM is more explicit compare to the
EGWM, where the AWM is 1.98× and 5.95× faster than
EGWM on two datasets when γ = 1.2. With the increase
of deadline, the superiority of group-based algorithms (i.e.,
BF, EGWM and AWM) gradually realizes. The service rate
of these methods achieves more than 90% when the deadline
is 1.8×. Note that BF performs inefficiently on two datasets
with γ ≥ 1.8, which is primarily due to the increase of
request groups with the relaxation of the deadline. Besides,
BF enumerates all the combinations of requests and schedules
almost for each vehicle. However, in EGWM and AWM,
the request groups are stored in the state graph and improve
gradually. Moreover, the request group only updated when
the following arrived requests improved the utility. Thus, the

43808 VOLUME 10, 2022

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

FIGURE 8. Performance of Varying γ .

time cost for the request group enumeration is significantly
reduced in EGWM and AWM, benefiting from our ‘‘event-
driven’’ execution strategy. The results of BF in CHD with
γ = 2.0 and NYC with γ ≥ 1.8 are not presented because
the running time exceeds the limit of our experiment settings
(i.e., 12 hours). In addition, AWM performs the best in terms
of unified cost and service rate as shown in Figure 8(a) to 8(d),
which improves up to 31.6% and 82.97% compared with
other algorithms on two datasets.

4) EFFECT OF VEHICLE’S CAPACITY CONSTRAINT
Figure 9 illustrates the results of varying the vehicle’s capac-
ity from 2 to 6. In terms of unified cost, BF and AWM have
similar results on the CHD dataset, but BF leads on the NYC
dataset by enumerating the best request group. However,
since the number of request groups increases dramatically
with vehicle capacity for the BF method (e.g., when c = 6,
the BF algorithm needs to enumerate C6

n different request
groups), the BF algorithm cannot finish within the given time
limit when c ≥ 5. The unified cost of AWM is slightly better
than that of EGWM on two datasets, which mainly benefited
from the decision of the KL-UCB policy. As for service rate,
AWM is still the best among all tested algorithms (except
c = 2 on NYC). In terms of running time, AWM is the fastest
among group-based methods (BF, EGWMand AWM), which
is 8.03× ∼ 147.85× faster than BF.

FIGURE 9. Performance of Varying c .

5) DISCUSSION
The linear insertion method benefits from its linear time
complexity, which allows the request to be scheduled to the
vehicle within a short time after arrival. However, such an
approach suffers from poor performance on service rate and
unified cost due to the low level of sharing between requests.
On the other hand, the windowed matching model requires
requests to stay on the platform for a relatively short time
window, which is a trade-off between matching time and ser-
vice quality. The experimental results also show that although
the windowed matching model requires waiting and a longer
matching time than the online-based model, such waiting is
acceptable in real-life scenarios.

6) SUMMARY OF THE EXPERIMENTAL STUDY
• The group-based methods (i.e., BF, EGWM, AWM)
have superior performance on service quality (i.e.,
higher service rates and lower unified costs) compared
to the online-basedmethods (i.e., pruneGDP). For exam-
ple, the AWM achieves a service rate improvement up to
35% compared to the other tested algorithm.

• The EGWM and AWM algorithms can lead and show
excellent performance in most cases. For example,
AWM runs up to 401.52 times faster than BF in
Figure 7(f). In other words, AWM can process NYC
requests in 3 minutes, but BF takes up to 5.8 hours

VOLUME 10, 2022 43809

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

• TheKL-UCB strategy has a noticeable effect on improv-
ing the service quality. For instance, AWMhas improved
the service rate of the random policy over EGWM
by up to 8.44% and 6.73% on the two datasets,
respectively.

VI. RELATED WORK
With the development of GPS equipment, mobile Inter-
net, and sharing economy, ridesharing service has gradually
become an indispensable choice for people to travel. The
ridesharing problem can be reduced to a variant of the Dial-a-
Ride (DARP) problem [35], [36], which dedicates to planning
service routes for vehicles to serve n requests with specified
origins, destinations, and practical constraints. Most of the
existing works [37], [38] mainly focused on the static case,
where all requests were already known in advance. However,
with the increasing demand for ridesharing, the concept of
the dynamic ridesharing problem is more relevant to practical
applications. For the dynamic ridesharing problem, the exist-
ing solutions are mainly in online mode [5], [6], [13], [18] or
batch mode [14]–[16], [39].

In online mode, insertion [40] is the state-of-the-art oper-
ation of the existing works [41], [42] in route planning,
which inserts the pickup and drop-off locations of the request
into the vehicle’s current schedule without reordering. The
insertion-based algorithms are more efficient in practice
on real-life datasets [13]. Furthermore, Tong et al. [18] pro-
posed an improved insertion method based on dynamic pro-
gramming, which checks the constraints in constant time
and dispatches requests in linear time. On the other hand,
Huang et al. [6] proposed the structure of the kinetic tree,
which is used to trace all feasible routes for each vehicle
to reduce the total driving distance. Whenever the schedule
changes with the arrival of a new rider, Kinetic Tree always
provides the optimal schedule for the vehicle. However, exist-
ing online-based methods perform poorly in service quality
due to the lack of detailed enumeration and analysis of share-
able request groups.

The batch-based algorithms usually partition the request
into groups with a route and then assign groups to their
appropriate vehicles. In [14], Alonso-Mora et al. propose
RTV-Graph to model the relationship and constraints among
requests, trips, and vehicles, where trips are the groups
composed of shareable requests. With the RTV-Graph, they
minimize the utility function by linear programming to get
the allocation result between vehicles and trips. But the
time cost for enumerating trips in the process of building
RTV-Graph grows exponentially. In [15], Zeng et al. pro-
posed an index called additive tree for pruning the infea-
sible groups during the group enumeration, and greedily
choosing the most profitable request group to the server.
Nevertheless, existing batch-basedmethods dispatch requests
through a fixed interval without taking personalized match-
ing windows for requests into account. Therefore, in this
paper, we propose an event-driven ridesharing framework,
E-Ride, which improves the service quality of the existing

algorithms and provides efficiency close to the online
methods.

VII. CONCLUSION
In this paper, we study the dynamic ridesharing problem
with a personalized matching window. Concretely, we first
proposed an event-driven framework, E-Ride, which main-
tains the request groups through a state graph extended by
the shareability graph. Then, we propose an efficient request
group enumeration strategy based on the k-clique in the
shareability graph, which helps improve the request groups
by the arrival of the subsequent requests efficiently. Further-
more, to satisfy different application scenarios, we designed
the reward function for the KL-UCB policy to learn the
dispatching strategy dynamically to balance the matching
efficiency and service quality. In the experimental study, the
extensive experiment results demonstrated that our method
achieves a better service rate, less unified cost, and shorter
running time than the state-of-the-art methods.

REFERENCES
[1] G. Laporte, F. Meunier, and R. Wolfler Calvo, ‘‘Shared mobility sys-

tems: An updated survey,’’ Ann. Oper. Res., vol. 271, no. 1, pp. 105–126,
Dec. 2018, doi: 10.1007/s10479-018-3076-8.

[2] S. C. Ho, W. Szeto, Y.-H. Kuo, J. M. Y. Leung, M. Petering, and
T. W. Tou, ‘‘A survey of dial-a-ride problems: Literature review and
recent developments,’’ Transp. Res. B, Methodol., vol. 111, pp. 395–421,
May 2018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0191261517304484

[3] Didi. Accessed: Mar. 1, 2022. [Online]. Available: https://www.did
iglobal.com/

[4] Uber. Accessed: Mar. 1, 2022. [Online]. Available: https://www.uber.com/
[5] S. Ma, Y. Zheng, and O. Wolfson, ‘‘T-share: A large-scale dynamic taxi

ridesharing service,’’ in Proc. IEEE 29th Int. Conf. Data Eng. (ICDE),
C. S. Jensen, C. M. Jermaine, and X. Zhou, Eds. Brisbane, QLD, Australia,
Apr. 2013, pp. 410–421, doi: 10.1109/ICDE.2013.6544843.

[6] Y. Huang, R. Jin, F. Bastani, and X. S. Wang, ‘‘Large scale real-
time ridesharing with service guarantee on road networks,’’ Proc. VLDB
Endowment, vol. 7, pp. 2017–2028, Oct. 2013. [Online]. Available:
http://www.vldb.org/pvldb/vol7/p2017-huang.pdf

[7] M. Asghari, D. Deng, C. Shahabi, U. Demiryurek, and Y. Li, ‘‘Price-
aware real-time ride-sharing at scale: An auction-based approach,’’ inProc.
24th ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst., S. Ravada,
M. E. Ali, S. D. Newsam, M. Renz, and G. Trajcevski, Eds. Burlingame,
CA, USA, Oct. 2016, pp. 3:1–3:10, doi: 10.1145/2996913.2996974.

[8] M. Asghari and C. Shahabi, ‘‘An on-line truthful and individually rational
pricing mechanism for ride-sharing,’’ in Proc. 25th ACM SIGSPATIAL Int.
Conf. Adv. Geographic Inf. Syst., E. G. Hoel, S. D. Newsam, S. Ravada,
R. Tamassia, and G. Trajcevski, Eds. Redondo Beach, CA, USA,
Nov. 2017, pp. 7:1–7:10, doi: 10.1145/3139958.3139991.

[9] B. Cici, A. Markopoulou, and N. Laoutaris, ‘‘Designing an on-line
ride-sharing system,’’ in Proc. 23rd SIGSPATIAL Int. Conf. Adv. Geo-
graphic Inf. Syst., J. Bao, C. Sengstock, M. E. Ali, Y. Huang, M. Gertz,
M. Renz, and J. Sankaranarayanan, Eds. Bellevue, WA, USA, Nov. 2015,
pp. 60:1–60:4, doi: 10.1145/2820783.2820850.

[10] S. Yeung, E. Miller, and S. Madria, ‘‘A flexible real-time ridesharing
system considering current road conditions,’’ in Proc. 17th IEEE Int. Conf.
Mobile Data Manage. (MDM), Porto, Portugal, Jun. 2016, pp. 186–191,
doi: 10.1109/MDM.2016.37.

[11] P. Cheng, H. Xin, and L. Chen, ‘‘Utility-aware ridesharing on road net-
works,’’ in Proc. ACM Int. Conf. Manage. Data (SIGMOD), S. Salihoglu,
W. Zhou, R. Chirkova, J. Yang, and D. Suciu, Eds. Chicago, IL, USA,
May 2017, pp. 1197–1210, doi: 10.1145/3035918.3064008.

[12] J.-F. Cordeau and G. Laporte, ‘‘A Tabu search heuristic for the static multi-
vehicle dial-a-ride problem,’’ Transp. Res. B, Methodol., vol. 37, no. 6,
pp. 579–594, 2003.

43810 VOLUME 10, 2022

http://dx.doi.org/10.1007/s10479-018-3076-8
http://dx.doi.org/10.1109/ICDE.2013.6544843
http://dx.doi.org/10.1145/2996913.2996974
http://dx.doi.org/10.1145/3139958.3139991
http://dx.doi.org/10.1145/2820783.2820850
http://dx.doi.org/10.1109/MDM.2016.37
http://dx.doi.org/10.1145/3035918.3064008

H. Wu et al.: E-Ride: Adaptive Event-Driven Windowed Matching Framework in Ridesharing

[13] Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li, ‘‘An efficient insertion
operator in dynamic ridesharing services,’’ in Proc. IEEE 35th Int. Conf.
Data Eng. (ICDE), Macao, China, Apr. 2019, pp. 1022–1033.

[14] J. Alonsomora, S. Samaranayake, A.Wallar, E. Frazzoli, and D. Rus, ‘‘On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment,’’
Proc. Nat. Acad. Sci. USA, vol. 114, no. 3, pp. 462–467, 2017, doi:
10.1073/pnas.1611675114.

[15] Y. Zeng, Y. Tong, Y. Song, and L. Chen, ‘‘The simpler the better: An index-
ing approach for shared-route planning queries,’’ Proc. VLDB Endow-
ment, vol. 13, no. 13, pp. 3517–3530, Sep. 2020. [Online]. Available:
http://www.vldb.org/pvldb/vol13/p3517-zeng.pdf

[16] L. Zheng, L. Chen, and J. Ye, ‘‘Order dispatch in price-aware ridesharing,’’
Proc. VLDB Endowment, vol. 11, no. 8, pp. 853–865, 2018. [Online].
Available: http://www.vldb.org/pvldb/vol11/p853-zheng.pdf

[17] X. Bei and S. Zhang, ‘‘Algorithms for trip-vehicle assignment
in ride-sharing,’’ in Proc. 32nd AAAI Conf. Artif. Intell. (AAAI)
30th Innov. Appl. Artif. Intell. (IAAI) 8th AAAI Symp. Educ. Adv.
Artif. Intell. (EAAI), S. A. McIlraith and K. Q. Weinberger, Eds.
New Orleans, LA, USA, Feb. 2018, pp. 3–9. [Online]. Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16583

[18] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, ‘‘A uni-
fied approach to route planning for shared mobility,’’ Proc. VLDB
Endowment, vol. 11, no. 11, pp. 1633–1646, 2018. [Online]. Available:
http://www.vldb.org/pvldb/vol11/p1633-tong.pdf

[19] A. Garivier and O. Cappé, ‘‘The KL-UCB algorithm for bounded stochas-
tic bandits and beyond,’’ in Proc. 24th Annu. Conf. Learn. Theory,
Budapest, Hungary, vol. 19, 2011, pp. 359–376. [Online]. Available:
http://proceedings.mlr.press/v19/garivier11a/garivier11a.pdf

[20] J. Wang, P. Cheng, L. Zheng, C. Feng, L. Chen, X. Lin, and Z. Wang,
‘‘Demand-aware route planning for sharedmobility services,’’Proc. VLDB
Endowment, vol. 13, no. 7, pp. 979–991, Mar. 2020.

[21] C. Wang, Y. Song, Y. Wei, G. Fan, H. Jin, and F. Zhang, ‘‘Towards mini-
mum fleet for ridesharing-aware Mobility-on-Demand systems,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Vancouver, BC, Canada,
May 2021, pp. 1–10, doi: 10.1109/INFOCOM42981.2021.9488862.

[22] H. Zhang and J. Zhao, ‘‘Mobility sharing as a preference matching prob-
lem,’’ IEEE Trans. Intell. Transp. Syst., vol. 20, no. 7, pp. 2584–2592,
Jul. 2019, doi: 10.1109/TITS.2018.2868366.

[23] C. Zhang, Y. Zhang, W. Zhang, L. Qin, and J. Yang, ‘‘Efficient
maximal spatial clique enumeration,’’ in Proc. 35th IEEE Int. Conf.
on Data Eng. (ICDE), Macao, China, Apr. 2019, pp. 878–889, doi:
10.1109/ICDE.2019.00083.

[24] M. Danisch, O. Balalau, and M. Sozio, ‘‘Listing k-cliques in sparse real-
world graphs,’’ in Proc. World Wide Web Conf. World Wide Web (WWW),
P. Champin, F. Gandon, M. Lalmas, and P. G. Ipeirotis, Eds. Lyon, France,
2018, pp. 589–598, doi: 10.1145/3178876.3186125.

[25] J. Cheng, Y. Ke, A. W. Fu, J. X. Yu, and L. Zhu, ‘‘Finding maximal
cliques in massive networks by H*-graph,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), A. K. Elmagarmid and D. Agrawal,
Eds. Indianapolis, Indiana, IND, USA, Jun. 2010, pp. 447–458, doi:
10.1145/1807167.1807217.

[26] M. N. Katehakis and A. F. Veinott, ‘‘The multi-armed bandit problem:
Decomposition and computation,’’ Math. Oper. Res., vol. 12, no. 2,
pp. 262–268, May 1987, doi: 10.1287/moor.12.2.262.

[27] Geofabrik Download Server. Accessed: Mar. 1, 2022. [Online]. Available:
https://download.geofabrik.de/

[28] Osmconvert. Accessed: Mar. 1, 2022. [Online]. Available:
https://wiki.openstreetmap.org/wiki/Osmconvert

[29] OpenStreetMap. Accessed: Mar. 1, 2022. [Online]. Available:
https://www.openstreetmap.org/

[30] Relation: Chengdu (2110264). Accessed: Mar. 1, 2022. [Online]. Avail-
able: https://www.openstreetmap.org/relation/2110264

[31] Relation: New york (61320). Accessed: Mar. 1, 2022. [Online]. Available:
https://www.openstreetmap.org/relation/61320

[32] DiDiGAIA. Accessed:Mar. 1, 2022. [Online]. Available: https://outreach.d
idichuxing.com/research/opendata/

[33] TLC Trip Record Data. Accessed: Mar. 1, 2022. [Online]. Available:
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

[34] P. N. Yianilos, ‘‘Data structures and algorithms for nearest
neighbor search in general metric spaces,’’ in Proc. 4th Annu.
ACM/SIGACT-SIAM Symp. Discrete Algorithms, V. Ramachandran,
Ed. Austin, TX, USA, Jan. 1993, pp. 311–321. [Online]. Available:
http://dl.acm.org/citation.cfm?id=313559.313789

[35] N. H. Wilson, R. W. Weissberg, and J. Hauser, ‘‘Advanced dial-a-ride
algorithms research project,’’ Dept. Civil Eng., Cambridge, MA, USA.
Tech. Rep. R76-20, 1976.

[36] J.-F. Cordeau and G. Laporte, ‘‘The dial-a-ride problem (DARP): Variants,
modeling issues and algorithms,’’ Quart. J. Belg., Fr. Italian Oper. Res.
Societies, vol. 1, no. 2, pp. 89–101, Jun. 2003.

[37] K. I. Wong and M. G. H. Bell, ‘‘Solution of the Dial-a-Ride problem with
multi-dimensional capacity constraints,’’ Int. Trans. Oper. Res., vol. 13,
no. 3, pp. 195–208, May 2006.

[38] J.-F. Cordeau, ‘‘A branch-and-cut algorithm for the dial-a-ride problem,’’
Oper. Res., vol. 54, no. 3, pp. 573–586, 2006.

[39] L. Zheng, P. Cheng, and L. Chen, ‘‘Auction-based order dispatch and
pricing in ridesharing,’’ in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE),
Apr. 2019, pp. 1034–1045, doi: 10.1109/ICDE.2019.00096.

[40] J.-J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. M. Wilson, ‘‘A heuristic
algorithm for the multi-vehicle advance request dial-a-ride problem with
time Windows,’’ Transp. Res. B, Methodol., vol. 20, no. 3, pp. 243–257,
Jun. 1986.

[41] I. Ioachim, J. Desrosiers, Y. Dumas, M. M. Solomon, and D. Villeneuve,
‘‘A request clustering algorithm for door-to-door handicapped transporta-
tion,’’ Transp. Sci., vol. 29, no. 1, pp. 63–78, Feb. 1995.

[42] L. Häme, ‘‘An adaptive insertion algorithm for the single-vehicle dial-a-
ride problem with narrow time Windows,’’ Eur. J. Oper. Res., vol. 209,
no. 1, pp. 11–22, Feb. 2011.

HAN WU received the bachelor’s degree from
East China Normal University, China, in 2019,
where he is currently pursuing the master’s degree.
His research interests include food delivery and
spatial crowdsourcing.

YU CHEN received the bachelor’s degree from
East China Normal University, China, in 2019,
where he is currently pursuing the master’s degree.
His research interests include spatial data man-
agement, ridesharing, spatial crowdsourcing, and
dense subgraph.

LIPING WANG received the Ph.D. degree in
computer application and technology from East
China Normal University, in 2013. She is currently
an Associate Professor with the Software Engi-
neering Institute, East China Normal University.
Her research interests include temporal-spatial
data management and pattern recognition.

GUOJIE MA received the Ph.D. degree from the
University of Technology Sydney, Australia. She
is currently a Postdoctoral Research Fellow with
East China Normal University. Her research inter-
ests include big data analysis for finance, fintech,
and knowledge graph.

VOLUME 10, 2022 43811

http://dx.doi.org/10.1073/pnas.1611675114
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488862
http://dx.doi.org/10.1109/TITS.2018.2868366
http://dx.doi.org/10.1109/ICDE.2019.00083
http://dx.doi.org/10.1145/3178876.3186125
http://dx.doi.org/10.1145/1807167.1807217
http://dx.doi.org/10.1287/moor.12.2.262
http://dx.doi.org/10.1109/ICDE.2019.00096

