
Received March 27, 2022, accepted April 11, 2022, date of publication April 13, 2022, date of current version April 20, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3167269

Improved Prioritization of Software
Development Demands in Turkish
With Deep Learning-Based NLP
VOLKAN TUNALI , (Member, IEEE)
Department of Software Engineering, Faculty of Engineering and Natural Sciences, Maltepe University, 34857 Istanbul, Turkey

e-mail: volkan.tunali@gmail.com

ABSTRACT Management of software development demands including bug or defect fixes and new feature
or change requests is a crucial part of software maintenance. Failure to prioritize demands correctly might
result in inefficient planning and use of resources as well as user or customer dissatisfaction. In order to
overcome the difficulty and inefficiency of manual processing, many automated prioritization approaches
were proposed in the literature. However, existing body of research generally focused on bug report
repositories of open-source software, where textual bug descriptions are in English. Additionally, they
proposed solutions to the problem using mostly classical text mining methods and machine learning (ML)
algorithms. In this study, we first introduce a demand prioritization dataset in Turkish, which is composed
of manually labeled demand records taken from the demand management system of a private insurance
company in Turkey. Second, we propose several deep learning (DL) architectures to improve software
development demand prioritization. Through an extensive experimentation, we compared the effectiveness
of our DL architectures trained with several combinations of different optimizers and activation functions
in order to reveal the best combination for demand prioritization in Turkish. We empirically show that DL
models can achieve much higher accuracy than classical ML models even with a small amount of training
data.

INDEX TERMS Software engineering, demand prioritization, bug prioritization, machine learning, text
classification, deep learning.

I. INTRODUCTION
Software development is a very sophisticated endeavor that
aims to address real-world problems which are inherently
complex and difficult to solve [1]. Other factors like
development tools and techniques, developer competency,
and schedule pressure add an extra layer of complexity and
difficulty to development processes. As a result of these
complexities and difficulties, several types of defects are
inevitably introduced into software in any stage of software
development life cycle (SDLC) due to several reasons like
inadequately collected and analyzed requirements, misun-
derstanding of requirements, bad architecture and design,
bad coding practices, and so on [2]. In addition, poor
testing approaches and quality assurance strategies allow for
releasing software with unidentified defects. Most of the
defects in released software can be identified and reported

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Nardone .

by end-users, and some by other developers and technical
support personnel. Regardless of the source, these defects are
usually submitted to and managed in a kind of issue tracking
system such as Jira, Bugzilla, or other proprietary or open-
source systems. In addition to defect or bug tracking, these
issue tracking systems are also used for tracking demands
of small-scale new feature developments or change requests
by end-users. For example, an end-user may request the
display of an additional information regarding a customer on
a report page, which was never on the initial requirements
specification, and thus, its absence is not a kind of defect
left by the development team. Therefore, in this paper we
develop and use a unified terminology such that a software
development demand is either a kind of defect- or bug-fix, or a
new feature development, or a change request. In this sense,
we call any kind of issue or bug tracking and management
system a Demand Management System (DMS). A DMS,
in this perspective, allows users and development teams
to report, describe, prioritize, track, and resolve software

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 40249

https://orcid.org/0000-0002-2735-7996
https://orcid.org/0000-0003-4938-9216


V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

development demands in a systematic manner via appropriate
user-interfaces and work-flows [3].

A demand record in a DMS usually contains fields such as
demand-id, date of submission, product, component, version,
operating system, title, short description, long description as
well as severity and priority. Severity means how serious is
the issue or bug if it is a bug report. Priority, on the other
hand, indicates how important a demand is for the software
system to be resolved earlier. Some systems use categorical
values for priority field as P1 to P5, P1 being the highest
priority. Some employs a similar but simpler approach with
categorical values of High, Medium, and Low priority.

It is our observation in the software industry that end-users
usually submit their development demands with high priority
even it is medium or low in order to make them scheduled
and resolved earlier. We also observe that some end-users
leave priority field blank. In either case, new demands
must be carefully examined and evaluated by someone
called triager to assign correct and meaningful priorities to
them [3]. Another role of the triager is to assign the demand
appropriate development person or team according to demand
content. This type of triaging process assumes that the triager
has the broad knowledge of the software system and the
development team like a project manager. This may not
always be the case especially for large and complex projects.
Additionally, this is a very labor-intensive task where the
triager has to meticulously examine large batches of demands
periodically, and her judgment of priority may become biased
or she may fail to assign appropriate priorities. It is of very
much importance to prioritize demands correctly in order to
effectively schedule their fixing and resolution and to allocate
correct resources to them. Failure to prioritize them correctly
might result in inefficient planning and use of resources as
well as user or customer dissatisfaction.

In order to overcome the difficulty and inefficiency of
manual demand triaging, many automated prioritization
approaches have been proposed in the literature. We provide
a concise yet comprehensive overview of these approaches
in Section II. When we survey the literature, previous
body of research is generally focused on bug prioritization
on bug repositories in English language. In this research,
however, we prioritize not only bugs but any kind of
software development demands in the DMS of a private
insurance company in Turkey. The company has a software
development department and develops its own software with
an in-house development strategy. A great majority of the
development demands are submitted to the DMS by the
internal end-users of the company. Hence, demand records
are written in Turkish language, which imposes several
additional difficulties to process due to the agglutinative
nature of the language.

In our previous study, we tested and compared several
classical Machine Learning (ML) models on the demand
records taken from the DMS, applying several text pre-
processing operations on the demand texts [4]. In that
study, we achieved F-Score values of 0.54 and 0.53 at best

with Support Vector Machines and Naive Bayes algorithms,
respectively. Over the past decade, we have been witnessing a
paradigm shift in computer vision thanks to advances in Deep
Neural Networks (DNN) and Deep Learning (DL). As well
as computer vision, developments in Natural Language
Processing (NLP) have gained great momentum with the
introduction of DL architectures for sequence processing like
RNN and LSTM, and with the release of large pretrained
language models based on the transformer architecture like
BERT (Bidirectional Encoder Representations from Trans-
formers) and GPTs (Generative Pretrained Transformer) [5].
Therefore, in this current study, our main motivation was to
apply state-of-the-art concepts and techniques in NLP to the
very same problem and to propose effective DL architectures
to improve demand prioritization on Turkish demand records.
The main contributions and novelty of our work can be
summarized as follows:

1) We introduce an original demand prioritization dataset
in Turkish language, taken from the DMS of a private
insurance company in Turkey. This dataset can serve
as a reference to further similar studies in software
engineering domain. In addition, this dataset can be
useful to researchers who conduct general-purpose text
classification research in a low-resource language like
Turkish.

2) We propose several deep learning architectures to
greatly improve software development demand prioriti-
zation over our previous research with the same dataset.

3) Through an extensive experimentation, we compare the
effectiveness of our deep learning architectures trained
with several combinations of different optimizers
and activation functions in order to reveal the best
combination for demand prioritization in Turkish.

4) We empirically show that deep learning models can
achieve much higher accuracy than classical ML
models even with a small amount of training data.

The rest of this paper is organized as follows. In Section II,
we provide an essential background on prioritization of
software development demands. In Section III, we establish a
technical background on themorphology of Turkish language
and Deep Learning methods. In Section IV, we present the
materials and methods used in the study. We present our
experimental results and discussion in Section V. Finally,
in Section VI, we conclude the paper.

II. RELATED WORKS
Existing research usually considered the management of soft-
ware development demands as a bug or defect management
problem from various perspectives such as automating bug
assignments, detecting duplicate or similar bugs, predicting
bug fixing time, categorizing bugs, predicting severity and
priority of bugs [6]. Besides, they usually approached the
problem with supervised and unsupervised ML techniques,
using mostly classical algorithms like K-Nearest Neighbor
(KNN), Naive Bayes (NB), Support VectorMachines (SVM),
and K-Means (KM). While some of them used textual

40250 VOLUME 10, 2022



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

features extracted from text fields like title and description,
some other utilized the categorical features in issue records
as well. Another common pattern among previous studies is
that they usually used bug tracking databases of open source
software, taking advantage of the availability of such open-
source repositories like Eclipse, GNOME, and OpenOffice.
To the best of our knowledge, none of the previous studies
apart from our previous study worked with a dataset in
Turkish language. In this section, we provide a concise yet
comprehensive overview of the related research under three
categories as bug severity prediction, bug priority prediction,
and bug fix time prediction, also summarizing them in
Table 1.

A. RESEARCH ON BUG SEVERITY PREDICTION
Bug severity is defined as the degree of impact that a bug
causes on the expected operation of a software component
or a whole system [6]. Bug severity is an important measure
in deciding when to fix a bug once it is reported. Depending
on the bug tracking system, different levels of bug severities
are employed such as from 1 to 5 or just severe and non-
severe. In this subsection, we present important research on
bug severity prediction.

Menzies and Marcus [8] proposed a system named
SEVERIS to predict severity of issues identified during tests.
They developed and tested the system on NASA datasets by
taking into consideration textual descriptions of the issues.
Applying common text mining operations and employing a
rule learner, they achieved considerable accuracy.

Lamkanfi et al. [11] employed NB to predict the severity
of bugs in categories as severe and non-severe. Their
approach was based on textual features extracted bug descrip-
tions of bug repositories of three open-source software,
namely, Mozilla, Eclipse, and GNOME. In their follow-up
study with the same methodology as the previous one, they
compared NB, NBM (NB Multinomial), KNN, and SVM
algorithms on bug reports of Eclipse and GNOME projects,
concluding that NBM was best suited for the task with its
speed and accuracy [13].

Chaturvedi and Singh [6] compared several ML algo-
rithms including NB, KNN, SVM, NBM, DT, and RIPPER
(Repeated Incremental Pruning to Produce Error Reduction)
to predict severity of bugs in five levels from 1 to 5 on NASA
datasets. They utilized text mining operations to extract
features to feed the ML models, and conducted extensive
experiments with different number of terms considered from
textual descriptions of bugs.

In a study by Tian et al. [15], a bug severity prediction
model was proposed to utilize a well-known text similarity
function BM25. They used this function in a KNN search
to obtain a severity prediction from the most similar records
of the bug report. The proposed system was developed and
tested on bug reports of OpenOffice, Mozilla, and Eclipse,
and it was shown to produce comparable performance against
the system proposed by Menzies and Marcus [8].

A novel approach to bug triage and bug severity prediction
was proposed by Yang et al. [18]. They first performed topic
modeling based on several features of bug report data.
Then, they utilized KNN with KL divergence instead of
Cosine or BM25 similarity indices over the topics to make
a prediction about the severity of a new bug report. They
showed the effectiveness of their approach on bug reports
of Eclipse, Mozilla, and Netbeans. They extended this study
by proposing a new similarity metric to find the similarity
between a new bug report and historical data [20]. In addition,
they included bug reports of GCC and OpenOffice to their
experimental evaluations.

Sharma et al. [19] proposed a method based on feature
selection from the document-term matrix generated from a
collection of textual bug descriptions of Eclipse. Then, using
only top 125 important terms, they applied and compared
NBM and KNN to categorize severity of bugs in two
categories as severe and non-severe.

B. RESEARCH ON BUG PRIORITY PREDICTION
Bug priority indicates how important a bug is for the software
system to be fixed earlier. Priorities are usually managed
as categorical values from P1 to P5, P1 being the highest
priority. It is also very common to use a similar but simpler
approach with categorical values of High, Medium, and Low
priority. In this subsection, we present important research on
bug priority prediction.

In the earliest study we consider by Podgurski et al. [7],
an automated system for classifying software failure reports
was proposed in order to support the priority prediction. The
system was principally based on clustering and multivariate
visualization. Quite interestingly, rather than using failure
reports from real users, they executed the compilers GCC
for C language, Jikes and javac for Java language to produce
failures on self-validating tests of the respective compilers.
Then, they analyzed the cluster contents for validating the
effectives of the system.

In a study by Yu et al. [9], an ANN model was proposed
to predict four levels of defect priorities, P1 to P4. The
proposed neural network was trained on several categorical
features from the defect reports of RIS 2.0 software such
as milestone, category, module, main workflow, function,
integration, frequency, severity, and tester.

Kanwal and Maqbool [10] applied a classification-based
approach on the bug repository of Eclipse project. They
utilized SVM for a five class classification for priority classes
P1 through P5 using both categorical and textual features.
They extended the study in a follow-up work by comparing
SVM to NB [2]. They also proposed two new evaluation
metrics based on precision and recall, namely, Nearest False
Negatives (NFN) and Nearest False Positives (NFP), in order
to better evaluate bug priority recommendation.

In order to build a predictive model for bug prioritization,
Alenezi and Banitaan [16] investigated the effectiveness of
NB, DT, and Random Forest (RF) algorithms with different
feature combinations on bug tracking data of open-source

VOLUME 10, 2022 40251



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

TABLE 1. Summary of the previous studies in chronological order.

projects Eclipse and Firefox. Instead of using the original
priority labels P1 through P5, theymapped them to three-level
priorities, where High corresponds to P1 and P2, Medium
corresponds to P3, and Low corresponds to P4 and P5.
They obtained best results with tree-based algorithms rather
than NB.

Tian et al. [17] proposed a framework named DRONE
that utilized linear regression with thresholding approach to
handle imbalanced nature of bug report data. They compared
their method to several ML algorithms including SVM,
RIPPER, and NBMby exploiting both textual and categorical
features of bug repository data of Eclipse.

In a study by Choudhary and Singh [21], they proposed
an ANN model trained on textual features extracted via
regular text preprocessing operations from bug descriptions
of Eclipse. They provided a comparison between ANN and
NB on the prediction of priority labels from P1 to P5.

Kumari and Singh [22] compared NB and DL models for
bug priority prediction in a five-level priority setting P1 to
P5. First, they calculated entropy of top 200 terms of textual
descriptions of bug reports of OpenOffice. Then, using it as
an individual feature, they combined it with other categorical
features of bug reports to train NB and DL models. They
showed DL with entropy outperformed NB with entropy.

In our previous study, we compared several classical
ML models including NB, NBM, SVM, RF, and Rotation
Forest (ROF) on the demand records taken from the DMS
of a Turkey based insurance company [4]. We applied several
text preprocessing operations on textual descriptions of the
demands to generate matrices to feed the ML algorithms.
In that study, we achieved F-Score values of 0.54 and 0.53 at
best with SVM and NB, respectively. As far as we know, this
is the only study that considered demand records in Turkish
language.

In the most recent study we review in this section,
Umer et al. [23] proposed a Convolutional Neural Network

(CNN) based approach to predicting priority of bug reports
in Eclipse environment. Applying NLP techniques to textual
data of bug reports to obtain semantic word vectors, they
trained a CNN model to perform priority classification P1
through P5.

C. RESEARCH ON BUG FIX TIME PREDICTION
In a limited number of previous studies, whether a bug
needs to be fixed earlier or it can be delayed to a later time
was considered as a two-class classification problem. They
artificially created these two classes from the time of report
and time of fix of bug reports based on some statistics. In this
sense, bug fix time prediction can be regarded as a special
form of bug priority prediction.

Open-source software projects provide a convenient way to
collect data related to software engineering practices. In the
study by Giger et al. [12], Mozilla, Eclipse, and GNOME
were again the subject. Their goal was to decide whether
a bug should be fixed as soon as possible or it could be
resolved within a larger period. Therefore, they used Decision
Tree (DT) models trained on categorical features to make a
binary prediction between fast and slow classes, showing the
effectiveness of the approach over random classification.

A very similar study was conducted by
Abdelmoez et al. [14], where they also used data from
Mozilla, Eclipse, and GNOME. They trained NB models
using the categorical features to prioritize which bugs to begin
fixing and which to fix later.

D. EVALUATION OF PREVIOUS RESEARCH
We see that previous studies heavily rely on the availability of
public bug repositories of only several open-source software.
Therefore, these studies are centered around a limited number
of different datasets, and they lack diversity in this sense.
Another limitation of them is that they mostly utilize classical
and popularML algorithms with conventional text processing

40252 VOLUME 10, 2022



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

FIGURE 1. Illustration of multiple derivations in a Turkish word [24]
(Reprinted with permission).

approaches. Furthermore, there is no previous study that
considers demand records particularly in Turkish language
(other than ours).

In our current study, we significantly differ from most
of the existing studies in two important ways. First, rather
than using public bug repositories of open-source software,
we introduce and use a novel demand prioritization dataset in
Turkish, which is a low-resource language for NLP studies.
Second, unlike most of the previous studies, we perform
model development by using modern and advanced deep
learning NLP approaches to improve demand prioritization.

III. TECHNICAL BACKGROUND
In this section, we provide a technical background on the
complex morphology of Turkish language and the Deep
Learning methods used in our research.

A. COMPLEX MORPHOLOGY OF TURKISH
Belonging to the Turkic family of Altaic languages, Turkish
language has certain challenging characteristics for natural
language processing. It is an agglutinative language where
words are formed by affixations of multiple suffixes to root
words. That is, words in Turkish can take many inflexional
and derivational suffixes to such an extent that a single
word can simply correspond to a full sentence in English.
For example, the word ‘‘yap+abil+ecek+si+n’’ in Turkish
means ‘‘you will be able to do (it).’’ Similarly, it is not
uncommon to see multiple derivations in a word. A very nice
example is provided by Oflazer in Fig. 1, meaning ‘‘related
to (something) not being able to acquire certification.’’ In
this example, the root word is ‘‘ruhsat’’ (certification) and it
becomes a noun modifier after five derivations [24].

B. DEEP LEARNING METHODS
1) DEEP LEARNING
Deep Learning (DL) is a subset of machine learning where
algorithms are inspired by the connectivity patterns of human
brain called Artificial Neural Network (ANN) [25]. There
are different deep learning architectures that have been
applied to fields such as computer vision, speech recognition,
natural language processing, and so on. Convolutional
Neural Network (CNN) is an architecture that has been
used for image feature extraction. One other architecture is

Recurrent Neural Network (RNN) which has connections
between its layers as a form of directed graph, allowing
the information carried in layers to remember. Long Short-
Term Memory (LSTM) is special type of RNN, capable of
remembering long-term dependencies [26].

RNN and LSTM are more suitable for sequential data such
as text, time series, financial data, speech, audio, video, and
so on. Therefore, they are commonly used for tasks such
as natural language processing and time series processing.
CNN, on the other hand, is best suitable to work with spatial
structures like images.

2) CONVOLUTIONAL NEURAL NETWORKS
Most crucial components of this architecture are the convolu-
tion and pooling operations. Convolution represents the direct
application of any mathematical filter to a given input that
results in an activation. Repeating the same process with the
same filter results in a map of activations that is called feature
maps, indicating the locations and strength of a detected
characteristic of the given input. Pooling is used for reducing
the spatial dimensions of mapped feature maps. Pooling layer
operates on each feature map independently [26].

3) RECURRENT NEURAL NETWORKS
A typical ANN contains input layer followed by a number
of hidden layers. This kind of network is considered as
memoryless. In a Recurrent Neural Network (RNN) there is
a loop at the hidden layers. In that manner, the state of the
hidden layers depends not only on the input but also on the
state of the hidden layer at the previous time step.

RNNs have difficulties in learning long-term dependen-
cies. LSTM-based models represent an extension to RNNs,
which are able to address the vanishing gradient problem in a
remarkably precise way. LSTMmodels essentially extend the
memory of RNNs to enable them to keep and learn long-term
dependencies of inputs. Bidirectional LSTMs (BiLSTM) are
an extension of LSTM layers, that is, two LSTMs are applied
to input data from both directions, forward and backward.

4) TRANSFER LEARNING
Transfer learning is a machine learning technique to reuse
pretrained models for new objectives. That is, layers and
weights of a pretrained model are used as a starting point in
model creation [26]. Transfer learning is usually used when
there are insufficient number of samples to train a model from
scratch. In this way, we make use of the information readily
available in the parameters of a previously trained model.
In addition, training of a new model takes considerably less
amount of time.

IV. MATERIAL AND METHODS
A. DATASET
In this study, the dataset is composed of demand records taken
from the database of a DMS used for tracking and resolving
the demands of internal end-users by a software development

VOLUME 10, 2022 40253



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

TABLE 2. Sample records from the dataset. Approximate English translations are provided in brackets beneath the Turkish phrases.

department of a private insurance company. From these
records, only the demand title, description, and priority
class fields were used, and the other fields were completely
ignored. Confidential information such as Turkish Identity
Number, Tax Number, and various document numbers in the
fields were cleared manually. The title and description fields
of the records were combined and each record was saved as a
separate text file in a separate folder with respect to priority
classes.

Sample records from the dataset are shown in Table 2.
Approximate English translations are provided in brackets
beneath the Turkish phrases in the table. As seen in the sample
records, there is no standard in the writing of text fields and
many typographical errors are made by users. This is a major
challenge that is often encountered and must be overcome in
all text processing and NLP applications.

The records in the dataset had a skewed distribution
over three priority classes: low, medium, and high. There
was a total of 344 records in the dataset, 43 of which are
low, 150 medium, and 151 high priority. In a classification
study, a balanced distribution of the records in the dataset
is desired because predictions produced by a model trained
on imbalanced classes tend towards majority classes, which
results in a decrease in correct prediction rate of the
samples from minority classes. In order to increase the
number of records in low priority class, we applied two
different augmentation techniques together. First one is
based on Word2Vec similarity [27] and the second one
is based on an approach known as back-translation [28].
We applied augmentation to only randomly-picked 38 of
the 43 records to generate additional records. For each
of the 38 records, we generated three additional records
by randomly employing one of the approaches each time.
In the Word2Vec-based approach, we trained Turkish word
embeddings of length 512 using Gensim [29] on Turkish
Wikidump. Using these embeddings, for each word in a
demand record, we obtained the most similar word and
if the similarity score was higher than 0.5, we replaced
the original word with the most similar one and left as is
otherwise. In the back-translation-based approach, on the
other hand, we first translated the record from Turkish to

English, and then from English to Turkish back using Google
Translate service. In the end, we had 157 records of low
priority after augmentation including the other five records
that were not involved in the augmentation. We manually
checked the original records and their augmented versions
to confirm that we achieved the expected diversity. Finally,
we had 458 demand records in the dataset with 157, 150,
and 151 records in each priority class. In Table 3, we present
three sample records and their augmented versions from the
low priority class. When we inspect the augmented versions,
we clearly see the effect of our augmentation process as
some words are replaced by their different derivations or
semantically close words. For example, the original word
‘‘çalışıyor’’ (meaning ‘‘[it is] working’’) in the first sample is
replaced with ‘‘çalışmaktadır’’ (meaning ‘‘[it is] working’’)
and ‘‘çalışıyorlar’’ (meaning ‘‘[they are] working’’).

As one of the main contributions of this research,
we released this dataset as a reference to further simi-
lar studies in software engineering domain. In addition,
it can be useful to researchers who conduct general-
purpose text classification research in a low-resource lan-
guage like Turkish. We made it publicly available at
https://github.com/volkantunali/text-datasets.

B. TEXT PREPROCESSING
Textual data written in natural language is considered
unstructured because it lacks a pre-defined data model or
data structure. In order to use textual data as an input to a
ML method, it must be transformed into a structured form
which is usually a tabular structure like a matrix. The end-
to-end process to transform textual data into a structured
form is called text preprocessing [30]. In addition to this
transformation, some text preprocessing steps are required
to reduce the size of the vocabulary for computational
efficiency while keeping the meaning of remaining words
in the data. For instance, Stop-words Removal is used to
remove the words that do not contribute to the actual meaning
of a text. Moreover, another important text preprocessing
technique is called Stemming where each word in a text
is converted to its basic (root) form. These two text
preprocessing techniques require different approaches for

40254 VOLUME 10, 2022



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

TABLE 3. Sample records from the dataset after augmentation.

different languages. As Turkish is an agglutinative language
where words are derived by appending suffixes as mentioned
before, stemming can be more important for Turkish than
it is for other languages [31]. Finally, Padding is used
to create fixed-size sequences of words to generate the
final structured data. These techniques are described in the
following subsections in more detail.

1) STOP-WORDS REMOVAL
A classical and effective technique widely-used in NLP tasks
is to eliminate the words that do not contribute to the actual
meaning of a text known as stop-words removal. In this
technique, words like a, the, and with are removed from
the text based on a list of specific words called stop-words.
Each language has its own list of stop-words, thus, we used
a commonly-used list of Turkish stop-words. Unlike NLP
studies in languages like English, we applied stop-words
removal before and after stemming because after stemming
of Turkish words, the remaining root word may also be a
stop-word [30].

2) STEMMING
Stemming is a technique to obtain the root form of a word in
order to map related words to the same stem. For example,
words writer, writing, and writes reduces to the stem write.
For stemming Turkish words, there are several approaches
that can be used considering the agglutinative nature of
Turkish language as well as previous Turkish NLP studies.
The first stemming approach we used in this research is a
dictionary-based stemmer from TRNLP library [32]. TRNLP
stemmer tries to find possible roots of a word by searching
a dictionary for the parts of the word produced by stripping
off a letter from the end. Dictionary-based stemmers are
known to produce very useful stems in practice. As the second
stemming method, we used the affix-stripping stemmer that
reaches the stem of a word by a morphological analyzer
modeled by a finite state machine [33]. It makes use of the

rule-based structure of Turkish language and it works without
using any lexicon. Finally, the third approach we used is a
pseudo stemmer called fixed-prefix stemmer, which works
just by taking the first n character of a word as the stem
of the word. Even though this naive approach does not use
any linguistic information, stems it produces are empirically
known to be effective at NLP tasks on Turkish texts like
clustering and classification when n is equal to 5 [34].

3) PADDING
In NLP applications, processed text sequences can have
variable lengths. In our case, for example, one development
demand can bewritten in a number of wordswhile the other in
fewer or more words. However, the common practice is to use
word sequences of fixed-sizes in NLP implementations based
on deep learning. Sequences shorter than this fixed-size are
padded with a particular word index zero to differentiate from
the real vocabulary word indices. Likewise, longer sequences
are truncated to this size. We illustrate this padding technique
on an example corpus in Fig. 2, where sequence length is
four. In the example, the first sequence is shorter than four,
thus, it is padded with trailing zeros to make its length four.
The second one is longer than four, then, the tokens whose
positional index is greater than four are simply removed.
Finally, the third one is already of length four, therefore,
it remains unchanged.

In this research, we followed the same approach for
padding. While there is no mathematical procedure to
determine effective sequence length, it is possible to employ
some statistical modeling to predict an appropriate value. The
technique we applied is as follows. Firstly, we calculated
the lengths of the demands after stemming and stop-words
removal. Then, we plotted the histogram of demand lengths
with kernel density as seen in Fig. 3. Next, we approximated
the distribution to a Gamma distribution with α = 2.18 and
β = 10.09. We picked Gamma rather than Gaussian
distribution for approximation because Gamma distribution

VOLUME 10, 2022 40255



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

FIGURE 2. Illustration of padding on a sample corpus.

FIGURE 3. Distribution of demand lengths.

models variables that are always positive, being more
appropriate than Gaussian to model sequence lengths in
our problem. Therefore, we computed the mean of the
approximated Gamma distribution as 22, which was our final
sequence length.

C. PROPOSED DL ARCHITECTURES
One of the main contributions of this research was to design
several DL architectures that could achieve considerable
improvement over classical ML algorithms on an NLP task
with limited number of training data points. The NLP task we
dealt with was software development demand prioritization,
and the number of available training records was 458, which
is very small for successful model development in practice.

Therefore, we proposed four different DL architectures and
compared their performances. We first began with a baseline
ANN architecture where no feature extraction layer existed
as in CNN and RNN architectures. Then, we proposed
three enhanced architectures that contained combinations of
convolution and BiLSTM components. The structure of the
proposed DL architectures can be seen in Fig. 4. It should
be noted that all of the proposed architectures, including
the baseline ANN, began with a Word Embedding layer.
Likewise, all of them ended with two fully connected layers
with 128 and 3 neural units.

Word embeddings are a technique used in NLP to
represent words as vectors in a continuous vector space.
This representation allows words with similar meanings to be
clustered together, and also allows for numerical calculations
on words and word sequences. Unlike word embeddings that
are based on traditional one-hot-encoding schemes like TF-
IDF, it is found by training the neural network on a corpus
of text data. We used 128-dimensional trainable embedding
vectors in the embedding layers of our DL architectures.

1) BASELINE ANN
The possible simplest architecture for an NLP task could
include fully connected layers right after the embedding
layer. We stacked convolution and/or BiLSTM components
over this baseline to obtain further improved architectures as
explained in the following subsections.

2) CNN
What we proposed as a CNNwas the simplest form of a CNN
that could be designed. It simply consisted of a convolution
and global max pooling layers to perform feature extraction
from word embedding vectors. The convolution layer was a
1D-convolution with 32 filters and its kernel size was 7.

3) CONV+BiLSTM
The third architecture we proposed was an extension to CNN
with an additional layer of BiLSTM between pooling and
fully connected layers. In our architecture, number of LSTM
units in BiLSTM layer was 128.

4) BiLSTM
Our BiLSTM architecture was a simple architectural
improvement over baseline ANN obtained by inserting a
BiLSTM layer with 128 units between word embedding and
fully connected layers.

5) TRANSFER LEARNING WITH TRANSFORMERS
In addition to DL architectures with relatively simpler
structures that we proposed, we tested the effectiveness of
pretrained language models on prioritization of software
development demands. These were very large models based
on transformer architecture, which were trained on lots of
text documents in Turkish. They were readily available to
fine-tune on our dataset via transfer learning. Since the
main purpose of our study was not to provide an exhaustive

40256 VOLUME 10, 2022



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

FIGURE 4. Overview of proposed DL architectures.

comparison of pretrained transformer models available for
Turkish, we limited our study to evaluating only the most
common and significant ones in Turkish NLP literature.

The first pretrained transformer model was bert-base-
turkish-128k-cased, which was a BERT-based model [35].
It was trained on a large filtered and sentence-segmented
corpus composed of several corpora such as the Turkish
OSCAR corpus [36], a Wikipedia dump, and various OPUS
corpora [37]. It is a cased model with a vocabulary size of
128k.

distilbert-base-turkish-cased was the second pretrained
model based on DistilBERT architecture that was proposed to
be a smaller model than BERT yet retaining almost the same
performance as BERT [38]. It was also trained on the same
corpus as bert-base-turkish-128k-cased model, and it is a
cased model with a vocabulary size of 32k.

The other two pretrained transformer models were based
on ELECTRA architecture proposed to require relatively less
computation power to train large models [39]. First, electra-
base-turkish-cased-discriminator was also trained on the
very same corpus as the previous models, and it is a cased
model with a vocabulary size of 32k. Second, electra-small-
turkish-cased-discriminator was a different model trained
on a different corpus composed of Turkish texts collected
from online blogs, free e-books, newspapers, common crawl

TABLE 4. Optimizer parameters used for training the models.

corpora, Twitter, Wikipedia, and so on [40]. It is also a cased
model with a vocabulary size of 32k.

D. MODEL TRAINING
We used GeForce GTX 1660 Ti and Tesla K80 GPUs
for training all the models. Models were generated using
TensorFlow 2.6.0 [41] and Keras 2.6.0 [42] in Python
3.8.8 environment.

In this research, rather than relying on the effectiveness
of a single optimizer like Adam [43], we wanted to
measure the effectiveness of other optimizer such as Rectified
Adam (RAdam) [44], Yogi [45], and NovoGrad [46]. Our
motivation was that depending on the task and training data,
performance of the trained neural networks can vary greatly
according to choice of the optimizer, as supported by the
experimental results. In Table 4, we present the parameter
values of the optimizer that we used for training the models.

VOLUME 10, 2022 40257



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

E. MODEL EVALUATION METRICS
In order to measure the classification performance of the
selected models, we used Accuracy, Precision, Recall,
F-Score, and Cohen’s Kappa Coefficient metrics. For each
of these metrics, the higher the metric value, the higher the
performance of a classifier is. We used scikit-learn [47] to
generate desired metrics.

Whenwe test a classifier, we obtain four different counts as
True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN). Using these counts, it is possible to
compute the above metrics as given in (1), (2), (3), (4), and
(5), respectively.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F − Score =
2× Precision× Recall
Precision+ Recall

(4)

Kappa =
Accuracy− Pe

1− Pe
(5)

where

Pe =
(TP+FP)× (TP+FN )+(TN+FP)× (TN+FN )

(TP+TN+FP+FN )2
(6)

V. EXPERIMENTAL RESULTS AND DISCUSSION
We carried out extensive experiments for the DL architectures
that we proposed and the pretrained transformer architectures
on our dataset. For each architecture excluding the transform-
ers, we trained and tested with all possible combinations of
stemmers, activation functions, and optimizers with 5-fold
cross validation. For the transformer architectures, on the
other hand, we did not employ any specific stemmer, activa-
tion function, or optimizer because we transfer their existing
knowledge to our specific task without manipulating their
structure in any specific way. We collected the performance
evaluation metrics of each model in terms of Accuracy,
Precision, Recall, F-Score, and Cohen’s Kappa Coefficient.
We present experimental results of the architectures in the
following subsections.

A. BASELINE ANN MODELS
We present the experimental results of Baseline ANN
architecture in Table 5 and Fig. 5. Evenwith this simple archi-
tecture, we obtained promising results with the dictionary-
based stemmer. It clearly outperformed the affix-stripping
and fixed-prefix stemmers with all combinations of activation
functions and optimizers.

Within the results of dictionary-based stemmer, Swish
activation function andAdamoptimizer pair achieved the best
results (F1 = 0.688), closely followed by ReLU+Adam and
ReLU+RAdam pairs (F1 = 0.670 and F1 = 0.667). When

it comes to other stemmers, there was no clear difference
between them.

B. CNN MODELS
Unlike the Baseline ANN, CNN architecture attained con-
sistently high performance with all combinations of stem-
mers, activation functions, and optimizers, having F-Scores
between 0.649 and 0.737.We present the experimental results
in Table 6 and Fig. 6. Although there was no clear winner
among the stemmers, we obtained the best performance
with the dictionary-based one with ReLU+Adam pair (F1 =
0.737). A very close performance was achieved by the affix-
stripping+Swish+Adam combination (F1= 0.718). We also
observe that Adam was consistently the best optimizer with
any stemmer and activation function when used in our CNN
architecture.

C. CONV+BiLSTM MODELS
In our Conv+BiLSTM architecture, the fixed-prefix stemmer
was always behind the dictionary-based and affix-stripping
ones in terms of model performance. Apart from improving
the overall performance, the addition of BiLSTM layer to
the convolution layer had the opposite effect. The best F-
Score achieved by this architecture was 0.650 with the
affix-stripping+Mish+Adam combination. It was closely
followed by affix-stripping+ReLU+Adam and dictionary-
based+ReLU+RAdam combinations. These results are
presented in Table 7 and Fig. 7.

D. BiLSTM MODELS
The architecture with BiLSTM without a preceding con-
volution layer produced better results especially with the
affix-stripping stemmer. It achieved the highest F-Score of
0.710 with ReLU+Adam combination. Swish+Adam and
ReLU+RAdam were the second and third best performers
(F1 = 0.664 and F1 = 0.661). We give the experimental
results in Table 8 and Fig. 8.

E. PRETRAINED TRANSFORMERS MODELS
Among the pretrained transformer models, distilbert-base-
turkish-cased was the best model with the highest F-
Score of 0.780. It was also better than the models that we
proposed. The other BERT-based model, named bert-base-
turkish-128k-cased, achived the second best F-Score of
0.746 among all models including our DL architectures.
The other two models based on ELECTRA architecture did
not exhibit as high performance as BERT-based models.
In fact, our CNN models did better than them in general.
Experimental results can be seen in Table 9 and Fig. 9.

F. COMPARISON OF ARCHITECTURES
In Table 10 and Fig. 10, we present a comparison of the
best models in all architectures we considered. The results
clearly show that the transformer model bert-base-turkish-
128k-cased outperformed all others with considerably high
difference. The CNN model with dictionary-based stemmer,

40258 VOLUME 10, 2022



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

TABLE 5. Performance scores of Baseline ANN models.

FIGURE 5. Comparison of Baseline ANN models in terms of F-Score.

ReLU activation, and Adam optimizer, was the model that
showed the closest performance to the transformer. When
we compare these two models in terms of architectural
complexity, the CNN is much smaller and simpler than
the transformer. Therefore, the CNN can be preferable to
the transformer in environments with limited computational
resources.

TABLE 6. Performance scores of CNN models.

FIGURE 6. Comparison of CNN models in terms of F-Score.

Nomatter what DL architecture was used, Adam optimizer
was present in the best models consistently. Therefore,
Adam optimizer can be among the first optimizers to try in
models that address similar tasks. Moreover, ReLU activation
function along with Adam optimizer can make a good
combination because they both were part of best two DL
architectures we proposed, namely, CNN and BiLSTM.

VOLUME 10, 2022 40259



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

TABLE 7. Performance scores of Conv+BiLSTM models.

FIGURE 7. Comparison of Conv+BiLSTM models in terms of F-Score.

When we examine the experimental results from the per-
spective of the stemming method, dictionary-based stemmer
was the most effective one with the Baseline ANN and CNN
models. Affix-stripping stemmer, on the other hand, was
most effective with the architectures that contain BiLSTM
layer. Fixed-prefix stemming approach did never exhibit
effectiveness in any of the experiments. Therefore, the logical

TABLE 8. Performance scores of BiLSTM models.

FIGURE 8. Comparison of BiLSTM models in terms of F-Score.

choice of stemmer in demand prioritization in Turkish would
be to use either the dictionary-based one or the affix-stripping
depending on the network architecture.

G. COMPARISON WITH OUR PREVIOUS STUDY
In our previous study [4], highest F-Score values we achieved
were 0.54 and 0.53 with Support Vector Machines and

40260 VOLUME 10, 2022



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

TABLE 9. Performance scores of pretrained transformer models.

FIGURE 9. Comparison of pretrained transformer models in terms of
F-Score.

Naive Bayes algorithms, respectively. In this current study,
however, we achieved F-Score value of 0.78 with the
pretrained transformermodel calleddistilbert-base-turkish-
cased. The CNN model with dictionary-based stemmer,
ReLU activation, and Adam optimizer, was the model that
showed the closest performance to the transformer with an
F-Score value of 0.737. When compared to the transformer
model, the CNN is much smaller and simpler in terms of
architectural structure and complexity. Therefore, it can be
a satisfactory alternative to the transformer in environments
with limited computational resources. Moreover, our other
models, apart from the Baseline ANN, showed better overall
performance than the best scores of the previous study. As a
result, DL-based NLP approaches are more feasible than
the classical approches for demand prioritization in Turkish
language. Essentially, their success can be associated with
the use of word embedding vectors, which keep the semantic
relationships among the words much better than one-hot-
encoding schemes like TF-IDF. On the other hand, feature
extraction and sequence processing mechanisms provided by
CNN and LSTM architectures contribute to their success.
In conclusion, we can confidently state that DL can learn
complex patterns in data that classical ML algorithms would
not be able to learn.

H. MODELING FOR TURKISH LANGUAGE
NLP studies have usually been focused on model training
with a monolingual corpus. Recently, we have seen some
instances of multilingual models trained on multilingual
corpora such as mBERT [35] and XLM [48]. However,

TABLE 10. Comparison of best models of all architectures.

FIGURE 10. Comparison of best models of all architectures in terms of
F-Score.

those multilingual models are known to perform well on
downstream tasks for the languages with more training data.
Similarly, low-resource languages like Turkish are not well
represented in those models, resulting in a low performance
on downstream tasks. Therefore, especially for low-resource
languages, an individual monolingual model tends to perform
better [49]. For this reason, in our study, we decided to
develop and train (or fine-tune) our own monolingual models
with our data coming from particularly insurance software
domain.

One possible alternative to using multiple models for
multiple languages would be to use translation, for example,
from Turkish to English, and then to use a predictive model
trained in English, thus, eliminating the need for training
different models for different languages. This approach,
nevertheless, would not be feasible because exact and
acceptable translation across languages is still not possible.
Besides, original textual data is usually full of grammatical
or clerical errors in a real-world setting like our demand
prioritization data. Translation of such data would probably
produce results with loss of information, rendering the
process useless.

VI. CONCLUSION
In this study, we applied state-of-the-art concepts and
techniques in NLP to the problem of prioritization of software

VOLUME 10, 2022 40261



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

development demands in Turkish, where we considered it
as a text classification problem. In order to achieve this,
we proposed several DL architectures to improve demand pri-
oritization over our previous research. Through an extensive
experimentation, we compared the effectiveness of our deep
learning architectures trained with several combinations of
different optimizers and activation functions in order to reveal
the best combination for demand prioritization in Turkish.
We empirically showed that deep learningmodels can achieve
much higher accuracy than classical ML models even with a
small amount of training data.

One of the main contributions of this study was the
introduction of an original demand prioritization dataset in
Turkish language, taken from the DMS of a private insurance
company in Turkey. This dataset can serve as a reference
to further similar studies in software engineering domain.
In addition, this dataset can be useful to researchers who
conduct general-purpose text classification research in a low-
resource language like Turkish.

ACKNOWLEDGMENT
The author would like to thank Kaan Bıçakcı for his
invaluable suggestions for the research and his assistancewith
conducting the experiments.

REFERENCES
[1] V. Tunalı and M. A. A. Tüysüz, ‘‘Analysis of function-call graphs of open-

source software systems using complex network analysis,’’ Pamukkale
Univ. J. Eng. Sci., vol. 26, no. 2, pp. 352–358, 2020.

[2] J. Kanwal and O. Maqbool, ‘‘Bug prioritization to facilitate bug report
triage,’’ J. Comput. Sci. Technol., vol. 27, no. 2, pp. 397–412, Mar. 2012.

[3] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, ‘‘A survey
on bug prioritization,’’ Artif. Intell. Rev., vol. 47, no. 2, Feb. 2016,
pp. 145–180.

[4] M. C. Tekin and V. Tunali, ‘‘Yazilim gelistirme taleplerinin metin
madenciligi yöntemleriyle önceliklendirilmesi,’’ Pamukkale Univ. J. Eng.
Sci., vol. 25, no. 5, pp. 615–620, 2019.

[5] A. A. Patel and A. Uppili, Applied Natural Language Processing in the
Enterprise. Sebastopol, CA, USA: O’Reilly Media, 2021.

[6] K. K. Chaturvedi and V. B. Singh, ‘‘Determining bug severity using
machine learning techniques,’’ in Proc. CSI 6th Int. Conf. Softw. Eng.
(CONSEG), Sep. 2012, pp. 1–6.

[7] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, ‘‘Automated support for classifying software failure reports,’’ in
Proc. 25th Int. Conf. Softw. Eng., May 2003, pp. 465–475.

[8] T. Menzies and A. Marcus, ‘‘Automated severity assessment of software
defect reports,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2008,
pp. 346–355.

[9] L. Yu, W.-T. Tsai, W. Zhao, and F. Wu, ‘‘Predicting defect priority based
on neural networks,’’ in Advanced Data Mining and Applications, L. Cao,
J. Zhong, and Y. Feng, Eds. Berlin, Germany: Springer, 2010, pp. 356–367.

[10] J. Kanwal and O. Maqbool, ‘‘Managing open bug repositories through bug
report prioritization using SVMs,’’ in Proc. 4th Int. Conf. Open-Source
Syst. Technol. (ICOSST), Dec. 2010, pp. 22–24.

[11] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, ‘‘Predicting the
severity of a reported bug,’’ in Proc. 7th IEEE Work. Conf. Mining Softw.
Repositories (MSR), May 2010, pp. 1–10.

[12] E. Giger, M. Pinzger, and H. Gall, ‘‘Predicting the fix time of bugs,’’ in
Proc. 2nd Int. Workshop Recommendation Syst. Softw. Eng. (RSSE), 2010,
pp. 52–56.

[13] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, ‘‘Comparing
mining algorithms for predicting the severity of a reported bug,’’ in Proc.
15th Eur. Conf. Softw. Maintenance Reeng., Mar. 2011, pp. 249–258.

[14] W. Abdelmoez, M. Kholief, and F. M. Elsalmy, ‘‘Bug fix-time prediction
model using naïve Bayes classifier,’’ in Proc. 22nd Int. Conf. Comput.
Theory Appl. (ICCTA), Oct. 2012, pp. 167–172.

[15] Y. Tian, D. Lo, and C. Sun, ‘‘Information retrieval based nearest neighbor
classification for fine-grained bug severity prediction,’’ in Proc. 19thWork.
Conf. Reverse Eng., Washington, DC, USA, Oct. 2012, pp. 215–224.

[16] M. Alenezi and S. Banitaan, ‘‘Bug reports prioritization: Which features
and classifier to use?’’ in Proc. 12th Int. Conf. Mach. Learn. Appl.,
Dec. 2013, pp. 112–116.

[17] Y. Tian, D. Lo, and C. Sun, ‘‘DRONE: Predicting priority of reported bugs
by multi-factor analysis,’’ in Proc. IEEE Int. Conf. Softw. Maintenance,
Washington, DC, USA, Sep. 2013, pp. 200–209.

[18] G. Yang, T. Zhang, and B. Lee, ‘‘Towards semi-automatic bug triage
and severity prediction based on topic model and multi-feature of bug
reports,’’ in Proc. IEEE 38th Annu. Comput. Softw. Appl. Conf., Jul. 2014,
pp. 97–106.

[19] G. Sharma, S. Sharma, and S. Gujral, ‘‘A novel way of assessing software
bug severity using dictionary of critical terms,’’Proc. Comput. Sci., vol. 70,
pp. 632–639, Jan. 2015.

[20] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, ‘‘Towards more accurate
severity prediction and fixer recommendation of software bugs,’’ J. Syst.
Softw., vol. 117, pp. 166–184, Jul. 2016.

[21] P. Choudhary, ‘‘Neural network based bug priority prediction model using
text classification techniques,’’ Int. J. Adv. Res. Comput. Sci., vol. 8, no. 5,
pp. 1315–1319, May/Jun. 2017.

[22] M. Kumari and V. B. Singh, ‘‘An improved classifier based on entropy and
deep learning for bug priority prediction,’’ in Proc. 18th Int. Conf. Intell.
Syst. Design Appl. (ISDA), Dec. 2018, pp. 571–580.

[23] Q. Umer, H. Liu, and I. Illahi, ‘‘CNN-based automatic prioritization of bug
reports,’’ IEEE Trans. Rel., vol. 69, no. 4, pp. 1341–1354, Dec. 2020.

[24] K. Oflazer, ‘‘Turkish and its challenges for language processing,’’ Lang.
Resour. Eval., vol. 48, no. 4, pp. 639–653, Dec. 2014.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[26] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, ‘‘A state-
of-the-art survey on deep learning theory and architectures,’’ Electronics,
vol. 8, no. 3, p. 292, Mar. 2019.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. 1st Int. Conf. Learn.
Represent., (ICLR), May 2013, pp. 1–12.

[28] S. Edunov, M. Ott, M. Auli, and D. Grangier, ‘‘Understanding back-
translation at scale,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process., 2018, pp. 489–500.

[29] R. Řehůřek and P. Sojka, ‘‘Software framework for topic modelling
with large corpora,’’ in Proc. LREC Workshop New Challenges NLP
Frameworks. Valletta, Malta: ELRA, May 2010, pp. 45–50.

[30] V. Tunali and T. T. Bilgin, ‘‘PRETO: A high-performance text mining tool
for preprocessing Turkish texts,’’ in Proc. 13th Int. Conf. Comput. Syst.
Technol. (CompSysTech), 2012, pp. 134–140.

[31] V. Tunali and T. T. Bilgin, ‘‘Examining the impact of stemming on
clustering Turkish texts,’’ in Proc. Int. Symp. Innov. Intell. Syst. Appl.,
Jul. 2012, pp. 1–4.

[32] E. M. Bayol. (2021). TRNLP: Türkçe Için Dogal Dil Isleme Araçlari.
[Online]. Available: https://github.com/brolin59/trnlp

[33] G. Eryigit and E. Adali, ‘‘An affix stripping morphological analyzer for
Turkish,’’ in Proc. Int. Conf. Artif. Intell. Appl., 2004, pp. 299–304.

[34] V. Tunali and T. T. Bilgin, ‘‘Türkçe metinlerin kümelenmesinde farkli kök
bulma yöntemlerinin etkisinin arastirilmasi,’’ in Proc. Elektrik, Elektronik
ve Bilgisayar Mühendisligi Sempozyumu (ELECO), 2012, pp. 598–602.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol., vol. 1, Jun. 2019, pp. 4171–4186.

[36] P. J. Ortiz Suárez, L. Romary, and B. Sagot, ‘‘A monolingual approach
to contextualized word embeddings for mid-resource languages,’’ in Proc.
58th Annu. Meeting Assoc. Comput. Linguistics, Jul. 2020, pp. 1703–1714.

[37] J. Tiedemann, ‘‘Parallel data, tools and interfaces in OPUS,’’ in Proc. 8th
Int. Conf. Lang. Resour. Eval. (LREC), May 2012, pp. 2214–2218.

[38] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a
distilled version of BERT: Smaller, faster, cheaper and lighter,’’ 2019,
arXiv:1910.01108.

[39] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, ‘‘ELECTRA: Pre-
training text encoders as discriminators rather than generators,’’ in Proc.
8th Int. Conf. Learn. Represent. (ICLR), Apr. 2020, pp. 1–18.

[40] Loodos. (2021). Transformer Based Turkish Language Models. [Online].
Available: https://github.com/Loodos/turkish-language-models

40262 VOLUME 10, 2022



V. Tunali: Improved Prioritization of Software Development Demands in Turkish With DL-Based NLP

[41] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘TensorFlow: A system
for large-scale machine learning,’’ in Proc. Symp. Operating Syst. Design
Implement., May 2016, pp. 265–283.

[42] F. Chollet. (2021). Keras. [Online]. Available: https://keras.io
[43] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’

2015, arXiv:1412.6980.
[44] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, ‘‘On the

variance of the adaptive learning rate and beyond,’’ in Proc. 8th Int. Conf.
Learn. Represent. (ICLR), Apr. 2020, pp. 1–14.

[45] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, ‘‘Adaptivemethods
for nonconvex optimization,’’ inProc. 32ndConf. Neural Inf. Process. Syst.
(NeurIPS), Dec. 2018, pp. 9815–9825.

[46] B. Ginsburg, P. Castonguay, O. Hrinchuk, O. Kuchaiev, V. Lavrukhin,
R. Leary, J. Li, H. Nguyen, Y. Zhang, and J. M. Cohen, ‘‘Stochastic
gradient methods with layer-wise adaptive moments for training of deep
networks,’’ 2019, arXiv:1905.11286.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, ‘‘Scikit-learn:
Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12, no. 10,
pp. 2825–2830, Jul. 2017.

[48] A. Conneau and G. Lample, ‘‘Cross-lingual language model pretraining,’’
in Proc. 33rd Int. Conf. Neural Inf. Process. Syst. (NeurIPS), Dec. 2019,
pp. 7059–7069.

[49] S. Wu and M. Dredze, ‘‘Are all languages created equal in multilin-
gual BERT?’’ in Proc. 5th Workshop Represent. Learn. (NLP), 2020,
pp. 120–130.

VOLKAN TUNALI (Member, IEEE) was born in
Bursa, Turkey, in 1978. He received the B.S. and
M.S. degrees in computer engineering and the
Ph.D. degree in computer and control education
fromMarmara University, Istanbul, in 2001, 2005,
and 2012, respectively. From 2001 to 2012,
he worked as a Software Engineer in a private
software company in Istanbul. Since 2012, he has
been an Assistant Professor with the Department
of Software Engineering, Maltepe University,

Istanbul. His research interests include network science, social network
analysis, text mining, data science, and software engineering.

VOLUME 10, 2022 40263


