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ABSTRACT Characterizing complex and multi-functional devices is a very challenging task. One problem
in statistical near field analysis on complex electronic products is the emergence of nonstationary elec-
tromagnetic (EM) signals. Such emergence will lead to an incorrect decision if the signal is used as an
input to propagation analysis. The most appropriate approach to this problem seems to be one based on the
segmentation of the nonstationary time series obtained from measurements into an ensemble of piecewise
stationary signals. In this paper, we propose three approaches for automatic segmentation of nonstationary
EM emission signals: short-time energy (STE), short-time zero-crossing rate (STZCR), and short-time
kurtosis (STK). Test results show that STE is the best in terms of success in segmenting the nonstationary
signals to achieve piecewise stationary time series and being less computationally intensive.

INDEX TERMS Automatic segmentation, nonstationary, EM emission, electronic product.

I. INTRODUCTION
The use of modern and complex electronic products is
widespread. In particular, with the presence of the Internet of
Thing (IoT) system, products have many telecommunication
technology platforms, such as bluetooth, wireless fidelity
(WiFi), long range (LoRa), and cellular components. Manag-
ing complex electronic products that must meet electromag-
netic compatibility (EMC) requirements is challenging for
EMC engineers. They need to ensure that the emissions of an
electronic product do not exceed EMC requirements to avoid
interference to the product itself and the products around it.
In addition, the product must work well in its electromagnetic
(EM) radiation environment.

Several techniques are available for measuring EM emis-
sions, namely, open area test site (OATS), anechoic cham-
ber (AC), compact antenna test range (CATR), transverse
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electromagnetic (TEM) cells, reverberation chamber (RC),
and near-field scanning (NFS). Each method has its char-
acteristics, advantages, disadvantages, and suitability to the
Device Under Test (DUT).

Several studies and applications of OATS can be found in
[1]-[6]. Techniques and analysis using AC can be found in
[7]1-[13]. The study and application of CATR can be found
in [14]-[21]. The study and application of TEM cells can
be found in [22]-[30]. The study and application of RC can
be found in [31]-[37]. The study and application of the NFS
technique can be found [38]-[51].

Based on the size of the test area, OATS has the largest area,
while TEM cell, CATR, and NFS have the narrowest area.
Based on installation costs, OATS and AC have relatively
high installation costs, whereas TEM cell, CATR, and NFS
have low installation costs.

NFS is one of the recommended measurement techniques
for EM emissions during the development of electronic
products. The advantages of using this technique are that
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it is more economical and can be used to locate emission
sources from electronic assemblies. These advantages cannot
be achieved by using other far-field measurement techniques
such as OATS or AC. Data from NFS can be used to char-
acterise complex and multi-functional devices. A statistical
description of EM sources may be used to analyze random
sources. An algorithm for propagating the statistical prop-
erties of EM fields based on Wigner Functions has been
described in [52], and [53]. This algorithm is used to prop-
agate field—field correlation functions from the NFS mea-
surement plane. The field—field correlation function can be
provided through measurement by one- [54] and two-probe
measurements [40], [55]. However, providing the field—field
correlation function as input for the propagation algorithm
requires the emission process to be stationary, which is very
often not the case in real-world systems. One way to achieve
stationary emissions is by controlling the mode of operation
of the device. However, this situation is not always the case
for real-life applications because the device can be multi-
functional and has different modes of operation at differ-
ent times. A previous study has discussed [56] that using a
nonstationary series as an input for the method designed for
stationary series can lead to misleading results. For example,
a process with high emissions may only occur for a small
percentage of the time. However, the average process in cal-
culating the field—field correlation would reduce the influence
of this process under the assumption of stationary emissions
statistics.

An approach based on the segmentation of the nonstation-
ary time series obtained from measurements into an ensemble
of piecewise stationary time series seems to be an appropriate
viable approach to dealing with this issue. That is, a piecewise
stationary mode is used for the emissions of the device.
Some techniques on the analysis of nonstationary time series
discussed in [57] and [58] have been previously implemented
in speech processing and for detecting the arrival phases
in earthquakes, respectively. In [57]-[59], a segmentation
algorithm can be applied to the nonstationary time series to
achieve the piecewise-stationary time series.

Figure 1 shows the phenomenon of nonstationary emis-
sions resulting from the operating of a Galileo microcon-
troller [60]. In the present study, a segmentation technique
to achieve piecewise stationary from the nonstationary emis-
sions was carried out manually where signals in the time
domain are divided into 16 segments. Manual segmentation
for detection of nonstationary signals is shown in Figure 2.
This method is able to sort short time segments based on
their stationary characteristics. However, segmenting the data
uniformly can cause some of the high emissions signals
to be divided into two parts. Dividing the data so that the
chosen change points essentially match its actual locations
is the ideal approach. Therefore, further improvement to the
segmentation procedure is needed to determine the change
points in the nonstationary time-domain data automatically
rather than simply sorting the manually grouped subsets of
data.
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FIGURE 1. Nonstationary emissions from Intel Galileo: a) Time domain
b) Time-frequency domain [60].
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FIGURE 2. Signal time series from measurement divided by 16 segments
manually [60].

In this work, the main focus is to obtain a piecewise
stationary model of emissions by implementing automatic
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segmentation techniques. Three different types of segmen-
tation techniques were introduced. They are based on STE,
STZCR and STK.

This paper is divided into four sections. The first section
introduces emissions measurement. The second section is the
methodology. The third section is the results and discussion.
The last section is the conclusion.

Il. STE, STZCR, AND STK
We extract signal frames (segments) at regular intervals using
a time-limited window function w[m], expressed as [61]:

xp [m] = w [m] x[m + fh] (D

where m € {1, ..., M} is the local time index (i.e., an index
relative to the start of the sliding extraction window), M is
the window length, f is the frame index, and £ is the hop size
(i.e., the time advance, expressed in samples, from one signal
frame to the next).

STE is defined as the energy of the corresponding signal
frame [62]:

STE[f1= ) xlm]® @

STE is commonly used to classify speech signals [62]-[66].
Figure 3 shows the waveform of author speech of the
word “Hello I am Tito” and its STE. The use of
STE for vibration analysis can be found in [67]. STE
is also used for high-frequency detection for intracranial
electroencephalography [68].

STZCR is another technique that can measure the noisiness
of a signal in the time domain. STZCR is defined as the
number of times the zero axis is crossed per frame [69].
STZCR is a very simple measure of the fundamental fre-
quency of the signal. In the context of discrete signal time,
zero crossing occurs when the previous sample has a different
algebraic sign from the current sample. For example, if x
is a sample signal, then zero crossing occurs when Xx[i] is a
positive number and x[i-1] is negative and vice versa [70].
Figures 4 and 5 show the concept of the zero crossing and
zero crossing rate (ZCR).

Mathematically, STZCR is defined as the ZCR of the signal
frame under consideration [71]:

STZCRIf1 =) _lsgn(x[m]) —sgn(x[m— 1| (3)

where sgn(e) is the signum function.

Like STE, STZCR is widely used for speech analysis.
Several studies related to the use of STZCR can be found in
[62], [72]-[75].

STK is also considered in this paper. The con-
cept of kurtosis was discovered by Karl Pearson and
Walter F. R. Weldon [76]. Kurtosis is defined as the ratio of
the fourth moment 4 to the square of the variance 4 on the
probability distribution of the random variable x. Kurtosis
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FIGURE 3. (a) Waveform of the uttered word “Hello | am Tito” and (b) STE
of speech signal.

' zero crossings

FIGURE 4. Concept of Zero Crossing [70].

can be used as an indicator to show the degree of curvature
(sui generis peakedness). The greater the kurtosis value, the
sharper the curve. The kurtosis is calculated using the ratio
of the fourth-order moment to the square of the second-order
moment [77].

Mathematically, the STK is defined as the kurtosis of the
signal frame of interest [77], [78]:

>y [m] — my) /M

STK [f]= @)

4
Sxf
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where:
my; is the sample mean of the corresponding signal frame;

sy 1s the standard deviation of the corresponding signal
frame.

The reference value of kurtosis is 3. If the value of
kurtosis is greater than 3, then the distribution curve is called
leptokurtosis. If it is lower than 3, it is called platy kurtosis.
The kurtosis value is equal to 3 curves indicating a normal or
meso kurtosis distribution curve. Figure 6 shows the concept
of kurtosis.

--------- Platy kurtosis
Normal
————— Leptokurtosis

FIGURE 6. Concept of kurtosis.

Ill. RESEARCH METHOD

In this paper, multiple nonstationary EM emissions signals
were tested. They were measured from Intel Galileo and
Raspberry Pi microcontroller boards using an oscilloscope
and a magnetic field probe. The probe to measure the EM
emissions, which is connected to channel 1 of an 8 GHz
KEYSIGHT DSOS804a Digital Oscilloscope, is a Langer
EMV-Technic RF R50-1 magnetic field probe. A task or
program that can produce nonstationary EM emissions is
uploaded to the board so that the sorting technique can
be implemented. EM emission data from measurement are
stored in oscilloscope memory in.bin format. This data will
later be segmented to sort each nonstationary signal into two
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or more piecewise stationary subsets. Figures 7 and 8 show
both boards and the positioning of the probe during the mea-
surement process. The flow of the automatic segmentation
algorithm is shown in Figure 9.
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FIGURE 7. Intel galileo board.

FIGURE 8. Raspberry Pi 3 board.

Convert (o dain “ Determine Mreme lemgih

|

Dreiermine size of hop

File bin (from
measurenrent

Caleulate the number Defermine lengih of
of sigmals — X xlen

Freallocation the update the frame :
frame matriy mairx Calrulation lime vector

BTE (Bhort Time
EnErgy)

Hegaacnl the fle Bdark the sigmal __ BTK (Shori Thae
Huriosis)
STELCR (Sori Time
Lero Crossraie)

Time freq analysis

FIGURE 9. Flow of automatic segmentation algorithm.

We have taken four samples of nonstationary EM sig-
nals with different characters to test the performance of the
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automatic segmentation. Figures 10-13 show four samples
of nonstationary EM signals that were obtained from mea-
surements. All four samples seem to have short duration
emissions characterized by an increased density in the time
domain data plots that occur at a random time. From the
time domain data, the signal of interest is present at the end,
beginning, beginning and end, and at the end of the data,
as shown in Figures 16-19.
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FIGURE 10. Nonstationary signal with position of signal of interest at
right (from galileo) (Case 1).
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FIGURE 11. Nonstationary signal with position of signal of interest at left
(from galileo) (Case 2).

These studies have been carried out using a HP Lap-
top with an Intel(R) Core(TM) i7 processor and 8 GB
RAM. The operating system Windows 10 Home was used
to run Matlab R2021b. Table 1 shows the parameters of this
study.

IV. RESULTS AND DISCUSSIONS

In the previous section, we discussed the development of
algorithms for detection of nonstationary signals with auto-
matic segmentation. In this section, we will discuss the
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FIGURE 12. Nonstationary signal with position of signal of interest at
right and left (from galileo) (Case 3).
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FIGURE 13. Nonstationary signal with position of signal of interest being
a wide signal at right (from raspberry Pi) (Case 4).

TABLE 1. Parameters of automatic segmentation algorithm.

Parameters Value
Number of samples of Case 1, Case 2, 2721
Case 3
Number of samples of Case 4 2723
Sampling frequency of Case 1, Case 2x10°Hz
2, and Case 3
Sampling frequency of Case 4 10'°Hz
Hop size 20000
Frame length 100000

performance of the automatic segmentation algorithm using
the proposed techniques. The performance includes the abil-
ity to do segmentations efficiently and in terms of time needed
to complete the task.
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FIGURE 14. Results of automatic segmentation for case I using (a) STE
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As described in Section III, the scenario of testing was
using four samples of nonstationary signals with different
characteristics. The first nonstationary signal has a narrow
and short duration of emission of interest that is located at the
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FIGURE 15. Results of automatic segmentation for case Il using (a) STE
(b) STZR (c) STK.

end of the data. The second signal has one at the beginning,
and the third signal has one at the beginning and end of the
data. The last signal has wide emissions of interest at the end
of the data.
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A. AUTOMATIC SEGMENTATION FOR NONSTATIONARY
SIGNAL WITH POSITION OF SIGNAL OF INTEREST

AT RIGHT POSITION

In the first case, the nonstationary signal is narrow and posi-
tioned at the end of the time domain signal. The result of
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FIGURE 17. Results of automatic segmentation for case IV using (a) STE

(b) STZR (c) STK.

the automatic segmentation is shown in Figure 14. STE and
STZCR have successfully segmented the signal of interest
and divided the whole signal into two activities. However,
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STK failed to segment the signal. The time needed for the
implementation of STE, STZCR, and STK is 0.457 s, 0.443 s,
and 0.812 s, respectively.

B. AUTOMATIC SEGMENTATION FOR NONSTATIONARY
SIGNAL WITH POSITION OF SIGNAL OF INTEREST

AT LEFT POSITION

For the second case, the short duration signal of interest is also
narrow and positioned at the beginning. The results of auto-
matic segmentation are shown in Figure 15. STE, STZCR,
and STK have successfully segmented the whole signal into
two regions. The time needed to complete the segmentation
process using STE, STZCR, and STK is 0.412 s, 0.423 s, and
0.834 s, respectively.

C. AUTOMATIC SEGMENTATION FOR NONSTATIONARY
SIGNAL WITH POSITION OF SIGNAL OF INTEREST

AT LEFT AND RIGHT POSITION

For the third case, the nonstationary signal is narrow at the
beginning and end. The process of segmentation is shown
in Figure 16. STE, STZCR, and STK have successfully seg-
mented the whole signal into two different activities. The
time to complete the process using STE, STZCR, and STK
is 0.455 s, 0.442 s, and 0.830 s, respectively.

D. AUTOMATIC SEGMENTATION FOR NONSTATIONARY
SIGNAL WITH WIDE SIGNAL AT RIGHT POSITION

The last case uses the data obtained from the Raspberry Pi.
The signal of interest is a wide signal at the end of the whole
signal Figure 17 shows the segmentation process using the
three proposed techniques. STE has successfully segmented
the whole signal into two activities, whereas STZCR and STK
failed to segment the signal. The time needed to complete this
process using STE, STZCR, and STK is 1.764 s, 1.378 s, and
2.978 s, respectively.

TABLE 2. Performance of automatic segmentation.

Case Success (S)/Fail (F) Running time (s)

STE STZCR STK STE STZCR STK
Case 1 S S F 0.457 0.443 0.812
Case 2 S S S 0.412 0.423 0.834
Case 3 S S S 0.455 0.442 0.830
Case 4 S F F 1.764 1.378 2.978

Table 2 summarizes the performance of automatic segmen-
tation using STE, STZCR, and STK. All three techniques
are compared in terms of their capability to successfully
segment the test signal and the time needed to complete the
process. Table 1 shows that STE has successfully performed
the segmentation in all four cases. STZCR was successful
in segmenting the first three cases but failed to do so for
case number four. The implementation of STK was successful
for Cases 2 and 3. However, it fails to segment the signals
in Cases 1 and 4. From the results, we can see that the
STE has produced a significant improvement towards the
automatic segmentation as compared to STZCR, STK and
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the manual technique that has been used in [60]. Based on
its performance, the STE technique is suitable to be used as a
solution to automatic segmentation for the EM emission from
an electronic product.

V. CONCLUSION

An automatic segmentation algorithm of nonstationary sig-
nals has been tested for four cases. The approach of this
algorithm is to use STE, STZCR, and STK. The results of
the segmentation show that STE is the best approach in terms
of segmentation success and the speed of the segmentation
process. Therefore, the STE is suitable for use as part of
piecewise-stationary emission analysis for real-world com-
plex electronic products. The next step for this research is to
integrate the segmentation algorithm into the EM emission
analysis algorithm.
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