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ABSTRACT In breast cancer diagnoses, antagonist compounds are used to resist α Subtype of Estrogen
Receptor (ERα) bioactivity. However, those compounds are difficult to be obtained in the process of
drug screening. In this paper, an efficient bioactivity prediction model is proposed with consideration
of Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties as an auxiliary
prediction to achieve the minimization of the damage caused to human body whereas maximizing the
efficacy of estrogen activity inhibitors. In the proposed prediction model, Pearson correlation analysis and
Bayesian regularization algorithm under neural network are specifically used to train and analyze the data
of bioactivity. To calculate the loss of neural network, cross-entropy and supervise learning are applied.
The results show that the accuracy of our proposed compound prediction model can reach up to 92.2%,
94.3%, and 90.2% for Caco2, CYP3A4, and hERG, respectively.Moreover, the Area Under the Curve (AUC)
value of our proposed model is 0.9752, which is 13-14% higher than that of SVM method. In addition,
the Matthews Correlation Coefficient (MCC) can reach up to 0.93 ± 0.03, 37-40% higher than that of
SVM method. Due to correlation analysis and valid data screening, our model can shorten the prediction
time by 15%. Due to its advantages in accuracy and speed of prediction, this research can contribute to the
upgrading of diagnosis and treatment of breast cancer.

INDEX TERMS Deep neural networks, drug discovery, machine learning, virtual screening.

I. INTRODUCTION
Breast cancer is one of the most common and highly lethif-
erous cancers in the world, whose development is closely
related to Estrogen Receptor [1]–[3]. Research has found that
Estrogen Receptors alpha (ERα) is expressed in no more than
10% of normal breast epithelial cells but about 50-80% of
breast tumor cells. Based on the feature, antihormone ther-
apy is commonly used by breast cancer patients. It controls
estrogen level by regulating estrogen receptor activity [4], [5].
Therefore, compound which can resist ERα bioactivity is
considered as an important target for treating breast cancer.
To save time and cost in drug discovery, compound activ-
ity prediction models are usually used to screen potential
active compounds. Before building a model, the expected
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compounds need to possess some basic features, such as
good bioactivity, pharmacokinetic properties and nontoxicity
in human body which are collectively known as ADMET.
Nomatter how active a compound is, if its ADMETproperties
do not meet the requirements, for example, if it was difficult
to be absorbed by the human body, or the metabolic rate in the
body was too fast, or it had biotoxicity, it would be difficult
to be made into medicine, thus the ADMET properties need
to be accurately evaluated.

Previously, scientists examined molecules of a substance
in the laboratory to determine its effects on human bodies or
animals. However, it is hard for them to check all the com-
pounds in the database because it is highly time-consuming
and expensive. To solve this problem, virtual screening was
created, which is a method that can match known compounds
with unknown ones. One of the traditional techniques is sim-
ilarity search [6]. It is a ligand-based technology, which can
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discover the similarity between molecules or the substructure
of distance molecules, but it was only applied within a limited
scope. In recent years, machine learning technology has been
widely used in the field of chemical informatics with a lot of
methods being developed, such asNaive Bayes (NB), Support
Vector Machine (SVM), Single hidden Layer Feedforward
Network (SLFN), Logistic Regression (LR), andDeepNeural
Networks (DNN) [7]–[9]. When using SVM method, the
model trained with large-scale samples often has the defect
of slow speed, and is sensitive to missing data, parameters
and kernel functions [10]. Hence, the traditional SVM is
not suitable for multi-classification. Meanwhile, apart from
the low accuracy, too much iterative calculation and tuning
need to be consumed for SLFN, leading to a long train-
ing time [11]. In this regard, Kudisthalert et al. discovered
Extreme Learning Machine (ELM) prediction model, using
single-layer feedforward neural network structure. It selected
the weight from the training randomly and processed the data
through a generalized inverse function, which can produce a
function with small training error. Without performing iter-
ative process to train a model, the training time for ELM
can be remarkably reduced compared with SLFN. Yet this
model is not widely used due to the complexity of function
calculation of approximate hidden layer nodes. These models
are usually measured by two main parameters, namely Area
Under the Curve (AUC) and Matthews Correlation Coeffi-
cient (MCC) [12]–[14].

In this paper, aiming at the high complexity of drug screen-
ing, Pearson correlation analysis is used to screen the train-
ing data. In dealing with the insufficiency of accuracy of
the drug prediction, a quantitative prediction model of com-
pound bioactivity is constructed. A three-layer neural net-
work under Bayesian regularization algorithm is established
for effectively training and analyzing the bioactivity data of
1942 compounds. In themeantime, considering the wellbeing
of human bodies, a classification prediction for predicting
ADMET properties is added to the model, and the loss of
neural network model are calculated by cross entropy and
supervised learning.

II. METHOD AND PRINCIPLE
In this part, we have introduced the method and principle
of our proposed model. Including noise-filtering neural net-
work, the noise filtering of training data, and the Bayesian
Regularization Algorithm.

A. NOISE-FILTERING NEURAL NETWORK
To promote the efficient screening of drugs and train a
practical drug-active prediction system, we constructed the
prediction model shown in Figure 1. In our work, the whole
predictionmodel is simplified and described as two parts, pre-
processing and post-processing. The ‘‘pre-processing’’ eval-
uates the correlation of all variables affecting the prediction
results through correlation operation and Bayesian analysis.
The dependent variables which have low correlation with
the prediction results and constant in all training data are

FIGURE 1. The diagram of noise-filtering neural network combined with
bayesian regularization algorithm.

eliminated to filter the noise, reduce the complexity of model
training, and improve the accuracy. ‘‘Post-processing’’ refers
to that our prediction model based on Bayesian regularization
and three-layer neural network is constructed to train the
relationship between molecular descriptors and biological
activities of known compounds. The number of nodes in the
middle layer can first obtain an approximate value through
empirical formula, and then obtain an optimal value through
adjusting parameters in a certain range. The weights of each
layer of neural network nodes are trained by supervised learn-
ing. And then the unknown compounds are predicted and
compared with the real value to verify the effectiveness and
practicability of our proposed model for drug screening.

For Biological Activity (BA) prediction, the BP neural net-
work and Bayesian regularization algorithm are combined to
significantly improve the generalization ability, convergence
speed and approximation accuracy of BP neural network for
the best BA prediction effect. For the simplified ADMET pre-
diction (de facto two classification prediction), the conven-
tional BP neural network is used for classification prediction.
In Figure 1, ‘‘L1Nn’’ refers to layer 1 node n, supposing n
nodes are in layer 1. Similarly, ‘‘L2Nm’’ represents layer 2
node m, assuming there are m nodes altogether in layer 2.
‘‘BA’’ indicates biological activity, ‘‘A, D, M, E, and T’’
represents five properties to be tested, whose performance
can be judged by the output.

h =
√
m+ n+ a (1)

The number of hidden layer nodes has an impact on
the performance of neural network. An empirical formula
can determine the number of hidden layer nodes, as shown
in formula (1), in which h is the number of hidden layer
nodes, m is the number of input layer nodes, n is the num-
ber of output layer nodes, and a is the adjustment constant
between 1 and 10 [15].

After obtaining the number of hidden layer nodes, the
ADMET properties begin to predict, as a parameter to mea-
sure the comprehensive index of drugs, simplified as 0 and 1
which means inferior and superior. The steps of predicting
this parameter are divided into three steps: normalization
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processing (formula 2), weight matrix calculation and sum-
mation (formula 3) and activation function output (formula 4
and formula 5). The second layer repeats a similar operation
of the first layer.

(x + offset) ∗ gain+ ymin = xp1 (2)

Sj =
m−1∑
i=0

wij xi+ bj (3)

xj = f
(
Sj
)

(4)

a =
2

1+ exp(−2 ∗ n)
− 1 (5)

In formula (3), Wij represents the weight between node i
and node j, whereas bj acts for the threshold of node j, and
xj stands for the output value of each node. The output value
of each node should be realized according to the output value
of all nodes in the upper layer, the weight of the current node
and all nodes in the upper layer, the threshold of the current
node and the activation function [16], [17].

B. NOISE FILTERING OF TRAINING DATA
Pearson correlation coefficient is often used to calculate the
correlation between variables. From a mathematical point
of view, it is defined as ‘‘the covariance between two vec-
tors is normalized by the product of their standard devia-
tion’’ [18]–[20]. The covariance between two pairs of vectors
is the measurement of their fluctuation trend up and down
the mean. That is, it measures whether a pair of vectors tend
to be on the same side or opposite to their respective aver-
ages [21]–[23]. The covariance is calculated by subtracting
the respective mean value from each pair of variables, and
then multiplying the two values, as shown in formula (6).

Cov(x, y) =

∑N
i (xi−x̄) (yi−ȳ)

N − 1
(6)

ρxy =
Cov(x, y)
σx σy

(7)

To obtain more reliable numbers, normalized covariance
can be obtained by dividing covariance by the product of the
standard deviation of two vectors [24]–[26]. As shown in for-
mula (7), the Greek letter ρ is used to express Pearson corre-
lation coefficient. As shown in equation (8), the covariance of
two identical vectors is also equal to their variance. Therefore,
the maximum value of the covariance between two vectors
is equal to the product of their standard deviation, which
occurs when the vectors are completely correlated [27]. The
correlation coefficient is limited to [−1, 1].

Cov(x, x) = Var(x) (8)

R(i, j) =
C(i, j)

√
C(i, i) · C(j, j)

(9)

According to the correlation analysis, the Correlation
Coefficient function is mainly used to calculate the correla-
tion of variables by Pearson correlation algorithm, as shown
in formula (9). Where, C (i, j) is the covariance matrix,

R (i, j) is the correlation coefficient matrix, and the correlation
coefficient is calculated from the covariance.

C. BAYESIAN REGULARIZATION ALGORITHM
When the size of the training sample set is certain, the
generalization ability of the network is directly related to
the scale of the network. If the size of the neural network
is much smaller than that of the training sample set, the
chance of ‘‘over training’’ would be very small. However, for
solving specific problems, it is often difficult to determine
the appropriate network size (the number of hidden layer
neurons). The regularization method improves the general-
ization ability of neural network by modifying the training
performance function of neural network. In general, the train-
ing performance function of neural network is expressed by
formula (10) [28], [29].

ED =
1
N

N∑
i=1

(ei)2 =
1
N

N∑
i=1

(ti− ai)2 (10)

E = ζ1 · ED + ζ2 · EW (11)

EW =
1
N

N∑
j=1

Wj
2 (12)

In the regularization method, the mean square sum of
network weights is added to the typical objective function,
and the network performance function is improved to the
formula (11) and formula (12) with ζ1 and ζ2 being the
parameters. If ζ1 � ζ2, the training algorithm minifies
the network error. Conversely, if ζ1 � ζ2, the training
emphasizes the reduction of weight, leading to a relatively
great network error, which eventually makes the output of
the neural network smoother and prevents the occurrence of
minimum points [30].

By using the new performance index function, the network
is adjusted to a small weight and the effective weight of the
network is minimized under the condition of ensuring that
the network training error is as small as possible, that is
equivalent to automatically reducing the scale of the network.
It is difficult to determine the scale coefficient (ζ1 and ζ2) by
conventional regularization methods, whereas the Bayesian
regularization method adjusts the weight and threshold of the
network according to the Levenberg Marquardt optimization
theory, that adaptively can adjust the parameters (ζ1 and ζ2)
of the objective function in the network training and make it
optimal [31].

III. RESULTS AND DISCUSSION
In this part, we have shown the results of correlation analysis,
bioactivity prediction, and ADMET properties prediction,
respectively. Then, we have discussed these results.

A. CORRELATION ANALYSIS
For obtaining objective and accurate prediction results,
we have downloaded bioactivity data tables and molecu-
lar descriptor information tables of 1974 compounds from
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PubChem database. The bioactivity data training table con-
tains three columns. The first column provides the struc-
tural formulas of 1974 compounds, represented by SMILES
(Simplified Molecular Input Line Entry System); the second
column is the bioactivity value of compounds, who have
impacts on ERα; the third column is pIC50, which is usu-
ally positively correlated with bioactivity. In the molecular
descriptor information table, the first column is the SMILES
formula of the compound, followed by 729 columns, and each
column represents a molecular descriptor of the compound.

The correlation coefficients between each molecular
descriptor variable and bioactivity variable are calculated
according to Correlation Coefficient function, with the coef-
ficients displayed from left to right according to the list
number, as shown in Figure 2. As shown in the figure, the
number of variables is as high as 729, and the amount of
data obtained is relatively large. It is impossible to intuitively
see the 20 variables with the largest correlation coefficient.
The molecular descriptors with the most significant effect on
biological activity can be obtained by rows sorting function.
Due to correlation analysis and valid data screening, our
proposed model can shorten the prediction time by 15%.

FIGURE 2. Distribution of variable correlation coefficient.

B. PREDICTION OF BIOLOGICAL ACTIVITY
In this part, the network parameters are set as follows: the
number of network epochs is set as 100, the expected error
goal as 0.00001, and the learning rate LR as 0.1. After
being tried, it is safe to say that when the number of hidden
layer nodes is 14, the test accuracy of the test set is the
highest at 86%, hence the number of hidden layer nodes is
set to 14. Then the neural network model trained is tried
firstly under Levenberg Marquardt (LM) algorithm, the Rel-
evance (R) value is obtained as 0.77761 and Mean-Square
Error (MSE) is 0.72564. It is apparent that it cannot meet the
expectation in the MSE. For comparing with other training
method, the Bayesian algorithm is used to train the neural
network. The given 1974 data sets are divided into two parts,
with the first 1800 data sets trained by Bayesian method, and
the remaining 174 data sets being tested.

FIGURE 3. Analysis image of predicted value, real value and error.

FIGURE 4. Error distribution square image of training set and test set.

As the predicted results shown in Figure 3, to test the
error between the real value and the predicted value of
174 molecular descriptor variables in the test set and their
error percentage, the red broken line and blue broken line
are correspondingly the actual value and predicted value of
biological activity of each molecular descriptor. In the figure,
the test values and the actual values are showing a similar
trend, the error percentage of nearly 93% of the data is
controlled within a range of 3%, proving that the established
model can make an accurate prediction of the data.

Figure 4 shows the error distribution histogram of training
set and test set. The blue column and red column represent the
number of training sets and test sets with errors within this
range respectively. It is not difficult to see that the training
error and the test set error are concentrated in [−0.2785,
0.3289], and only a few data errors have absolute values
greater than 1.5.

Figure 5 is the relationship image of the MSE value of the
training set data and the number of test sets with the increase
of the number of epochs, in which the red curve and the blue
curve respectively are the MSE values of the test data set
and the training data set. In the first two epochs, the MSE
decreased rapidly from 10 to 1, and from the 81st epoch, the
test MSE and training MSE of the model basically remained
at 0.40184. Compared with the MSE value of LM algorithm,
the MSE under Bayesian algorithm has been greatly reduced.
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FIGURE 5. Variation of MSE of training set, test set and overall with
training times.

FIGURE 6. (a). Correlation analysis images of training set. (b). Correlation
analysis images of test set. (c). Correlation analysis images of all dataset.

Figure 6 shows the correlation distribution images of each
sample in the training set and the test set on the proposed
model. The training set data correlation R is 0.89387, whereas
the test set data correlation R is 0.82205, and the overall cor-
relation R reached 0.88167. As a result, the accuracy of our
proposed model trained by Bayesian method on the test data
set is higher than that of LM algorithm, because the model
training under LM algorithm automatically stops when the
generalization stops improving, which means it requires less
training time but is lack of accuracy. Differently, the model
training through Bayesian regularization stops according to
adaptive weight minimization, leading to a higher accuracy,
especially for the prediction of complex and noisy datasets.

C. PREDICTION OF ADMET PROPERTIES
To make prediction of the ADMET properties closer to real-
ity, the ADMET properties tables of 1974 compounds are
downloaded from ZINC database. For facilitating modeling,

only five ADMET properties of compounds are considered:
1) Caco2, which is used to measure the ability of compounds
to be absorbed by human body; 2) CYP3A4, which is the
main metabolic enzyme in human body, used to measure the
metabolic stability of compounds; 3) hERG, which measures
the cardiotoxicity of the compound; 4) HoB, a property can
measure the proportion of drugs absorbed into the human
blood circulation after it enters the human body; 5) MN, a
method to detect whether the compounds have genotoxicity.

According to the empirical formula, when the input port is
20 and the output port is 1, the number of nodes in the middle
layer is between 28 and 38, which is a relatively optimal
value. Therefore, the numbers of intermediate nodes of the
constructed neural network model are tested, and the test
accuracy of the five properties of ADMETwith the best train-
ing data of each node number are plotted. As Figure 7 shows,
Caco2, CYP3A4, hERG, HoB, MN can be obtained the best
prediction performance of 92.2%, 94.3%, 90.2%, 87.2%, and
92.2%, respectively, when the numbers of hidden nodes are
34, 33, 30, 37, 28, severally. Through appropriate hidden
layer nodes, the highest prediction accuracy of the properties
of each compound is achieved.

FIGURE 7. Relationship between the number of intermediate nodes and
prediction accuracy.

In order to predict the ADMET performance of other
unknown compounds, Cross Entropy loss function is used
to judge the performance of the neural network model on
the samples. It divides 1974 groups of sample data into
training set, validation set and test set in the ratio of 14:3:3.
The training set is used to train the network and adjust the
weights of the internal transmission matrix, the function of
the verification set is to find the best number of training
epochs, whereas the test set acts as the final performance
evaluation of the neural network model. Taking CYP3A4 as
an example, the confusion matrix evaluation diagrams will
be obtained as Figure 8, with the green modules indicating
correct predictions, and the red modules indicating that the
predictions are wrong.

Figure 8 represents that in the training data, 334 plus
1011 of the main diagonal are the sum of the correct parts
of the training, accounting for 97.3%, whereas the error
accounts for 2.7%. With the same method, the sum of cor-
rect parts in validation data, test data and summary data are
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FIGURE 8. CYP3A4 prediction model evaluation confusion matrix.
(a). Training confusion matrix. (b). Validation confusion matrix. (c). Test
confusion matrix. (d). All confusion matrix.

94.9%, 94.3%, and 96.5%. That is, for the neural network
model we trained, through 729 parameters, the accuracy of
CYP3A4 data prediction can reach up to 94.3%. It shows that
the prediction accuracy of our model is convincingly high.

The Receiver Operating Characteristic (ROC) curve is
usually used to measure the performance of the model. The
abscissa of the plane is False Positive Rate (FPR), and the
ordinate is True Positive Rate (TPR). For a classifier, we can
acquire a TPR and FPR point pair according to its perfor-
mance on the test sample. Generally, the closer ROC curve
is to the (0, 1) point, the better the prediction performance
of the binary classification model is. The ROC curve can be
calculated from the confusion matrix in Figure 8, as shown
in Figure 9. The best points on ROC curve of training set,
verification set, and test set are (0.054, 0.946), (0.075, 0.925),
(0.05, 0.95), respectively. Boltzmann-Enhanced Discrimina-
tion of ROC (BEDROC) is a score that is more representative
of compound prioritization, since it is biased towards early
enrichment. The area under ROC curve is called AUC, it can
be easily calculated to measure the model.

MCC =
TP× TN − FP× FN

√
(TP+ FP) (TP+ FN ) (TN + FP) (TN + FN )

(13)

Another parameter to measure the quality of the model,
Matthews Correlation Coefficient (MCC), is the correlation
coefficient between observed and predicted binary classifi-
cations, with the values staying between [−1, +1]. When
the coefficient equals to +1, it indicates perfect prediction,

FIGURE 9. ROC curve of CYP3A4 prediction evaluation model. (a). Training
ROC curve. (b). Validation ROC curve. (c). Test ROC curve. (d). All ROC
curve.

0 indicates that it is no better than random prediction, and
−1 refers to complete inconsistency between prediction and
observation. MCC can be calculated directly from the confu-
sion matrix using formula (13). In this formula, TP stands for
true positive, TN represents true negative, FP acts for false
positive and FN means false negative.

As shown in Table. 1, five general parameters are used to
measure our model. The BEDROC values predicted by sev-
eral widely used methods such as NB, SVM, LR, DNN_PCM
are respectively 0.79 ± 0.08, 0.88 ± 0.05, 0.88 ± 0.06, and
0.93 ± 0.03. The BEDROC value predicted by the three-
layer neural networkmodel under the Bayesian regularization
algorithm we proposed can reach 0.95± 0.03, which is 2-3%
higher than the highest value of the previous models. The
MCC values predicted by NB, SVM, LR, DNN_PCM are
0.41 ± 0.03, 0.56 ± 0.07, 0.51 ± 0.06, and 0.53 ± 0.07,
sequentially. The MCC value of our model is 0.93 ± 0.03,
which is 37-40% higher than the highest MCC value of the
previous models. The AUC values predicted by NB, SVM,
LR are correspondingly 0.7875, 0.8126, 0.8402, whereas our
AUC value is 0.9752, which is the highest among them. The
data comparisons indicate that the prediction performance of
our proposed model is extraordinary.

After processing 1974 samples, the remaining 543 sam-
ples with high correlation are selected. The data of the first
20 samples with better biological activity to inhibit ERα are
then processed, as shown in Figure 10. Taking the molec-
ular Lipoaffinity Index as an example, when the molecular
descriptor value stays from 10 to 12, the ADMET properties
expresses with the highest frequency, about 28 times. For
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TABLE 1. Model performance comparison table.

FIGURE 10. Histogram of occurrence frequency of molecular descriptors
corresponding to samples.

molecular n6Ring, when the molecular descriptor value is
between 2.5 to 4.5, the frequency of ADMET properties
reaches the highest, about 32 times. 20 samples are listed
in Figure 10, who are compounds screened by our proposed
model that not only have high anti-ERα activity, but also
show excellent ADMET properties for multiple times in a
specific interval. The result shows that the model we designed
has successfully achieved the purpose of screening effective
anticancer drugs with little side effects. In recent years, deep
learning has also been used to detect COVID-19 images [32],
[33]. It is believed that in the near future, deep learning will
play an important role in drug screening and virus detection,
and bring new breakthroughs to the development of medicine.

IV. CONCLUSION
For future drug screening, the contribution of computers can
greatly reduce meaningless steps and provide strong support
for drug discovery. In dealing with the massive number of
parameters that need to be considered in model training, this
paper presents a method that takes into account both the bur-
den of computing power and prediction accuracy. An efficient
quantitative prediction model (with AUC of 0.9752, MCC
of 0.93) of compounds bioactivity has been constructed.
During the training, Pearson correlation analysis, Levenberg
Marquardt algorithm and Bayesian regularization algorithm
were used to effectively train and analyze the data. Moreover,
the ADMET properties were also considered, using cross-
entropy to calculate the loss of neural network model and

supervise learning. Our training data sets are more exten-
sive and the prediction accuracy of our proposed model is
higher, with the values of AUC and MCC much higher than
other methods. This research can improve the efficiency of
screening the compounds who can inhibit the ERα bioactive,
providing new ideas for the treatment of breast cancer.
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